
Review

  Placement – Greedy vs. Simulated Annealing
  Routing – Shortest Path (Djkstra), A*, Pathfinder
  Transmission lines – high frequency loss, dispersion, ringing, overshoot
  Differential signaling – advantages, eye diagrams
  Crosstalk – inductive, capacitive

Pipelining and Retiming 1

Pipelining and Retiming 2

Pipelining

  Adding registers along a path
  split combinational logic into multiple cycles
  each cycle smaller than previously
  increase throughput

Pipelining and Retiming 3

Pipelining

  Delay, d, of slowest combinational stage determines performance
  Throughput = 1/d : rate at which outputs are produced
  Latency = n•d : number of stages * clock period
  Pipelining increases circuit utilization
  Registers slow down data, synchronize data paths

  Wave-pipelining
  no pipeline registers - waves of data flow through circuit
  relies on equal-delay circuit paths - no short paths

Pipelining and Retiming 4

When and How to Pipeline?

  Where is the best place to add registers?
  splitting combinational logic
  overhead of registers (propagation delay and setup time

requirements)
  What about cycles in data path?
  Example: 16-bit adder, add 8-bits in each of two cycles

Pipelining and Retiming 5

Retiming

  Process of optimally distributing registers throughout a circuit
  minimize the clock period
  minimize the number of registers

Pipelining and Retiming 6

Retiming (cont’d)

  Fast optimal algorithm (Leiserson & Saxe 1983)
  Retiming rules:

  remove one register from each input and add one to each output
  remove one register from each output and add one to each input

Pipelining and Retiming 7

a
b

c
d

x D !Q!

a

b d
x

D !Q!

D !Q!

a
b x

c

D !Q!

D !Q!

D !Q!

x

c

a

b

D !Q!

D !Q!

Retiming examples

  Shortening critical paths

  Create simplification opportunities

Pipelining and Retiming 8

Optimal Pipelining

  Add registers - use retiming to find optimal location

8 7 13 10

5 6

Pipelining and Retiming 9

Optimal Pipelining

  Add registers - use retiming to find optimal location

8 7 13 10

5 6

8 7 13 10

5 6

Pipelining and Retiming 10

Example - Digital Correlator

  yt = δ(xt, a0) + δ(xt-1, a1) + δ(xt-2, a2) + δ(xt-3, a3)
  δ(xt, a0) = 0 if x ≠ a, 1 otherwise (and passes x along to the right)

+ +

δ δ

+

δ δ

host

yt

xt a0 a1 a2 a3

Pipelining and Retiming 11

Example - Digital Correlator (cont’d)

  Delays: adder, 7; comparator, 3; host, 0

+ +

δ δ

+

δ δ

host

cycle time =

Pipelining and Retiming 12

Example - Digital Correlator (cont’d)

  Delays: adder, 7; comparator, 3; host, 0

+ +

δ δ

+

δ δ

host

+ +

δ δ

+

δ δ

host

cycle time = 24

cycle time = 13

Pipelining and Retiming 13

Extensions to Retiming

  Host interface
  add latency
  multiple hosts

  Area considerations
  limit number of registers
  optimize logic across register boundaries

  peripheral retiming
  incremental retiming
  pre-computation

  Generality
  different propagation delays for different signals
  widths of interconnections

Pipelining and Retiming 14

Digital Correlator Revisited

  Optimally retimed circuit (clock cycle 13)

  How can we increase the clock frequency?
  Work on multiple data sets at the same time

+ +

δ δ

+

δ δ

host

Pipelining and Retiming 15

C-slow’ing a Circuit

  Replace every register with C registers

  Now retime: (clock cycle now 7)

+ +

δ δ

+

δ δ

host

+ +

δ δ

+

δ δ

host

Pipelining and Retiming 16

C-slow’ing a Circuit = Multi-Threading

  In this case there are two threads (blue and orange)
  Host alternates between the two threads

  Input blue data, remove orange results

+ +

δ δ

+

δ δ

host

C-slow’ing a Circuit = Multi-Threading

  In this case there are two threads (blue and orange)
  Host alternates between the two threads

  Input orange data, remove blue results

+ +

δ δ

+

δ δ

host

Pipelining and Retiming 18

C-slow’ing a Circuit = Multi-Threading

  In this case there are two threads (blue and orange)
  Host alternates between the two threads

  Input blue data, remove orange results
  Throughput of each thread (1/14) is almost what it was before (1/13) !

