EVOLUTION OF IMPLEMENTATION TECHNOLOGIES

Logic gates (1950s-60s)

Regular structures for two-level logic (1960s-70s)
muxes and decoders, PLAs

trend toward
higher levels
Programmable sum-of-products arrays (1970s-80s) of integration

PLDs, complex PLDs

Programmable gate arrays (1980s-90s)

densities high enough to permit entirely new
class of application, e.g., prototyping, emulation,
acceleration
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GATE ARRAY TECHNOLOGY (IBM - 1970s)

Simple logic gates
combine Tr'ansis‘rm

implement combinational B I
and sequential logic o -
Interconnect: il
wires to connect inp d CEE BIPTE
outputs to logic blocks T
I/0 blocks > —

special blocks at periphery | ,
for external connections

Add wires to make connections
done when chip is fabbed
“mask-programmable”
construct any circuit

Coming back as "Structured ASICs"
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FIELD-PROGRAMMABLE GATE ARRAYS

Logic blocks

to implement combinational
and sequential logic

Interconnect

wires to connect inputs and

outputs to logic blocks

I/0 blocks

special logic blocks at periphery
of device for external connections

Key questions:
how to make logic blocks programmable?
how to connect the wires?
after the chip has been fabbed
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ENABLING TECHNOLOGY

Cheap/fast fuse connections
small area (can fit lots of them)
low resistance wires (fast even if in multiple segments)
very high resistance when not connected
small capacitance (wires can be longer)

Pass transistors (switches)
used to connect wires
bi-directional
Multiplexors
used to connect one of a set of possible sources to input
can be used to implement logic functions
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PROGRAMMING TECHNOLOGIES

Fuse and anti-fuse
fuse makes or breaks link between two wires
typical connections are 50-300 ohm
one-time programmable (testing before programming?)

EPROM and EEPROM
high power consumption
typical connections are 2K-4K ohm
fairly low density

RAM-based
memory bit controls a switch that connects/disconnects two wires
typical connections are .5K-1K ohm
can be programmed and re-programmed easily (tested at factory)
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TRADEOFFS IN FPGAS

Logic block - how are functions implemented: fixed functions
(manipulate inputs) or programmable?

support complex functions, need fewer blocks, but they are bigger
so less of them on chip

support simple functions, need more blocks, but they are smaller so
more of them on chip
Interconnect
how are logic blocks arranged?
how many wires will be needed between them?
are wires evenly distributed across chip?

programmability slows wires down - are some wires specialized to
long distances?

how many inputs/outputs must be routed to/from each logic block?
what utilization are we willing to accept? 50%? 20%? 90%?
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ALTERA CYCLONE Il (LOow-cOST STRATIX-Il FPGA)

LE is basic block
LUT + register + configurable routing

LAB 16 LES Figure 2-1. Cyclone Il EP2C20 Device Block Diagram
Internal carry chain — -
Shift register chain
. Embedded
Shared control signals: Mulilers

clocks, resets, enables
Internal connect
FPGA: Rows and Columns of LABs
With memories and multipliers weaoss MK Blocks
I/Os and PLLs on periphery

|OEs Logic Logic Logic Logic

Array Array Array Array E

PLL I0Es PLL
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CYCLONE Il LE USED FOR LoOGIC

Figure 2-3. LE in Normal Mode
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connection
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COMBINATIONAL LoGIC

Figure 2-3. LE in Normal Mode

sload sclear
(LAB Wide) (LAB Wide)

Packed Register Input
Register chain
connection
Q Row, Column, and
data1 :>_ D Direct Link Routing
>
data2 ENA Row, Column, and
data3 Four-Input CLRN Direct Link Routing
cin (from cout :‘_ LuT
of previous LE .
previous LE) clock (LAB Wide) Local routing

data4 ena (LAB Wide)

aclr (LAB Wide)

/ I
Register Feedback L, Register

chain output




REGISTERED LOGIC

Figure 2-3. LE in Normal Mode

sload sclear

(LAB Wide) (LAB Wide)
Packed Register Input

Register chain
connection

Q Row, Column, and
datai }__ D Direct Link Routing
>
data2 ENA Row, Column, and
data3 __!_ Four-Input CLRN Direct Link Routing
cin (from cout } LuT
of previous LE .
previou ) clock (LAB Wide) ﬁ_Local routing

data4 ena (LAB Wide)

aclr (LAB Wide)

