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10.1 Introduction

Color constancy is one of the most amazing features of the human visual system. When
we look at objects under different illuminations, their colors stay relatively constant. This
helps humans to identify objects conveniently. While the precise physiological mechanism
is not fully known, it has been postulated that the eyes are responsible for capturing different
wavelengths of the light reflected by an object, and the brain attempts to “discount” the
contribution of the illumination so that the color perception matches more closely with the
object reflectance, and therefore is mostly constant under different illuminations [1].

A similar behavior is highly desirable in digital still and video cameras. This is achieved
via white balancing which is an image processing step employed in a digital camera imag-
ing pipeline (detailed description of the camera imaging pipeline can be found in Chapters 1
and 3) to adjust the coloration of images captured under different illuminations [2], [3].
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268 Single-Sensor Imaging: Methods and Applications for Digital Cameras

This is because the ambient light has a significant effect on the color stimulus. If the color
temperature of a light source is low, the object being captured will appear reddish. An ex-
ample is the domestic tungsten lamp, whose color temperature is around 3000 Kelvins (K).
On the other hand, with a high color temperature light source, the object will appear bluish.
This includes the typical daylight, with color temperature above 6000 K [4].

Various manual and automatic methods exist for white balancing. For the former, the
camera manufacturer often has predefined settings for typical lighting conditions such as
sunlight, cloudy, fluorescent, or incandescent. The user only needs to make the selec-
tion, and the camera will compute the adjustment automatically. Higher-end cameras, such
as prosumer (professional-consumer) and single-lens reflex (SLR) digital cameras, would
even allow the user to define his or her own white balance reference. Most amateur users,
however, prefer automatic white balancing. The camera then needs to be able to dynam-
ically detect the color temperature of the ambient light and compensate for its effects, or
determine from the image content the necessary color correction due to the illumination.
The automatic white balancing (AWB) algorithm employed in the camera imaging pipeline
is thus critical to the color appearance of digital pictures. This chapter is devoted to a study
of such algorithms commonly used in digital photography.

We organize this chapter as follows. In Section 10.2, we first briefly review the human
visual system and the theory of color, which are necessary background materials for our
discussion on AWB strategies in cameras. Certain terminologies would also be introduced
that are commonly used in discussing color. This is followed by looking into the physical
principles of color formation on an electronic sensor. The challenges that exist in digital
photography are described in Section 10.3. Then, in Section 10.4, we describe a few repre-
sentative AWB algorithms. Our goal is not to be encyclopedic, which is rather impossible
considering the wide array of methods in existence and the proprietary nature of some of
these schemes, but to be illustrative of the main principles behind the major approaches. In
Section 10.5, experimental results of some of these representative algorithms are presented
to evaluate and compare the efficacy of various techniques. Some concluding remarks are
given in Section 10.6.

10.2 Human Visual System and Color Theory

It is instructive for us to begin the discussion on color with the physics of light and the
physiology of the human visual system. The primary reason is that humans are typically
the end-user and the judge of the images in our camera systems. A secondary reason is
that the eye is itself a complex and beautifully made organ that acts as an image capturing
device for our brain. In many cases, we model our camera system design on the natural
design of our eyes.

Visible light occupies a small section of the electromagnetic spectrum, which we call
the visible spectrum. In the seventeenth century, Sir Isaac Newton (1642–1727) was the
first to demonstrate that when a white beam entered a prism, due to the law of refraction of
light the exit beam would consist of shades of different colors. Further experimentation and
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measurement show that different colors correspond to electromagnetic waves of different
wavelengths, usually denoted with the symbol λ and measured in nanometers (nm). Visible
spectrum roughly spans from λ = 400nm to λ = 700nm.

Our eyes interpret different colors based on the wavelength of the electromagnetic wave.
For example, at λ ≈ 400nm we have the sensation of blue; at λ ≈ 550nm we have the
sensation of green; at λ ≈ 700nm we have the sensation of red. For a range of λ < 400nm,
the region is called ultra-violet (UV), while for a range of λ > 700nm, we refer to it as infra-
red (IR). UV and IR are gaining importance in imaging, particularly in medical imaging
and remote sensing respectively, but our focus with digital camera systems is on the visible
spectrum. Hence we will focus on the range approximately from 400nm < λ < 700nm
hereafter.

