REVIEW

- Placement Greedy vs. Simulated Annealing
- Routing Shortest Path (Djkstra), A*, Pathfinder
- Transmission lines high frequency loss, dispersion, ringing, overshoot
- Differential signaling advantages, eye diagrams
- Crosstalk inductive, capacitive

PIPELINING

- Adding registers along a path
 - split combinational logic into multiple cycles
 - each cycle smaller than previously
 - increase throughput

PIPELINING

- Delay, d, of slowest combinational stage determines performance
- Throughput = 1/d : rate at which outputs are produced
- Latency = n·d : number of stages * clock period
- Pipelining increases circuit utilization
- Registers slow down data, synchronize data paths
- Wave-pipelining
 - no pipeline registers waves of data flow through circuit
 - relies on equal-delay circuit paths no short paths

WHEN AND HOW TO PIPELINE?

- Where is the best place to add registers?
 - splitting combinational logic
 - overhead of registers (propagation delay and setup time requirements)
- What about cycles in data path?
- Example: 16-bit adder, add 8-bits in each of two cycles

RETIMING

- Process of optimally distributing registers throughout a circuit
 - minimize the clock period
 - minimize the number of registers

RETIMING (CONT'D)

- Fast optimal algorithm (Leiserson & Saxe 1983)
- Retiming rules:
 - remove one register from each input and add one to each output
 - remove one register from each output and add one to each input

RETIMING EXAMPLES

Shortening critical paths

Create simplification opportunities

OPTIMAL PIPELINING

Add registers - use retiming to find optimal location

OPTIMAL PIPELINING

Add registers - use retiming to find optimal location

EXAMPLE - DIGITAL CORRELATOR

- $y_{\dagger} = \delta(x_{\dagger}, a_0) + \delta(x_{\dagger-1}, a_1) + \delta(x_{\dagger-2}, a_2) + \delta(x_{\dagger-3}, a_3)$
- $\delta(x_t, a_0) = 0$ if $x \neq a, 1$ otherwise (and passes x along to the right)

EXAMPLE - DIGITAL CORRELATOR (CONT'D)

Delays: adder, 7; comparator, 3; host, 0

EXAMPLE - DIGITAL CORRELATOR (CONT'D)

Delays: adder, 7; comparator, 3; host, 0

EXTENSIONS TO RETIMING

- Host interface
 - add latency
 - multiple hosts
- Area considerations
 - limit number of registers
 - optimize logic across register boundaries
 - peripheral retiming
 - incremental retiming
 - pre-computation
- Generality
 - different propagation delays for different signals
 - widths of interconnections

DIGITAL CORRELATOR REVISITED

Optimally retimed circuit (clock cycle 13)

- How can we increase the clock frequency?
 - Work on multiple data sets at the same time

C-SLOW'ING A CIRCUIT

Replace every register with C registers

Now retime: (clock cycle now 7)

C-slow'ing a Circuit = Multi-Threading

- In this case there are two threads (blue and orange)
 - Host alternates between the two threads
- Input blue data, remove orange results

C-slow'ing a Circuit = Multi-Threading

- In this case there are two threads (blue and orange)
 - Host alternates between the two threads
- Input orange data, remove blue results

C-slow'ing a Circuit = Multi-Threading

- In this case there are two threads (blue and orange)
 - Host alternates between the two threads
- Input blue data, remove orange results
 - Throughput of each thread (1/14) is almost what it was before (1/13)!

PIPELINING PROCESSORS

- Pipelined processors are complex because of feedback loops (cycles)
 - Forwarding
 - Branch prediction
 - Long latency ops (e.g. cache miss) cause stalls
- Solution C-slowing!
 - Start with non-pipelined processor
 - Program counter, register file
 - C-slow by N
 - N program counters, register files
 - Pipeline datapath, ignoring hazards!

MULTI-THREADED PROCESSOR

- Pipelined, c-slowed processor is "multi-threaded"
 - Executing N different instruction streams simultaneously
 - Each executes an instruction every N cycles
 - Allows op feedback latency of N cycles
 - e.g. cache read miss
- Tera Computer MTA (now Cray) is multi-threaded
 - N = 1024
 - There is no cache!
 - Remote memory access < 1024 cycles (2 usec)
- Requires huge parallelism (N threads!)