/ I
Register Feedback L, Register

chain output
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“PACKED” MODE — LUT AND REGISTER

Figure 2-3. LE in Normal Mode

sload sclear

(LAB Wide) (LAB Wide)
Packed Register Input

Register chain

connection
Q Row, Column, and
datai ;__ D Direct Link Routing
>
data2 ENA Row, Column, and
data3 Four-Input CLRN Direct Link Routing
cin (from cout :‘_ LuT
of previous LE .
P ) clock (LAB Wide) Local routing

data4 ena (LAB Wide)

aclr (LAB Wide)

/ I
Register Feedback L, Register

chain output
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SHIFT REGISTER MODE + LOGIC

Figure 2-3. LE in Normal Mode

sload sclear

(LAB Wide) (LAB Wide)
Packed Register Input

Register chain

connection
Q Row, Column, and
datai ;__ D Direct Link Routing
>
data2 ENA Row, Column, and
data3 Four-Input CLRN Direct Link Routing
cin (from cout } LUT
of previous LE .
previous LE) clock (LAB Wide) Local routing

data4 ena (LAB Wide)

aclr (LAB Wide)

/ [
Register Feedback L ——

chain output
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CYCLONE Il LE USED FOR ARITHMETIC

Figure 2-4. LE in Arithmetic Mode

sload sclear
(LAB Wide) (LAB Wide)

Register chain
FA connection

data1 ® I—
data? Three-Input Q ® Row, column, and
| LUT S D — direct link routing
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cout
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_ Register
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FuLL CYcLONE Il LE

Figure 2-2. Cyclone Il LE
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STRATIX Il ALM

shared_anth_in

camry_in

reg_chain_in scir
syncload

Local dataf0
Interconnact

Local dataed
Interconnect

4-Input
LuUT

Local datac
Interconnect

3-lnput
LuT

Local dataa
Interconnact

3-Input
LuT

Local datab
Interconnect

4-Input
LuUT

Local datad
Interconnect

3-Input
LuUT

3-Input
LuT

R

asyncload
enaf2..0]
' l
»;RN.'ALQD ij ] Row, column &
ADATA | diract link routing
2
e Row, column &
T 4 direct link routing
Local
Interconnact
;PRN‘AI.D L & Row, column &
A T direct link routing
EMA
CLRN — Row, column &
7 p direct link routing
Local
Interconnect

.
[
—

y

Local datael
Interconnact

A

Local dataf1
Interconnect

shared_anth_out

carry_out

reg_chain_out

cki2..0]

acif1.0]




STRITIX III/1IV ALM

shared_arith_in

carry_in

syncload
aclr[1:0)
clk[2:0] |sclr

reg_chain_in

dataf0
dataeQ
dataa I-l\| ~
datab L ™ ND
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+\ CLR
L a
3-INPUT
LUT
3-INPUT _D
LuT
—1-
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LAB LOCAL INTERCONNECT — LOCAL CONNECTIONS

Figure 2-5. Cyclone Il LAB Structure
AN A A
4_¢ Row Interconnect

l I I i <— Column
Interconnect

. P

- Direct link
Direct link > == > interconnect
interconnect from adjacent
from adjacent > < L < block
block

-
Direct link <& P Direct link
interconnect interconnect
to adjacent to adjacent
block block
t !
LAB Local Interconnect
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LOCAL INTERCONNECT — CONNECT TO ADJACENT LABS

Figure 2-5. Cyclone Il LAB Structure

41 Row Interconnect
l i <— Column
® P Interconnect
-3 Direct link
Direct link - <> - interconnect
interconnect > from adjacent
from adjacent > < L < block
block
=
Direct link <@ P Direct link
interconnect interconnect
to adjacent to adjacent
block block
t !
LAB Local Interconnect
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LOCAL INTERCONNECT — CONNECT TO ROW/ COLUMN
INTERCONNECT

Figure 2-5. Cyclone Il LAB Structure

41 Row Interconnect
~— Column
® P Interconnect
- Direct link
Direct link > <> - interconnect
interconnect > from adjacent
from adjacent — % L= block
block
-
Direct link <& » Direct link
interconnect interconnect
to adjacent to adjacent
block block
t !
LAB Local Interconnect
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LAB CONTROL SIGNALS