10.2.1 Illumination

Imaging begins with the source of light called illumination. Virtually all illuminations
consist of light with multiple wavelengths. (In fact, we have to go to extraordinary lengths
to create lasers that are of a single wavelength or a very narrow bandwidth. Imaging under
such circumstances is rare for digital photography and is mostly for scientific research pur-
poses, and thus we do not take them into account here.) Each illumination then is described
with a curve showing the strength of the electromagnetic radiations at different values of λ .
If we normalize the curves of various illuminations, the result is a very useful description
of the spectral power distribution of illumination as a function of wavelength. We can then
compare the representative spectral power distributions of various common light sources.
Note that we usually only describe the general characteristics of the illuminations; an ac-
tual measurement for sunlight, for example, would depend on the location, altitude, and
atmospheric and weather conditions during the measurement.

As an example, Figure 10.11 shows the spectral power distribution of various common
illumination sources. Figure 10.1a is the curve for typical sunlight, which is continuous
(although not uniform) over the visible spectrum. Tungsten light, as shown in Figure 10.1b,
also appears to be rather smooth. Later, we will see why sunlight tends to be perceived as
bright yellowish-white, while tungsten usually gives us a sensation of yellowish hue. In
contrast, the fluorescent lamp consists of sharp spikes in the spectral power distribution,
as shown in Figure 10.1c. Finally, we see that with a light-emitting diode (LED), the
spectral power distribution is also smooth, but is often limited to a narrow range of the
visible spectrum as depicted in Figure 10.1d. LEDs with spectral power concentrating at
the higher wavelength region are more common, and as a result we have mostly red LEDs.

In this chapter we denote the spectral power distribution of an illumination as I(λ ). This
is an important quantity as we relate this with other color production factors to be explained
next. In general, there are numerous possible curves I(λ ). It is also possible to express I(λ )

1Data for some of the spectral power distributions and spectral reflectance can be obtained online from the
Munsell Color Science Laboratory, Chester F. Carlson Center for Imaging Science at Rochester Institute of
Technology.
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FIGURE 10.1

Spectral power distribution of various common types of illuminations: (a) sunlight, (b) tungsten light, (c)

fluorescent light, and (d) light-emitting diode (LED).

as a linear combination of known basis functions I j(λ ) with

I(λ ) =
m

∑
j=1

α jI j(λ ), (10.1)

where, for example, three basis functions (corresponding to m = 3) are sufficient to repre-
sent standard daylights [5]. This property can be used in the design of AWB algorithms.

10.2.2 Object

Illumination is one of the three main factors contributing to the sensation of color in
our brains. The second major factor is the object. When the electromagnetic radiations
from the illumination reach an object, they are partially absorbed, and partially reflected or
transmitted (for transparent objects). For different items, the proportion of the reflection or
transmission varies with wavelengths, but this is an inherent property of the object irrespec-
tive of the illumination that takes place. We can therefore characterize an object’s spectral
reflectance or spectral transmittance as a function of wavelength for comparison.
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FIGURE 10.2 (See color insert.)

GretagMacbeth color rendition chart.

To illustrate, we plot the spectral reflectance corresponding to several typical object col-
ors. These colors represent patches taken from the GretagMacbeth Color Checker (Fig-
ure 10.2) which is often used to test digital camera performances. The spectral reflectance
plots are shown in Figure 10.3. For each plot, the y-axis denotes the fraction of light that is
being reflected from the object. Figure 10.3a to Figure 10.3d show the spectral reflectance
of a red, light blue, yellow, and gray patches of color, respectively. As expected, a red patch
absorbs most of the greenish-blue frequencies and reflects most of the higher-wavelength
light that gives the sensation of red. However, it should be noted that some residual lower-
wavelength frequencies are also reflected, only that the amount is much smaller. We ob-
serve a similar behavior for the light blue and yellow patches as well. For the gray patch,
the spectral reflectance is roughly a constant for the different wavelengths, causing the
resulting gray sensation to be neutral in color.

We denote the spectral reflectance of an object with R(λ ). Similarly, we can also define
the spectral transmittance of an object with T (λ ). There are also attempts to decompose
the spectral reflectance into a summation of known basis functions R j(λ ) such that

R(λ ) =
m

∑
j=1

β jR j(λ ). (10.2)

It has been shown that three basis functions (corresponding to m = 3) can accurately repre-
sent 433 Munsell-chips reflectance functions [6], and seven basis functions (corresponding
to m = 7) are sufficient for a large number of natural objects [7].