MULTI-THREADED PROCESSORS

- Multi-threaded processors are very simple
 - No stalls, no forwarding, etc.
- Great for FPGAs
 - Muxes are expensive and slow!
 - Registers are almost free
- Typical N = 4 for multi-threaded FPGA processors
 - Almost 4x performance increase
 - Higher utilization (no stalls) (2x)
 - Higher frequency (2x)

SMT PROCESSORS

Dynamic multi-threaded, super-scalar, out-of-order processors

- Hugely complicated
- Take CSE 471 !!

C-SLOWING/RETIMING FOR RESOURCE SHARING

C-SLOWED BY 4

INSERT DATA EVERY 4 CYCLES (ONE DATA SET)

COMPUTATION ACTIVE ONLY EVERY 4 CYCLES

RETIME AND REMOVE EXTRA PIPELINING

COMPUTATION SPREAD OVER TIME

- Only need one multiplier and one adder
- We can use this method to schedule for any number of resources

Systolic Arrays

- Set of identical processing elements
 - specialized or programmable
- Efficient nearest-neighbor interconnections (in 1-D, 2-D, other)
- SIMD-like
- Multiple data flows, converging to engage in computation

Analogy: data flowing through the system in a rhythmic fashion – from main memory through a series of processing elements and back to main memory

• $y_j = x_j w_1 + x_{j+1} w_2 + ... + x_{j+n-1} w_n$

$$y_1 = x_1 w_1 + x_2 w_2 + x_3 w_3 + x_4 w_4$$

$$y_2 = x_2 w_1 + x_3 w_2 + x_4 w_3 + x_5 w_4$$

$$y_3 = x_3 w_1 + x_4 w_2 + x_5 w_3 + x_6 w_4$$

$$y_{1} = x_{1}w_{1} + x_{2}w_{2} + x_{3}w_{3} + x_{4}w_{4}$$
$$y_{2} = x_{2}w_{1} + x_{3}w_{2} + x_{4}w_{3} + x_{5}w_{4}$$
$$y_{3} = x_{3}w_{1} + x_{4}w_{2} + x_{5}w_{3} + x_{6}w_{4}$$

$$y_{1} = x_{1}w_{1} + x_{2}w_{2} + x_{3}w_{3} + x_{4}w_{4}$$
$$y_{2} = x_{2}w_{1} + x_{3}w_{2} + x_{4}w_{3} + x_{5}w_{4}$$
$$y_{3} = x_{3}w_{1} + x_{4}w_{2} + x_{5}w_{3} + x_{6}w_{4}$$

$$y_{1} = x_{1}w_{1} + x_{2}w_{2} + x_{3}w_{3} + x_{4}w_{4}$$
$$y_{2} = x_{2}w_{1} + x_{3}w_{2} + x_{4}w_{3} + x_{5}w_{4}$$
$$y_{3} = x_{3}w_{1} + x_{4}w_{2} + x_{5}w_{3} + x_{6}w_{4}$$

$$y_{1} = x_{1}w_{1} + x_{2}w_{2} + x_{3}w_{3} + x_{4}w_{4}$$
$$y_{2} = x_{2}w_{1} + x_{3}w_{2} + x_{4}w_{3} + x_{5}w_{4}$$
$$y_{3} = x_{3}w_{1} + x_{4}w_{2} + x_{5}w_{3} + x_{6}w_{4}$$

$$y_{1} = x_{1}w_{1} + x_{2}w_{2} + x_{3}w_{3} + x_{4}w_{4}$$
$$y_{2} = x_{2}w_{1} + x_{3}w_{2} + x_{4}w_{3} + x_{5}w_{4}$$
$$y_{3} = x_{3}w_{1} + x_{4}w_{2} + x_{5}w_{3} + x_{6}w_{4}$$

$$y_{1} = x_{1}w_{1} + x_{2}w_{2} + x_{3}w_{3} + x_{4}w_{4}$$
$$y_{2} = x_{2}w_{1} + x_{3}w_{2} + x_{4}w_{3} + x_{5}w_{4}$$
$$y_{3} = x_{3}w_{1} + x_{4}w_{2} + x_{5}w_{3} + x_{6}w_{4}$$

