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Guest Lecture: Placement and Routing for FPGAs 

Larry McMurchie 
Synopsys, Inc. 

Formerly with Depts. of EE and CS, UW 

20 min. Placement 
20 Min. Routing 
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Placement 
Assign logic blocks to specific chip locations 
Goal: minimize routing distance and therefore allow successful routing 
Additional goal: Meet timing constraints on critical signals 
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Placement Cost Function - Wirelength 

Most systems use “Manhattan” routing (North, South, East, West, no diagonals) 

Wirelength estimate = 1/2*(perimeter of bounding box) = “Semi-perimeter” 
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Greedy Placement 

Create initial placement randomly 
old_cost = cost(placement); 
for (iteration = 0; iteration < max_iteration; iteration++) { 

 swap random pair of logic blocks; 
 new_cost = cost(placement); 
 if (old_cost < new_cost) 
  undo_move(); 
 else old_cost = new_cost  /* Keep new placement */ 

} 
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Example of greedy placement problem 
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Example of greedy placement problem 

A 

B C 

D 

E 

Total cost = A->B + A->C + A->D + A->E + B->C + C->D + D->E + E->B 
                 = 1 + 2 + 1 + 1 + 1 + 1 + 2 + 1.5 
                 = 10.5 

A “clairvoyant” placement: 
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Example of greedy placement problem 

D 

A B 

C 
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Total cost = 11.5 

A<->B gives 12.5 
A<->C gives 12 
A<->D gives 12.5 
A<->E gives 11.5 

All possible pairwise interchanges give higher cost 
We are stuck with the above placement!  

An unfortunate starting point: 
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Greedy placement algorithms (e.g. force-directed, recursive bipartitioning) can 
easily get stuck in local minima 

Need a method that is less susceptible to local minima and can perform “hill 
climbing” 

Lots of methods have been tried! 

“Simulated annealing” is perhaps the most widely used. 

Greedy Placement Summary 
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Annealing 

Annealing: Cooling hot molecules to form good crystal structures 
 Start at high temperatures - molecules move randomly about 
 Cool at specific cooling schedule - leave enough time for molecules to form 
crystal lattice 
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Simulated Annealing 

Move nodes randomly 
Initially “high temperature” - allow bad moves to happen 
Lower temperature, accepting less and less bad moves 
Slowly “cool” placement to allow good structure to form 

Possible Placements 

Cost 
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Simulated Annealing Acceptance Criteria & Cooling Schedule 

Compute delta = cost(old_placement) - cost(new_placement) 
if (delta>=0) accept 
else if (                        ) accept, else reject /* 0<=random<=1 */ 

Initially temperature is very high (most bad moves accepted) 
Temp slowly goes to 0, with multiple moves attempted at each temperature 
Final runs with temp=0 (always reject bad moves) greedily “quench” the system 
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Simulated Annealing Algorithm 

Create initial placement randomly 
old_cost = cost(placement); 
for (temp = max_temp; temp >= min_temp; temp = next_temp) { 

 for (iteration = 0; iteration < max_iteration; iteration++) { 
  Swap random pair of logic blocks; 
  new_cost = cost(placement); 
  if (old_cost < new_cost) 
   if (random >= Func((old_cost - new_cost)/temperature)) 
    undo_move(); 
  else old_cost = new_cost   /* Keep new placement */ 
 } 

} 
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Simulated Annealing Details 

Cooling schedule is important! 
 Cooling too fast will force a greedy solution 

Slow, but amenable to parallelism 
 Nature does this very efficiently… 

Simulated Annealing cost function is extensible! 
 Multiple goals captured in one metric, for example: 

 Criticality is determined by length of path, clock cycle, placement, etc. 

In practice simulated annealing is easy to program, very versatile (though slow), 
and widely used. 
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Results of annealing too quickly 
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Results of annealing slowly 
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FPGA Routing Architecture 

“Island” style architecture 

LUTs Switch 
box 
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Routing Elements 

LUT 
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LUT 

Abstraction to a Directed Graph 
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Routing goals 
1.  Find a feasible routing for all signals (nets) using routing network 

Feasible means: 
 Different signals cannot share same nodes in routing network 
 “Sharing” == “Congestion” 

3.  Optimize delay of critical nets 
Take more direct routes for critical nets 
Non-critical nets can take longer routes 
Tradeoff between optimizing delay for critical nets and finding feasible 

routing for all nets. 
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1st Order  Congestion Example 

S2 S3 S1 

D1 D2 D3 

1 1 1 2 3 3 4 

1 1 1 2 3 3 4 
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Simple Dykstra Routing Algorithm with Obstacle Avoidance 

??? 
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How To Fix Simple Obstacle Avoidance Routing 

1)  Results depend upon the order in which signals are routed 
2)  Easy for signals to be blocked and prevented from being successfully 

routed. 
3)  Try different orderings 

 What algorithm should be used to guide the ordering? 
4) Use simulated annealing to guide routing in a manner similar to placement.  

Use a random choice of routes guided by a cost function and cooling 
schedule 
 This has been tried and shown to work, but is computationally expensive. 

5)  Try the Pathfinder algorithm 
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PathFinder Algorithm: Approach 

1)  Iterative approach – route every signal every iteration 

2)  Start with base costs for every arc 

3)  During subsequent iterations, GRADUALLY increase 
the cost for arcs that go to nodes that are already 
occupied with another net. 

    Cost  =  BaseCost  * SharingPenalty(iter)   

1 

iter 

SharingPenalty 
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Cost  =  BaseCost  * SharingPenalty(iter) 

PathFinder Algorithm: Example 

Iteration 0 

Iteration i 

Iteration i++ 
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Pathfinder Algorithm Enhancements 

 1) Cost function can include criticality as well as sharing: 

 Cost  = BaseCost *[ A(j) +  (SharingPenalty(iter)) *(1-A(j))] 
 where A(j) is the criticality of signal j and 

      0 <= A(j) < 1 

 Critical signals see only A(j) term  
 Noncritical signals see (1-A(j)) term 

 As a result, critical signals will take more direct routes and less critical 
signals will move out of their way 
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Pathfinder Algorithm Enhancements (cont.) 

2)  Runtime improvement is obtained by rerouting only signals which are 
involved in sharings 

3)  Additional runtime improvement is obtained by using A* queueing.   
 A* queueing requires a knowledge of the minimum delay from each node 
visited in the routing graph to the destination 
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What conclusions can we make? 

Both simulated annealing and the pathfinder algorithm are heuristics. 

Neither are guaranteed to produce high quality results. 
 Dependencies include cooling schedule and form of sharing penalty 
function. 

Both algorithms have “good” intuition about finding high quality results. 

Both are reasonably easy to implement. 

Both work quite well in practice and have been used almost as long as FPGAs 
have been around. 
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