10.2.3 Color Stimulus

Illumination and object reflectance or transmittance together determine the color stim-
ulus. The spectral power distribution of the illumination governs how much energy is
incident on the object at every wavelength. For a reflective object, the spectral reflectance
dictates what fraction of that radiation is reflected and will arrive at the eye or the sensor,
again at every wavelength. Similarly, for a transmissive object, the spectral transmittance
determines the fraction of the radiation being transmitted through the object. Therefore,
the spectral power distribution of an object is the product of the spectral power of the illu-
mination and the spectral reflectance of the object. This is also called the color stimulus.
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FIGURE 10.3

Spectral reflectance of various color patches: (a) red patch, (b) light blue patch, (c) yellow patch, (d) gray

patch.

Mathematically, we denote the color stimulus with S(λ ). This is related to the illumina-
tion I(λ ) and object reflectance R(λ ) by [8]

S(λ ) = I(λ )R(λ ). (10.3)

If we use the basis decomposition in Equations 10.1 and 10.2, this becomes

S(λ ) =

(
m

∑
j=1

α jI j(λ )

)(
n

∑
k=1

βkRk(λ )

)
(10.4)

=
m

∑
j=1

n

∑
k=1

α jβkI j(λ )Rk(λ ). (10.5)

Although the above equations appear deceptively simple, they underscore an important
fact in color science that we must emphasize here. The color stimulus depends on both the
illumination and the object. Therefore, given any object, we can theoretically manipulate
the illumination so that it produces any desired color stimulus! We will see shortly that the
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FIGURE 10.4

An anatomy of a human eye.

color stimulus in turn contributes to our perception of color. One noteworthy corollary is
that color is not an inherent feature of an object. A red object, for example, can be perceived
as blue by a clever design of the illumination.

In other words, the illumination is as important as the object reflectance. This fact is
very important for our camera system design. When we take a picture of the same object
first under sunlight and then under fluorescent light, for example, the color stimuli vary
significantly due to differences in illumination. We must adapt our camera to interpret
the color stimuli differently, or otherwise the color of the photographs would look very
different. This explains why AWB is so critical and challenging. However, before we can
proceed on discussing AWB algorithms, we need to explore how our eyes interpret the color
stimuli first. This brings us to the third major factor contributing to the color sensation: the
physiology of our eyes.

10.2.4 Human Visual System

The color stimulus is a function of wavelength. If we had to faithfully reproduce the
color stimulus, there is a lot of information to be stored. A key fact from color science is
that there is no need to reproduce the entire spectral distribution in color reproduction. As
a matter of fact, we often need only three values to specify a color, despite the obvious loss
in information and possibility of ambiguity. The reason lies in our human visual system.

A basic anatomy of a human eye is shown in Figure 10.4. Visible light enters through
the pupil and is refracted by the lens to create an image on the retina. The optical nerve
transfers the image on the retina to the brain for interpretation. The retina is able to form
an image because of tiny sensors called photoreceptors. For a normal person, there are two
types of photoreceptors, cones and rods, which function very differently.

The rods are responsible for scotopic, or dim-light, vision. We have somewhere between
75 and 150 million rods in each of our eyes, and they are distributed all over the retina.
Their chief aim is to give us an overall picture of the field of view of our eyes, rather than
for color vision. When we enter a room that is rather dark, we may still be able to see
objects even though they tend to be colorless. This is because under such illumination,
only the rods are able to give us the images.
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FIGURE 10.5

Spectral sensitivities of: (a) the three types of cones in a human eye, and (b) a typical digital camera.

The cones, on the other hand, are highly sensitive to color. There are far fewer cones in
our eyes; an average person has about six to seven million only. They are also localized
at a place called the fovea, rather than distributed all over the retina. They help us re-
solve fine details in images, and are responsible for photopic, or bright-light, vision. More
importantly, there are three types of cones:

• L-cones which have peak sensitivity towards the long wavelength section of the vis-
ible spectrum,

• M-cones which have peak sensitivity towards the middle wavelength section of the
visible spectrum, and

• S-cones which have peak sensitivity towards the short wavelength section of the vis-
ible spectrum.

These three types of cones together give us the sensation of color vision. When one or
more of the cone types are defective, those people are said to possess what we collectively
refer to as color deficiency or color blindness. Approximately one in twelve men has this
condition to varying degrees, and this is more common in men than in women.