Shared by LEs in LAB
Constraint on placement

Figure 2-7. LAB-Wide Control Signals

Dedicated 6
LAB Row — & + 4
Clocks

Local
Interconnect

QQ,T
wAwAW,
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Py pe
W\u l/\i/i\/\l/\/
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AW RWaW
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ROW INTERCONNECT

R4 Interconnects span 4 columns
R24 Interconnects span width of device
LABs, memories, multipliers can drive R4s

Figure 2-8. R4 Interconnect Connections

Ad[acent LAB can R4 Interconnect
Drive onto Another C4 Column Interconnects (1) Driving Right

LAB's R4 Interconnect
R4 Interconnect
Driving Left
\
<> <> <> <>
<> <>
<> <> <> <>
- <> <>
<> <>
° ° ° °
° ° ° °
° . ° °
- <> <>

LAB Primary LAB
Neighbor LAB (2) Neighbor
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c o LU M N Figure 2-10. C4 Interconnect Connections  Note (1)
INTERCONNECT

[leee[ [ ]

C4 - spans 4 LAB rows
C16 - spans 16 LAB rows

LABs directly connected N
via row interconnect

indirectly via column N

C4 Interconnect
Drives Local and R4
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.
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LAB's C4 interconnect 'y — YYY —
‘

T I LAB

Local Primary Neighbor
Interconnect LAB C4 Interconnect
Driving Down
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CLOCKS

Figure 2-12. EP2C15 & Larger PLL, CLK[I, DPCLK[] & Clock Control Block Locations
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CLOCKS

Dedicated clock pins
low-skew

Dual-purpose clock pins
have programmable delays
drive clock control block

8 - 16 global clocks
Used for all high-fanout control signals
clock, reset, enable
Driven by clock control block
Also locally by logic
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CLOCK CONTROL BLOCK

Selects global clock input
One per global clock

Figure 2-13. Clock Control Block

Clock Control Block
Internal Logic l
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PLL

Figure 2-16. Cyclone Il PLL  Note (1)
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Select Signal Input Clock ] = Clock
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4K MEMORY BLOCK

Table 2-6. M4K Memory Features

Feature

Description

Maximum performance (1)

250 MHz

Total RAM bits per M4K block (including parity bits)

4,608

Configurations supported

4K x 1

2K x 2

1K x 4

512x8

512x9

256 x 16

256 x 18

128 x 32 (not available in true dual-port mode)
128 x 36 (not available in true dual-port mode)

Parity bits One parity bit for each byte. The parity bit, along with
internal user logic, can implement parity checking for
error detection to ensure data integrity.

Byte enable M4K blocks support byte writes when the write port has

a data width of 1, 2, 4, 8, 9, 16, 18, 32, or 36 bits. The
byte enables allow the input data to be masked so the
device can write to specific bytes. The unwritten bytes
retain the previous written value.

Packed mode

Two single-port memory blocks can be packed into a
single M4K block if each of the two independent block
sizes are equal to or less than half of the M4K block
size, and each of the single-port memory blocks is
configured in single-clock mode.

Address clock enable

M4K blocks support address clock enable, which is
used to hold the previous address value for as long as
the signal is enabled. This feature is useful in handling
misses in cache applications.

Memory initialization file (.mif)

When configured as RAM or ROM, you can use an
initialization file to pre-load the memory contents.

Power-up condition

Outputs cleared

Register clears

Output registers only

Same-port read-during-write

New data available at positive clock edge

Mixed-port read-during-write

Old data available at positive clock edge
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4K MEMORY

Table 2-7. M4K Memory Modes

Memory Mode

Single-port memory

Description

M4K blocks support single-port mode, used when
simultaneous reads and writes are not required.

Single-port memory supports non-simultaneous

reads and writes.

Simple dual-port memory

Simple dual-port memory supports a
simultaneous read and write.

Simple dual-port with mixed
width

Simple dual-port memory mode with different
read and write port widths.

True dual-port memory

True dual-port mode supports any combination of
two-port operations: two reads, two writes, or one
read and one write at two different clock
frequencies.

True dual-port with mixed
width

True dual-port mode with different read and write
port widths.

Embedded shift register

M4K memory blocks are used to implement shift
registers. Data is written into each address

location at the falling edge of the clock and read
from the address at the rising edge of the clock.

