
FPGAs - 1

trend toward
higher levels
of integration

Evolution of implementation technologies

  Logic gates (1950s-60s)
  Regular structures for two-level logic (1960s-70s)

  muxes and decoders, PLAs
  Programmable sum-of-products arrays (1970s-80s)

  PLDs, complex PLDs
  Programmable gate arrays (1980s-90s)

  densities high enough to permit entirely new
class of application, e.g., prototyping, emulation,
acceleration

Gate Array Technology (IBM - 1970s)

  Simple logic gates
  combine transistors to

implement combinational
and sequential logic

  Interconnect
  wires to connect inputs and

outputs to logic blocks
  I/O blocks

  special blocks at periphery
for external connections

  Add wires to make connections
  done when chip is fabbed

 “mask-programmable”
  construct any circuit

  Coming back as “Structured ASICs”
FPGAs - 2

FPGAs - 3

Field-Programmable Gate Arrays

  Logic blocks
  to implement combinational

and sequential logic

  Interconnect
  wires to connect inputs and

outputs to logic blocks

  I/O blocks
  special logic blocks at periphery

of device for external connections

  Key questions:
  how to make logic blocks programmable?
  how to connect the wires?
  after the chip has been fabbed

FPGAs - 4

Enabling Technology

  Cheap/fast fuse connections
  small area (can fit lots of them)
  low resistance wires (fast even if in multiple segments)
  very high resistance when not connected
  small capacitance (wires can be longer)

  Pass transistors (switches)
  used to connect wires
  bi-directional

  Multiplexors
  used to connect one of a set of possible sources to input
  can be used to implement logic functions

FPGAs - 5

Programming Technologies

  Fuse and anti-fuse
  fuse makes or breaks link between two wires
  typical connections are 50-300 ohm
  one-time programmable (testing before programming?)

  EPROM and EEPROM
  high power consumption
  typical connections are 2K-4K ohm
  fairly low density

  RAM-based
  memory bit controls a switch that connects/disconnects two wires
  typical connections are .5K-1K ohm
  can be programmed and re-programmed easily (tested at factory)

FPGAs - 6

Tradeoffs in FPGAs

  Logic block - how are functions implemented: fixed functions
(manipulate inputs) or programmable?
  support complex functions, need fewer blocks, but they are bigger

so less of them on chip
  support simple functions, need more blocks, but they are smaller so

more of them on chip
  Interconnect

  how are logic blocks arranged?
  how many wires will be needed between them?
  are wires evenly distributed across chip?
  programmability slows wires down – are some wires specialized to

long distances?
  how many inputs/outputs must be routed to/from each logic block?
  what utilization are we willing to accept? 50%? 20%? 90%?

Altera Cyclone II (Low-cost Stratix-II FPGA)

  LE is basic block
  LUT + register + configurable routing

  LAB: 16 LEs
  Internal carry chain
  Shift register chain
  Shared control signals:

 clocks, resets, enables
  Internal connect

  FPGA: Rows and Columns of LABs
  With memories and multipliers
  I/Os and PLLs on periphery

FPGAs - 7

Cyclone II LE used for Logic

FPGAs - 8

Combinational Logic

FPGAs - 9

Registered Logic

FPGAs - 10

“Packed” Mode – LUT and Register

FPGAs - 11

Shift Register Mode + Logic

FPGAs - 12

Cyclone II LE used for Arithmetic

FPGAs - 13

FA

sum

Combinational option not shown

Full Cyclone II LE

FPGAs - 14

Xilinx FPGAs - 15

Stratix II ALM

Xilinx FPGAs - 16

Stritix III/IV ALM

LAB Local Interconnect – Local connections

FPGAs - 17

Local Interconnect – Connect to adjacent LABs

FPGAs - 18

Local Interconnect – Connect to Row/Column
Interconnect

FPGAs - 19

Lab Control Signals

  Shared by LEs in LAB
  Constraint on placement

FPGAs - 20

Row Interconnect

  R4 Interconnects span 4 columns
  R24 Interconnects span width of device
  LABs, memories, multipliers can drive R4s