$$y_{1} = x_{1}w_{1} + x_{2}w_{2} + x_{3}w_{3} + x_{4}w_{4}$$
$$y_{2} = x_{2}w_{1} + x_{3}w_{2} + x_{4}w_{3} + x_{5}w_{4}$$
$$y_{3} = x_{3}w_{1} + x_{4}w_{2} + x_{5}w_{3} + x_{6}w_{4}$$

$$y_{1} = x_{1}w_{1} + x_{2}w_{2} + x_{3}w_{3} + x_{4}w_{4}$$
$$y_{2} = x_{2}w_{1} + x_{3}w_{2} + x_{4}w_{3} + x_{5}w_{4}$$
$$y_{3} = x_{3}w_{1} + x_{4}w_{2} + x_{5}w_{3} + x_{6}w_{4}$$

$$y_{1} = x_{1}w_{1} + x_{2}w_{2} + x_{3}w_{3} + x_{4}w_{4}$$
$$y_{2} = x_{2}w_{1} + x_{3}w_{2} + x_{4}w_{3} + x_{5}w_{4}$$
$$y_{3} = x_{3}w_{1} + x_{4}w_{2} + x_{5}w_{3} + x_{6}w_{4}$$

$$y_{1} = x_{1}w_{1} + x_{2}w_{2} + x_{3}w_{3} + x_{4}w_{4}$$
$$y_{2} = x_{2}w_{1} + x_{3}w_{2} + x_{4}w_{3} + x_{5}w_{4}$$
$$y_{3} = x_{3}w_{1} + x_{4}w_{2} + x_{5}w_{3} + x_{6}w_{4}$$

	VOLUTI			-		
		W	4 W 3	w ₂	W ₁	
$x_6 - x_5 - x_4 -$	$\mathbf{x}_3 - \mathbf{x}_2$	- x	1		_	$ y_1 - y_2 - y_3 $
$\mathbf{x}_6 - \mathbf{x}_5 - \mathbf{x}_4$	- x ₃ -	x ₂ –	X ₁	_	_	$- y_1 - y_2 - y_3$
$x_6 - x_5 -$	$\mathbf{x}_4 - \mathbf{x}_3$	- x	2 -	X ₁	_	$y_1 - y_2 - y_3$
$x_6 - x_5$	- x ₄ -	X ₃ –	X ₂	-	X ₁ V1	$- v_2 - v_3$
x ₆ –	$\mathbf{x}_5 - \mathbf{x}_4$	- x	3 —	X ₂ V1	- -	$v_2 - v_2$
x ₆	- x ₅ -	x ₄ –	X ₃	- -	X ₂ Va	- V ₂
	$\mathbf{x}_6 - \mathbf{x}_5$	- x	4 -	X ₃ V ₂	-	V.
	x ₆ –	X ₅ –	\mathbf{X}_{4}	7 2	X ₃	73
			¥ 2		¥ 3	

CONVOLUTION - ANOTHER LOOK

Repeated vector product

CONVOLUTION EXAMPLE

CONVOLUTION EXAMPLE

CONVOLUTION EXAMPLE

EXAMPLE: MATRIX MULTIPLICATION

• $C = A \times B$ $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

EXAMPLE: MATRIX MULTIPLICATION

EXAMPLE: MATRIX MULTIPLICATION

SYSTOLIC ALGORITHMS

- 2D Convolution
 - Image processing
- FFT
- String matching
 - Dynamic programming
 - DNA comparison
- Matrix computations
 - LU decomposition
 - QR factorization

Systolic Architectures

- Highly parallel
 - "fine-grained" parallelism
 - deep pipelining
- Local communication
 - wires are short no global communication (except CLK)
 - linear array \rightarrow no clock skew
 - increasingly important as wire delays increase (relative to gate delays)
- Linear arrays
 - most systolic algorithms can be done with a linear array
 - include memory in each cell in the array
 - linear array a better match to I/O limitations
- Contrast to superscalar and vector architectures

SYSTOLIC COMPUTERS

- Custom chips early 1980's
- Warp (CMU) 1987
 - linear array of 10 or more processing cells
 - optimized inter-cell communication for low-latency
 - pipelined cells and communication
 - conditional execution
 - compiler partitions problem into cells and generates microcode
- i-Warp (Intel) 1990
 - successor to Warp
 - two-dimensional array
 - time-multiplexing of physical busses between cells
 - 32x32 array has 20Gflops peak performance
 - not a commercial success
- Currently confined to ASIC implementations