ROM The M4K memory blocks support ROM mode. A
MIF initializes the ROM contents of these blocks.
FIFO buffers A single clock or dual clock FIFO may be

implemented in the M4K blocks. Simultaneous
read and write from an empty FIFO buffer is not
supported.
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MEMORY CONNECTIONS
Figure 2-17. M4K RAM Block LAB Row Interface
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MULTIPLIER

Figure 2-18. Multiplier Block Architecture
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MULTIPLIER CONNECTIONS

Figure 2-19. Embedded Multiplier LAB Row Interface

Direct Link Interconnect 18 Direct Link Outputs ~ Direct Link Interconnect
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/70 BLOCK

. Figure 2-20. Cyclone Il IOE Structure
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FPGAs - 32




CONNECTIONS TO I1/0 BLOCK (5 PINS)

Va\
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g ’— /0 Block Local
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MORE 1/0 DETAIL

Figure 2-25. Cyclone Il I0E in Bidirectional /0 Configuration
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CONFIGURABLE I/0s

Single-ended and differential

Voltage and current mode
External reference voltage

Range of voltages: 1.5v, 1.8v, 2.0v, 2.5v, 3.3v
Range of standards: LVTTL, LVCMOS, SSTL, HSTL, LVDS, LVPECL
Programmable drive strength: 4 - 20 mA

Interface requirement
Slew rate control

I/Os arranged in Banks
4 - 8 per chip
Banks each have a different power bus
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CYCLONE FLOORPLAN

Figure 2-1. Cyclone Il EP2C20 Device Block Diagram

PLL IOEs PLL
Embedded
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Logic Logic Logic Logic
Bz Array Array Array Array E
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PLL IOEs PLL
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SUPPORT FOR MEMORY INTERFACES

Figure 2-27. DDR SDRAM Interfacing
ogs DDR Data write

DDR write clock
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DETAILS OF ONE XILINX VIRTEX SLICE
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Figure 5: Detailed View of Virtex-E Slice
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IMPLEMENTS ANY TWO 4-INPUT FUNCTIONS
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Figure 5: Detailed View of Virtex-E Slice
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IMPLEMENTS ANY S5-INPUT FUNCTION
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TWwO SLICES:. ANY G- INPUT FUNCTION
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FAST CARRY CHAIN: ADD TWO BITS PER SLICE
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LOOKUP TABLES USED AS MEMORY (16 X 2)
[ DISTRIBUTED MEMORY ]
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Figure 5: Detailed View of Virtex-E Slice
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COMPUTER-AIDED DESIGN

Can't design FPGAs by hand
way too much logic to manage, hard to make changes

Hardware description languages
specify functionality of logic at a high level

Validation - high-level simulation to catch specification errors
verify pin-outs and connections to other system components
low-level to verify mapping and check performance

Logic synthesis
process of compiling HDL program into logic gates and flip-flops

Technology mapping

map the logic onto elements available in the implementation
technology (LUTs for Xilinx FPGAs)
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CAD TooL PATH (CONT’D)

Placement and routing
assign logic blocks to functions
make wiring connections
Timing analysis - verify paths
determine delays as routed
look at critical paths and ways to improve

Partitioning and constraining
if design does not fit or is unroutable as placed split into multiple chips
if design it too slow prioritize critical paths, fix placement of cells, etc.
few tools to help with these tasks exist tfoday

Generate programming files - bits to be loaded into chip for configuration
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CAD ToolLs

Verilog (or VHDL) use to specify logic at a high-level
combine with schematics, library components
Synthesis: Synopsys/Synplicity/Quartus/ISE/Precision
compiles Verilog to logic
maps logic to the FPGA cells
optimizes logic
APR - automatic place and route (simulated annealing)
provides controllability through constraints
handles global signals

STA - measure delay properties of mapping and aid in iteration
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APPLICATIONS OF FPGAS

Implementation of random logic
easier changes at system-level (one device is modified)
can eliminate need for full-custom chips

Prototyping

ensemble of gate arrays used to emulate a circuit o be manufactured
get more/better/faster debugging done than possible with simulation

Reconfigurable hardware
one hardware block used to implement more than one function
functions must be mutually-exclusive in time
can greatly reduce cost while enhancing flexibility
RAM-based only option

Special-purpose computation engines
hardware dedicated to solving one problem (or class of problems)
accelerators attached to general-purpose computers
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