
100

Guest Lecture: Placement and Routing for FPGAs

Larry McMurchie
Synopsys, Inc.

Formerly with Depts. of EE and CS, UW

20 min. Placement
20 Min. Routing

101

Placement
Assign logic blocks to specific chip locations
Goal: minimize routing distance and therefore allow successful routing
Additional goal: Meet timing constraints on critical signals

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB
IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB IOB IOB IOB IOB IOB

IOB IOB IOB IOB IOB IOB

102

Placement Cost Function - Wirelength

Most systems use “Manhattan” routing (North, South, East, West, no diagonals)

Wirelength estimate = 1/2*(perimeter of bounding box) = “Semi-perimeter”

A1

A2

B1

B2

B3

C1

C3

C2

103

Greedy Placement

Create initial placement randomly
old_cost = cost(placement);
for (iteration = 0; iteration < max_iteration; iteration++) {

 swap random pair of logic blocks;
 new_cost = cost(placement);
 if (old_cost < new_cost)
 undo_move();
 else old_cost = new_cost /* Keep new placement */

}

104

Example of greedy placement problem

A B

C

D

E

105

Example of greedy placement problem

A

B C

D

E

Total cost = A->B + A->C + A->D + A->E + B->C + C->D + D->E + E->B
 = 1 + 2 + 1 + 1 + 1 + 1 + 2 + 1.5
 = 10.5

A “clairvoyant” placement:

106

Example of greedy placement problem

D

A B

C

E

Total cost = 11.5

A<->B gives 12.5
A<->C gives 12
A<->D gives 12.5
A<->E gives 11.5

All possible pairwise interchanges give higher cost
We are stuck with the above placement!

An unfortunate starting point:

107

Greedy placement algorithms (e.g. force-directed, recursive bipartitioning) can
easily get stuck in local minima

Need a method that is less susceptible to local minima and can perform “hill
climbing”

Lots of methods have been tried!

“Simulated annealing” is perhaps the most widely used.

Greedy Placement Summary

108

Annealing

Annealing: Cooling hot molecules to form good crystal structures
 Start at high temperatures - molecules move randomly about
 Cool at specific cooling schedule - leave enough time for molecules to form
crystal lattice

109

Simulated Annealing

Move nodes randomly
Initially “high temperature” - allow bad moves to happen
Lower temperature, accepting less and less bad moves
Slowly “cool” placement to allow good structure to form

Possible Placements

Cost

110

Simulated Annealing Acceptance Criteria & Cooling Schedule

Compute delta = cost(old_placement) - cost(new_placement)
if (delta>=0) accept
else if () accept, else reject /* 0<=random<=1 */

Initially temperature is very high (most bad moves accepted)
Temp slowly goes to 0, with multiple moves attempted at each temperature
Final runs with temp=0 (always reject bad moves) greedily “quench” the system

111

Simulated Annealing Algorithm

Create initial placement randomly
old_cost = cost(placement);
for (temp = max_temp; temp >= min_temp; temp = next_temp) {

 for (iteration = 0; iteration < max_iteration; iteration++) {
 Swap random pair of logic blocks;
 new_cost = cost(placement);
 if (old_cost < new_cost)
 if (random >= Func((old_cost - new_cost)/temperature))
 undo_move();
 else old_cost = new_cost /* Keep new placement */
 }

}

112

Simulated Annealing Details

Cooling schedule is important!
 Cooling too fast will force a greedy solution

Slow, but amenable to parallelism
 Nature does this very efficiently…

Simulated Annealing cost function is extensible!
 Multiple goals captured in one metric, for example:

 Criticality is determined by length of path, clock cycle, placement, etc.

In practice simulated annealing is easy to program, very versatile (though slow),
and widely used.

113

Results of annealing too quickly

114

Results of annealing slowly

115

FPGA Routing Architecture

“Island” style architecture

LUTs Switch
box

116

Routing Elements

LUT

117

LUT

Abstraction to a Directed Graph

118

Routing goals
1.  Find a feasible routing for all signals (nets) using routing network

Feasible means:
 Different signals cannot share same nodes in routing network
 “Sharing” == “Congestion”

3.  Optimize delay of critical nets
Take more direct routes for critical nets
Non-critical nets can take longer routes
Tradeoff between optimizing delay for critical nets and finding feasible

routing for all nets.

119

1st Order Congestion Example

S2 S3 S1

D1 D2 D3

1 1 1 2 3 3 4

1 1 1 2 3 3 4

120

Simple Dykstra Routing Algorithm with Obstacle Avoidance

???

121

How To Fix Simple Obstacle Avoidance Routing

1)  Results depend upon the order in which signals are routed
2)  Easy for signals to be blocked and prevented from being successfully

routed.
3)  Try different orderings

 What algorithm should be used to guide the ordering?
4) Use simulated annealing to guide routing in a manner similar to placement.

Use a random choice of routes guided by a cost function and cooling
schedule
 This has been tried and shown to work, but is computationally expensive.

5) Try the Pathfinder algorithm

122

PathFinder Algorithm: Approach

1)  Iterative approach – route every signal every iteration

2) Start with base costs for every arc

3)  During subsequent iterations, GRADUALLY increase
the cost for arcs that go to nodes that are already
occupied with another net.

 Cost = BaseCost * SharingPenalty(iter)

1

iter

SharingPenalty

123

Cost = BaseCost * SharingPenalty(iter)

PathFinder Algorithm: Example

Iteration 0

Iteration i

Iteration i++

124

Pathfinder Algorithm Enhancements

 1) Cost function can include criticality as well as sharing:

 Cost = BaseCost *[A(j) + (SharingPenalty(iter)) *(1-A(j))]
 where A(j) is the criticality of signal j and

 0 <= A(j) < 1

 Critical signals see only A(j) term
 Noncritical signals see (1-A(j)) term

 As a result, critical signals will take more direct routes and less critical
signals will move out of their way

125

Pathfinder Algorithm Enhancements (cont.)

2) Runtime improvement is obtained by rerouting only signals which are
involved in sharings

3) Additional runtime improvement is obtained by using A* queueing.
 A* queueing requires a knowledge of the minimum delay from each node
visited in the routing graph to the destination

S

D

S

D

Standard Dykstra queueing A* queueing

What conclusions can we make?

Both simulated annealing and the pathfinder algorithm are heuristics.

Neither are guaranteed to produce high quality results.
 Dependencies include cooling schedule and form of sharing penalty
function.

Both algorithms have “good” intuition about finding high quality results.

Both are reasonably easy to implement.

Both work quite well in practice and have been used almost as long as FPGAs
have been around.

126