+ +

δ δ

+

δ δ

host

Pipelining Processors

  Pipelined processors are complex because of feedback loops (cycles)
  Forwarding
  Branch prediction
  Long latency ops (e.g. cache miss) cause stalls

  Solution – C-slowing!
  Start with non-pipelined processor

  Program counter, register file
  C-slow by N

  N program counters, register files
  Pipeline datapath, ignoring hazards!

Pipelining and Retiming 19

Multi-Threaded Processor

  Pipelined, c-slowed processor is “multi-threaded”
  Executing N different instruction streams simultaneously
  Each executes an instruction every N cycles
  Allows op feedback latency of N cycles

  e. g. cache read miss

  Tera Computer MTA (now Cray) is multi-threaded
  N = 1024
  There is no cache!

  Remote memory access < 1024 cycles (2 usec)
  Requires huge parallelism (N threads!)

Pipelining and Retiming 20

Multi-Threaded Processors

  Multi-threaded processors are very simple
  No stalls, no forwarding, etc.

  Great for FPGAs
  Muxes are expensive and slow!
  Registers are almost free

  Typical N = 4 for multi-threaded FPGA processors
  Almost 4x performance increase
  Higher utilization (no stalls) (2x)
  Higher frequency (2x)

Pipelining and Retiming 21

SMT Processors

  Dynamic multi-threaded, super-scalar, out-of-order processors
  Hugely complicated

  Take CSE 471 !!

Pipelining and Retiming 22

Pipelining and Retiming 23

*

+

*

+

*

+

*

+ 0

C-slowing/Retiming for Resource Sharing

  Correlator circuit

Pipelining and Retiming 24

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

C-slowed by 4

*

+

*

+

*

+

*

+

Insert Data every 4 cycles (one data set)

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

Computation Active only every 4 Cycles

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

Retime and remove extra Pipelining

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

Computation spread over time

  Only need one multiplier and one adder
  We can use this method to schedule for any number of resources

Pipelining and Retiming 42

Analogy: data flowing through the system in a

rhythmic fashion – from main memory through

a series of processing elements and back to

main memory

Systolic Arrays

  Set of identical processing elements
  specialized or programmable

  Efficient nearest-neighbor interconnections (in 1-D, 2-D, other)
  SIMD-like
  Multiple data flows, converging to engage in computation

Pipelining and Retiming 43

- x3 - x2 - x1

- - - y1 - y2 - y3 -
w4 w3 w2 w1

y1 = x1w1 + x2w2 + x3w3 + x4w4

y2 = x2w1 + x3w2 + x4w3 + x5w4

y3 = x3w1 + x4w2 + x5w3 + x6w4

. . . .

