REVIEW

- Placement - Greedy vs. Simulated Annealing
- Routing - Shortest Path (Djkstra), A*, Pathfinder
- Transmission lines - high frequency loss, dispersion, ringing, overshoo \dagger
- Differential signaling - advantages, eye diagrams
- Crosstalk - inductive, capacitive

PIPELINING

- Adding registers along a path
- split combinational logic into multiple cycles
- each cycle smaller than previously
- increase throughput

Pipelining and Retiming 2

PIPELINING

- Delay, d, of slowest combinational stage determines performance
- Throughput $=1 / \mathrm{d}$: rate at which outputs are produced
- Latency $=n \cdot d$: number of stages * clock period
- Pipelining increases circuit utilization
- Registers slow down data, synchronize data paths
- Wave-pipelining
- no pipeline registers - waves of data flow through circuit
- relies on equal-delay circuit paths - no short paths

When and How to Pipeline?

- Where is the best place to add registers?
- splitting combinational logic
- overhead of registers (propagation delay and setup time requirements)
- What about cycles in data path?
- Example: 16-bit adder, add 8-bits in each of two cycles

RETIMING

- Process of optimally distributing registers throughout a circuit
- minimize the clock period
- minimize the number of registers

Pipelining and Retiming 5

RETIMING (CONT’D)

- Fast optimal algorithm (Leiserson \& Saxe 1983)
- Retiming rules:
- remove one register from each input and add one to each output
- remove one register from each output and add one to each input

RETIMING EXAMPLES

- Shortening critical paths

- Create simplification opportunities

OPTIMAL PIPELINING

- Add registers - use retiming to find optimal location

OPTIMAL PIPELINING

- Add registers - use retiming to find optimal location

Pipelining and Retiming 9

EXAMPLE - DIGITAL CORRELATOR

- $y_{t}=\delta\left(x_{t}, a_{0}\right)+\delta\left(x_{t-1}, a_{1}\right)+\delta\left(x_{t-2}, a_{2}\right)+\delta\left(x_{t-3}, a_{3}\right)$
- $\delta\left(x_{t}, a_{0}\right)=0$ if $x \neq a, 1$ otherwise (and passes x along to the right)

EXAMPLE - DIGITAL CORRELATOR (CONT’D)

- Delays: adder, 7; comparator, 3; host, 0

cycle time $=$

ExAMPLE - Digital CORRELATOR (CONT'D)

- Delays: adder, 7; comparator, 3; host, 0

cycle time $=24$

cycle time $=13$

Extensions to Retiming

- Host interface
- add latency
- multiple hosts
- Area considerations
- limit number of registers
- optimize logic across register boundaries
- peripheral retiming
- incremental retiming
- pre-computation
- Generality
- different propagation delays for different signals
- widths of interconnections

DIgital Correlator Revisited

- Optimally retimed circuit (clock cycle 13)

- How can we increase the clock frequency?
- Work on multiple data sets at the same time

C-SLOW'ING A CIRCUIT

- Replace every register with C registers

- Now retime: (clock cycle now 7)

Pipelining and Retiming 15

C-SLOW'ING A CIRCUIT $=$ MULTI-ThreAding

- In this case there are two threads (blue and orange)
- Host alternates between the two threads
- Input blue data, remove orange results

C-SLOW'ING A CIRCUIT $=$ MULTI-THREADING

- In this case there are two threads (blue and orange)
- Host alternates between the two threads
- Input orange data, remove blue results

C-SLOW'ING A CIRCUIT $=$ MULTI-THREADING

- In this case there are two threads (blue and orange)
- Host alternates between the two threads
- Input blue data, remove orange results
- Throughput of each thread $(1 / 14)$ is almost what it was before $(1 / 13)$!

Pipelining Processors

- Pipelined processors are complex because of feedback loops (cycles)
- Forwarding
- Branch prediction
- Long latency ops (e.g. cache miss) cause stalls
- Solution - C-slowing!
- Start with non-pipelined processor
- Program counter, register file
- C-slow by N
- N program counters, register files
- Pipeline datapath, ignoring hazards!

MULTI-THREADED PROCESSOR

- Pipelined, c-slowed processor is "multi-threaded"
- Executing N different instruction streams simultaneously
- Each executes an instruction every N cycles
- Allows op feedback latency of N cycles
- e. g. cache read miss
- Tera Computer MTA (now Cray) is multi-threaded
- $N=1024$
- There is no cache!
- Remote memory access < 1024 cycles (2 usec)
- Requires huge parallelism (N threads!)

Multi-Threaded Processors

- Multi-threaded processors are very simple
- No stalls, no forwarding, etc.
- Great for FPGAs
- Muxes are expensive and slow!
- Registers are almost free
- Typical $\mathrm{N}=4$ for multi-threaded FPGA processors
- Almost $4 x$ performance increase
- Higher utilization (no stalls) (2x)
- Higher frequency (2x)

SMT PROCESSORS

- Dynamic multi-threaded, super-scalar, out-of-order processors
- Hugely complicated
- Take CSE 471 !!