FPGAs - 21

Column
Interconnect

  C4 – spans 4 LAB rows
  C16 – spans 16 LAB rows
  LABs directly connected

via row interconnect
  indirectly via column

interconnect

FPGAs - 22

Clocks

FPGAs - 23

Clocks

  Dedicated clock pins
  low-skew

  Dual-purpose clock pins
  have programmable delays
  drive clock control block

  8 – 16 global clocks
  Used for all high-fanout control signals

 clock, reset, enable
  Driven by clock control block
  Also locally by logic

FPGAs - 24

Clock Control Block

  Selects global clock input
  One per global clock

FPGAs - 25

PLL

FPGAs - 26

4K Memory Block

FPGAs - 27

4K Memory

FPGAs - 28

Memory Connections

FPGAs - 29

Multiplier

FPGAs - 30

Multiplier Connections

FPGAs - 31

I/O Block

  Output pin
  Combinational
  Registered

  Input pin
  Combinational
  Registered

  In/Out (tri-state) pin
  Mix of both

FPGAs - 32

Connections to I/O Block (5 pins)

FPGAs - 33

More I/O Detail

FPGAs - 34

Configurable I/Os

  Single-ended and differential
  Voltage and current mode

  External reference voltage
  Range of voltages: 1.5v, 1.8v, 2.0v, 2.5v, 3.3v
  Range of standards: LVTTL, LVCMOS, SSTL, HSTL, LVDS, LVPECL
  Programmable drive strength: 4 – 20 mA

  Interface requirement
  Slew rate control

  I/Os arranged in Banks
  4 – 8 per chip
  Banks each have a different power bus

FPGAs - 35

Cyclone Floorplan

FPGAs - 36

Support for Memory Interfaces

FPGAs - 37

DDR Data read

DDR Data write
DDR write clock

DDR write clock

FPGAs - 38

Details of One Xilinx Virtex Slice

Xilinx FPGAs - 39

Implements any Two 4-input Functions

4-input
function

3-input
function;

registered

Xilinx FPGAs - 40

Implements any 5-input Function

5-input
function

Xilinx FPGAs - 41

Two Slices: Any 6-input Function

6-input
function

from
other
slice

Xilinx FPGAs - 42

Fast Carry Chain: Add two bits per slice

Sum(a,b,cin)

Carry(a,b,cin)

a
b

cin

Xilinx FPGAs - 43

Lookup Tables used as memory (16 x 2)
[Distributed Memory]

Xilinx FPGAs - 44

Computer-aided Design

  Can't design FPGAs by hand
  way too much logic to manage, hard to make changes

  Hardware description languages
  specify functionality of logic at a high level

  Validation - high-level simulation to catch specification errors
  verify pin-outs and connections to other system components
  low-level to verify mapping and check performance

  Logic synthesis
  process of compiling HDL program into logic gates and flip-flops

  Technology mapping
  map the logic onto elements available in the implementation

technology (LUTs for Xilinx FPGAs)

Xilinx FPGAs - 45

CAD Tool Path (cont’d)

  Placement and routing
  assign logic blocks to functions
  make wiring connections

  Timing analysis - verify paths
  determine delays as routed
  look at critical paths and ways to improve

  Partitioning and constraining
  if design does not fit or is unroutable as placed split into multiple chips
  if design it too slow prioritize critical paths, fix placement of cells, etc.
  few tools to help with these tasks exist today

  Generate programming files - bits to be loaded into chip for configuration

Xilinx FPGAs - 46

CAD Tools

  Verilog (or VHDL) use to specify logic at a high-level
  combine with schematics, library components

  Synthesis: Synopsys/Synplicity/Quartus/ISE/Precision
  compiles Verilog to logic
  maps logic to the FPGA cells
  optimizes logic

  APR - automatic place and route (simulated annealing)
  provides controllability through constraints
  handles global signals

  STA - measure delay properties of mapping and aid in iteration

Xilinx FPGAs - 47

Applications of FPGAs

  Implementation of random logic
  easier changes at system-level (one device is modified)
  can eliminate need for full-custom chips

  Prototyping
  ensemble of gate arrays used to emulate a circuit to be manufactured
  get more/better/faster debugging done than possible with simulation

  Reconfigurable hardware
  one hardware block used to implement more than one function
  functions must be mutually-exclusive in time
  can greatly reduce cost while enhancing flexibility
  RAM-based only option

  Special-purpose computation engines
  hardware dedicated to solving one problem (or class of problems)
  accelerators attached to general-purpose computers