Example - Convolution

  yj = xjw1 + xj+1w2 + . . . + xj+n-1wn

Pipelining and Retiming 44

x5 - x4 - x3 - x2 - x1

- - - y1 - y2 - y3 -

w4 w3 w2 w1

Example - Convolution

y1 = x1w1 + x2w2 + x3w3 + x4w4

y2 = x2w1 + x3w2 + x4w3 + x5w4

y3 = x3w1 + x4w2 + x5w3 + x6w4

Pipelining and Retiming 45

x6 - x5 - x4 - x3 - x2 -
- - y1 - y2 - y3 -

w4 w3 w2 w1

Example - Convolution

x1
-

y1 = x1w1 + x2w2 + x3w3 + x4w4

y2 = x2w1 + x3w2 + x4w3 + x5w4

y3 = x3w1 + x4w2 + x5w3 + x6w4

Pipelining and Retiming 46

x6 - x5 - x4 - x3 - x2

- y1 - y2 - y3 -

w4 w3 w2 w1

Example - Convolution

-
-

x1
-

y1 = x1w1 + x2w2 + x3w3 + x4w4

y2 = x2w1 + x3w2 + x4w3 + x5w4

y3 = x3w1 + x4w2 + x5w3 + x6w4

Pipelining and Retiming 47

x6 - x5 - x4 - x3 -
y1 - y2 - y3 -

w4 w3 w2 w1

Example - Convolution

-
-

x1
-

x2
-

y1 = x1w1 + x2w2 + x3w3 + x4w4

y2 = x2w1 + x3w2 + x4w3 + x5w4

y3 = x3w1 + x4w2 + x5w3 + x6w4

Pipelining and Retiming 48

x6 - x5 - x4 - x3

- y2 - y3 -

w4 w3 w2 w1

Example - Convolution

-
-

x1
-

x2
-

-
y1

y1 = x1w1 + x2w2 + x3w3 + x4w4

y2 = x2w1 + x3w2 + x4w3 + x5w4

y3 = x3w1 + x4w2 + x5w3 + x6w4

Pipelining and Retiming 49

x6 - x5 - x4 -
y2 - y3 -

w4 w3 w2 w1

Example - Convolution

-
-

x3
-

x2
-

-
y1

y1 = x1w1 + x2w2 + x3w3 + x4w4

y2 = x2w1 + x3w2 + x4w3 + x5w4

y3 = x3w1 + x4w2 + x5w3 + x6w4

Pipelining and Retiming 50

x6 - x5 - x4
- y3 -

w4 w3 w2 w1

Example - Convolution

-
-

x3
-

x2 -
y1 y2

y1 = x1w1 + x2w2 + x3w3 + x4w4

y2 = x2w1 + x3w2 + x4w3 + x5w4

y3 = x3w1 + x4w2 + x5w3 + x6w4

Pipelining and Retiming 51

x6 - x5 -
y3 -

w4 w3 w2 w1

Example - Convolution

-
-

x3
-

x4 -
y1 y2

y1 = x1w1 + x2w2 + x3w3 + x4w4

y2 = x2w1 + x3w2 + x4w3 + x5w4

y3 = x3w1 + x4w2 + x5w3 + x6w4

Pipelining and Retiming 52

x6 - x5
-

w4 w3 w2 w1

Example - Convolution

-
-

x3
-

x4 -

y3 y2

y1 = x1w1 + x2w2 + x3w3 + x4w4

y2 = x2w1 + x3w2 + x4w3 + x5w4

y3 = x3w1 + x4w2 + x5w3 + x6w4

Pipelining and Retiming 53

x6 -
w4 w3 w2 w1

Example - Convolution

-
-

x5
-

x4 -

y3 y2

y1 = x1w1 + x2w2 + x3w3 + x4w4

y2 = x2w1 + x3w2 + x4w3 + x5w4

y3 = x3w1 + x4w2 + x5w3 + x6w4

Pipelining and Retiming 54

– – – y1 – y2 – y3

x6 – x5 – x4 – x3 – x2 – x1

– – – y1 – y2 – y3

x6 – x5 – x4 – x3 – x2 – x1

– – – y1 – y2 – y3

– – – y1 – y2 – y3

w4 w3 w2 w1

x6 – x5 – x4 – x3 – x2 – x1

x6 – x5 – x4 – x3 – x2 – x1

x6 – x5 – x4 – x3 – x2 –

 – y1 – y2 – y3

x6 – x5 – x4 – x3 – x2

 y1 – y2 – y3

x6 – x5 – x4 – x3 –

 – y2 – y3

x6 – x5 – x4 – x3

 – – y1 – y2 – y3

Example - Convolution

Pipelining and Retiming 55

……x9……x8……x7……x6……x5……x4……x3……x2……x1……x0
* * * *

w3 w2 w1 w0

y3 = Σ

Convolution - Another Look

  Repeated vector product

Pipelining and Retiming 56

……x9……x8……x7……x6……x5……x4……x3……x2……x1……x0
* * * *

y4 = Σ

Example: Convolution

w3 w2 w1 w0

Pipelining and Retiming 57

……x9……x8……x7……x6……x5……x4……x3……x2……x1……x0
* * * *

y5 = Σ

Example: Convolution

w3 w2 w1 w0

Pipelining and Retiming 58

*

+

*

+

*

+

*

+ 0

Convolution Example

w3 w2 w1 w0

x3 x2 x1 x0

y0

x7 x6 x5 x4

Pipelining and Retiming 59

*

+

*

+

*

+

*

+ 0

Convolution Example

w3 w2 w1 w0

x3 x2 x1

y1

x7 x6 x5 x4

Pipelining and Retiming 60

*

+

*

+

*

+

*

+ 0

Convolution Example

w3 w2 w1 w0

x3 x2 x5

y2

x7 x6 x5 x4

Pipelining and Retiming 61

*

+

*

+

*

+

*

+ 0

Pipelining and Retiming 62

*

+

*

+

*

+

*

+ 0

Pipelining and Retiming 63

*

+

*

+

*

+

*

+ 0

w3 w2 w1 w0

x2 x0 x6 x7 x4 x1 x3 x5

Pipelining and Retiming 64

*

+

*

+

*

+

*

+ 0

w3 w2 w1 w0

x2 x0 x6 x7 x1 x3 x5 x4

y0

Pipelining and Retiming 65

*

+

*

+

*

+

*

+ 0

w3 w2 w1 w0

x2 x0 x6 x7 x1 x3 x5 x4

y1

y0

y0

Pipelining and Retiming 66