C-SLOWING/RETIMING FOR RESOURCE SHARING

- Correlator circuit

C-SLOWED BY 4

Insert Data every 4 Cycles (ONE DATA SET)

Computation Active only every 4 Cycles

Retime and remove extra Pipelining

COMPUTATION SPREAD OVER TIME

- Only need one multiplier and one adder
- We can use this method to schedule for any number of resources

Systolic Arrays

- Set of identical processing elements
- specialized or programmable
- Efficient nearest-neighbor interconnections (in 1-D, 2-D, other)
- SIMD-like
- Multiple data flows, converging to engage in computation

Analogy: data flowing through the system in a rhythmic fashion - from main memory through a series of processing elements and back to main memory

EXAMPLE - CONVOLUTION

$y_{j}=x_{j} w_{1}+x_{j+1} w_{2}+\ldots+x_{j+n-1} w_{n}$

$$
\begin{aligned}
& y_{1}=x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}+x_{4} w_{4} \\
& y_{2}=x_{2} w_{1}+x_{3} w_{2}+x_{4} w_{3}+x_{5} w_{4} \\
& y_{3}=x_{3} w_{1}+x_{4} w_{2}+x_{5} w_{3}+x_{6} w_{4}
\end{aligned}
$$

$$
-x_{3}-x_{2}-x_{1} \longrightarrow w_{4} \longleftrightarrow w_{3} \longmapsto w_{2} \longmapsto w_{1} \longmapsto \longleftrightarrow---y_{1}-y_{2}-y_{3}-
$$

EXAMPLE - CONVOLUTION

$$
\begin{aligned}
& y_{1}=x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}+x_{4} w_{4} \\
& y_{2}=x_{2} w_{1}+x_{3} w_{2}+x_{4} w_{3}+x_{5} w_{4} \\
& y_{3}=x_{3} w_{1}+x_{4} w_{2}+x_{5} w_{3}+x_{6} w_{4}
\end{aligned}
$$

EXAMPLE - CONVOLUTION

$$
\begin{aligned}
& y_{1}=x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}+x_{4} w_{4} \\
& y_{2}=x_{2} w_{1}+x_{3} w_{2}+x_{4} w_{3}+x_{5} w_{4} \\
& y_{3}=x_{3} w_{1}+x_{4} w_{2}+x_{5} w_{3}+x_{6} w_{4}
\end{aligned}
$$

EXAMPLE - CONVOLUTION

$$
\begin{aligned}
& y_{1}=x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}+x_{4} w_{4} \\
& y_{2}=x_{2} w_{1}+x_{3} w_{2}+x_{4} w_{3}+x_{5} w_{4} \\
& y_{3}=x_{3} w_{1}+x_{4} w_{2}+x_{5} w_{3}+x_{6} w_{4}
\end{aligned}
$$

EXAMPLE - CONVOLUTION

$$
\begin{aligned}
& y_{1}=x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}+x_{4} w_{4} \\
& y_{2}=x_{2} w_{1}+x_{3} w_{2}+x_{4} w_{3}+x_{5} w_{4} \\
& y_{3}=x_{3} w_{1}+x_{4} w_{2}+x_{5} w_{3}+x_{6} w_{4}
\end{aligned}
$$

EXAMPLE - CONVOLUTION

$$
\begin{aligned}
& y_{1}=x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}+x_{4} w_{4} \\
& y_{2}=x_{2} w_{1}+x_{3} w_{2}+x_{4} w_{3}+x_{5} w_{4} \\
& y_{3}=x_{3} w_{1}+x_{4} w_{2}+x_{5} w_{3}+x_{6} w_{4}
\end{aligned}
$$

EXAMPLE - CONVOLUTION

$$
\begin{aligned}
& y_{1}=x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}+x_{4} w_{4} \\
& y_{2}=x_{2} w_{1}+x_{3} w_{2}+x_{4} w_{3}+x_{5} w_{4} \\
& y_{3}=x_{3} w_{1}+x_{4} w_{2}+x_{5} w_{3}+x_{6} w_{4}
\end{aligned}
$$

EXAMPLE - CONVOLUTION

$$
\begin{aligned}
& y_{1}=x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}+x_{4} w_{4} \\
& y_{2}=x_{2} w_{1}+x_{3} w_{2}+x_{4} w_{3}+x_{5} w_{4} \\
& y_{3}=x_{3} w_{1}+x_{4} w_{2}+x_{5} w_{3}+x_{6} w_{4}
\end{aligned}
$$

EXAMPLE - CONVOLUTION

$$
\begin{aligned}
& y_{1}=x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}+x_{4} w_{4} \\
& y_{2}=x_{2} w_{1}+x_{3} w_{2}+x_{4} w_{3}+x_{5} w_{4} \\
& y_{3}=x_{3} w_{1}+x_{4} w_{2}+x_{5} w_{3}+x_{6} w_{4}
\end{aligned}
$$

EXAMPLE - CONVOLUTION

$$
\begin{aligned}
& y_{1}=x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}+x_{4} w_{4} \\
& y_{2}=x_{2} w_{1}+x_{3} w_{2}+x_{4} w_{3}+x_{5} w_{4} \\
& y_{3}=x_{3} w_{1}+x_{4} w_{2}+x_{5} w_{3}+x_{6} w_{4}
\end{aligned}
$$

EXAMPLE - CONVOLUTION

$$
\begin{aligned}
& y_{1}=x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}+x_{4} w_{4} \\
& y_{2}=x_{2} w_{1}+x_{3} w_{2}+x_{4} w_{3}+x_{5} w_{4} \\
& y_{3}=x_{3} w_{1}+x_{4} w_{2}+x_{5} w_{3}+x_{6} w_{4}
\end{aligned}
$$

EXAMPLE - CONVOLUTION

	wim $\mathbf{w}_{3} \mathbf{w}_{2} \mathbf{w _ { 1 }}$	
$\mathrm{x}_{6}-\mathrm{x}_{5}-\mathrm{x}_{4}-\mathrm{x}_{3}-\mathrm{x}_{2}-$		- - - $y_{1}-y_{2}-y_{3}$
$\mathrm{x}_{6}-\mathrm{x}_{5}-\mathrm{x}_{4}-\mathrm{x}_{3}-\mathrm{x}_{2}$	- x_{1} -	$-y_{1}-y_{2}-y_{3}$
$\mathrm{x}_{6}-\mathrm{x}_{5}-\mathrm{x}_{4}-\mathrm{x}_{3}-$		$-y_{1}-y_{2}-y_{3}$
$\mathrm{x}_{6}-\mathrm{x}_{5}-\mathrm{x}_{4}-\mathrm{x}_{3}$		(${ }_{1} y_{1}{ }_{1}-y_{2}-y_{3}$
$\mathrm{x}_{6}-\mathrm{x}_{5}-\mathrm{x}_{4}-$	$\begin{array}{l\|l\|l\|l} \hline x_{3} & x_{2} & - \\ - & - & y_{1} & - \\ \hline \end{array}$	- $y_{2}-y_{3}$
$\mathrm{x}_{6}-\mathrm{x}_{5}-\mathrm{x}_{4}$		
$\mathrm{x}_{6}-\mathrm{x}_{5}-$	$\begin{array}{l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \mathbf{x}_{3} \\ \mathbf{y}_{1} & \mathbf{y}_{2} \end{array} .$	- y_{3}
$\mathrm{x}_{6}-\mathrm{x}_{5}$		

Pipelining and Retiming 54

Convolution - ANOTHER LOOK

- Repeated vector product

Pipelining and Retiming 55

EXAMPLE: CONVOLUTION

Pipelining and Retiming 56

EXAMPLE: CONVOLUTION

Pipelining and Retiming 57

CONVOLUTION EXAMPLE

CONVOLUTION EXAMPLE

CONVOLUTION EXAMPLE

Pipelining and Retiming 61

Pipelining and Retiming 62

Pipelining and Retiming 63

Pipelining and Retiming 64

Pipelining and Retiming 65

Pipelining and Retiming 66

Pipelining and Retiming 67

Pipelining and Retiming 68

EXAMPLE: MATRIX MULTIPLICATION

- $C=A \times B \quad c_{i j}=\Sigma_{k=1}{ }^{n} a_{i k} b_{k j}$

Pipelining and Retiming 69

EXAMPLE: MATRIX MULTIPLICATION

EXAMPLE: MATRIX MULTIPLICATION

EXAMPLE: MATRIX MULTIPLICATION

EXAMPLE: MATRIX MULTIPLICATION

ExAMPLE: MATRIX MULTIPLICATION

ExAMPLE: MATRIX MULTIPLICATION

ExAMPLE: MATRIX MULTIPLICATION

EXAMPLE: MATRIX MULTIPLICATION

Systolic Algorithms

- 2D Convolution
- Image processing
- FFT
- String matching
- Dynamic programming
- DNA comparison
- Matrix computations
- LU decomposition
- QR factorization

Systolic Architectures

- Highly parallel
" "fine-grained" parallelism
- deep pipelining
- Local communication
- wires are short - no global communication (except CLK)
- linear array \rightarrow no clock skew
- increasingly important as wire delays increase (relative to gate delays)
- Linear arrays
- most systolic algorithms can be done with a linear array
- include memory in each cell in the array
- linear array a better match to I/O limitations
- Contrast to superscalar and vector architectures

Systolic Computers

- Custom chips - early 1980's
- Warp (CMU) - 1987
- linear array of 10 or more processing cells
- optimized inter-cell communication for low-latency
- pipelined cells and communication
- conditional execution
- compiler partitions problem into cells and generates microcode
- i-Warp (Intel) - 1990
- successor to Warp
- two-dimensional array
- time-multiplexing of physical busses between cells
- 32×32 array has 20Gflops peak performance
- not a commercial success
- Currently confined to ASIC implementations