*

+

*

+

*

+

*

+ 0

w3 w2 w1 w0

x2 x0 x6 x7 x1 x3 x5 x4

y2

y1

y1

y0

y0

x8

Pipelining and Retiming 67

*

+

*

+

*

+

*

+ 0

w3 w2 w1 w0

x2 x6 x7 x1 x3 x5 x4

y2

y1

y1

y0

y0

x8

y3

y2

y0

Pipelining and Retiming 68

*

+

*

+

*

+

*

+ 0

w3 w2 w1 w0

x2 x6 x7 x3 x5 x4

y2

y1

y1

x8

y3

y2

y4

y3

y1

Pipelining and Retiming 69

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

Example: Matrix Multiplication

  C = A × B cij = Σk=1
n aikbkj

Pipelining and Retiming 70

– – – a14 a13 a12 a11

– – a24 a23 a22 a21 –

– a34 a33 a32 a31 – –

a44 a43 a42 a41 – – –

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

| | | b44

| | b43 b34

| b42 b33 b24

b41 b32 b23 b14

b31 b22 b13 |

b21 b12 | |

b11 | | |

Example: Matrix Multiplication

 – – – a14 a13 a12

– – a24 a23 a22 a21

– a34 a33 a32 a31 –

a44 a43 a42 a41 – –

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

| | | b44

| | b43 b34

| b42 b33 b24

b41 b32 b23 b14

b31 b22 b13 |

b21 b12 | |

Example: Matrix Multiplication

a11b11

 – – – a14 a13

– – a24 a23 a22

– a34 a33 a32 a31

a44 a43 a42 a41 –

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

| | | b44

| | b43 b34

| b42 b33 b24

b41 b32 b23 b14

b31 b22 b13 |

Example: Matrix Multiplication

a12b21 a11b12

a21b11

 – – – a14

– – a24 a23

– a34 a33 a32

a44 a43 a42 a41

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

| | | b44

| | b43 b34

| b42 b33 b24

b41 b32 b23 b14

Example: Matrix Multiplication

a13b31 a12b22 a11b13

a22b21 a21b12

 a31b11

 – – –

– – a24

– a34 a33

a44 a43 a42

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

| | | b44

| | b43 b34

| b42 b33 b24

Example: Matrix Multiplication

a14b41 a13b32 a12b23 a11b14

a23b31 a22b22 a21b13

 a32b21 a31b12

a41b11

 – –

– –

– a34

a44 a43

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

| | | b44

| | b43 b34

Example: Matrix Multiplication

 a14b42 a13b33 a12b24

a24b41 a23b32 a22b23 a21b14

 a33b31 a32b22 a31b13

a42b21 a41b12

 –

–

–

a44

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

| | | b44

Example: Matrix Multiplication

 a14b43 a13b34

 a24b42 a23b33 a22b24

 a34b41 a33b32 a32b23 a31b14

a43b31 a42b22 a41b13

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

Example: Matrix Multiplication

 a14b44

 a24b43 a23b34

 a34b42 a33b33 a32b24

a44b41 a43b32 a42b23 a41b14

Pipelining and Retiming 78

Systolic Algorithms

  2D Convolution
  Image processing

  FFT
  String matching

  Dynamic programming
  DNA comparison

  Matrix computations
  LU decomposition
  QR factorization

Pipelining and Retiming 79

Systolic Architectures

  Highly parallel
  “fine-grained” parallelism
  deep pipelining

  Local communication
  wires are short - no global communication (except CLK)

  linear array → no clock skew
  increasingly important as wire delays increase (relative to gate delays)

  Linear arrays
  most systolic algorithms can be done with a linear array
  include memory in each cell in the array
  linear array a better match to I/O limitations

  Contrast to superscalar and vector architectures

Pipelining and Retiming 80

Systolic Computers

  Custom chips - early 1980’s
  Warp (CMU) - 1987

  linear array of 10 or more processing cells
  optimized inter-cell communication for low-latency
  pipelined cells and communication
  conditional execution
  compiler partitions problem into cells and generates microcode

  i-Warp (Intel) - 1990
  successor to Warp
  two-dimensional array
  time-multiplexing of physical busses between cells
  32x32 array has 20Gflops peak performance
  not a commercial success

  Currently confined to ASIC implementations