Figure 10.5a shows the spectral sensitivities of the three types of cones of the human eye.
In subsequent discussions, we use l(λ ), m(λ ), and s(λ ) to denote the spectral sensitivity
responses of the L-, M-, and S-cones respectively. For the sake of comparison, the curves
have been normalized to equal area. It is interesting to observe that they do not cover
disjoint sections of the visible spectrum, nor do they cover it entirely. In fact, the responses
of L-cones and M-cones overlap significantly, and all three curves show low response to
stimulus below around 400nm and above around 650nm. As we will see in the next section,
camera designs mimic the responses of our human eyes. The sensor in the camera consists
of three filters, typically red, green, and blue filters. The spectral sensitivities of a typical
camera are shown in Figure 10.5b. We can observe that the peaks of these filters correspond
to the peaks of the L-, M-, and S-cones of our eyes.
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(a)

(b)

FIGURE 10.6

The aim of photography. Observing an object: (a) directly through a human eye, and (b) indirectly through a

photograph.

When an object with stimulus S(λ ) = I(λ )R(λ ) is observed, each of the three cones
responds to the stimulus by summing up the reaction at all wavelengths. Therefore, three
values are produced from the three cones, in accordance with the equations:

X =
∫ 700

400
l(λ )I(λ )R(λ )dλ

Y =
∫ 700

400
m(λ )I(λ )R(λ )dλ . (10.6)

Z =
∫ 700

400
s(λ )I(λ )R(λ )dλ

The triplet (X ,Y,Z) is called trichromatic response. Despite its simplicity to describe color,
it is estimated that humans are capable of resolving about 10 million color sensations!

An important consequence of trichromatic response is that in the digital camera, we
only require three numbers at each pixel to capture the color information. We do not need
to record the color stimulus at all wavelengths! In fact, this gives rise to a useful phe-
nomenon: Even if we consider the spectral sensitivities to be known, for any given triplet
(X ,Y,Z) there could be an infinite number of possibilities for the color stimulus accord-
ing to Equation 10.6. Two stimuli that produce the same trichromatic response are called
metamers. The possibility of metamers is key to color photography.

10.2.5 Color Matching

The goal of photography is a bit different from the way our eyes perceive the color of
an object. Consider the two scenarios depicted in Figure 10.6. In Figure 10.6a, our eyes
observe a certain color object. In Figure 10.6b, our camera captures the object, and in turn
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produces an image on screen or in a hardcopy. Our eyes then observe that object. Note that
through the capturing device, because the spectral sensitivities of the camera differ from
our eyes and the ink in the hardcopy differs in reflectance from the object, the print is not of
identical color to the original object. The goal of color photography is to make the image
appear as similar to the object as possible.

As such, our aim is color matching. Consider digital images shown on a screen, such as
using cathode-ray tube (CRT), liquid crystal display (LCD), or even organic light-emitting
device (OLED). In these cases, each pixel consists of three color patches called primaries,
which are usually red, green, and blue. Color is formed from a linear combination of
intensities from these primaries. Each primary is associated with a certain color stimulus,
which we denote as Pr(λ ), Pg(λ ), and Pb(λ ) for the three colors.

It is not difficult to realize that we only need to perform color matching on monochro-
matic light sources. Any real stimulus, caused by any real illumination reflected or trans-
mitted through any object, can be decomposed as a linear combination of these single-
wavelength light sources. Mathematically, we assume that our light source has the color
stimulus

S(λ ) = δ (λ −λ0), (10.7)

which indicates that it has unit strength at wavelength λ0 and zero elsewhere. We assign
scalar weights l0, m0, and s0, respectively, to the three primaries Pr(λ ), Pg(λ ), and Pb(λ )
in matching colors. Note further that the color matching must be performed with respect
to an observer. It is common to define a standard observer, with a particular set of spectral
sensitivities l(λ ), m(λ ), and s(λ ).

Equipped with all these parameters, we can now calculate the tristimulus value of directly
observing the original stimulus with unit strength at wavelength λ0 to be

X =
∫ 700

400
l(λ )S(λ )dλ = l(λ0)

Y =
∫ 700

400
m(λ )S(λ )dλ = m(λ0). (10.8)

Z =
∫ 700

400
s(λ )S(λ )dλ = s(λ0)

The tristimulus value of indirect observation, through the three primaries of our display
device, would be

X̂ =
∫ 700

400
l(λ ) [l0Pr(λ )+m0Pg(λ )+ s0Pb(λ )] dλ

Ŷ =
∫ 700

400
m(λ ) [l0Pr(λ )+m0Pg(λ )+ s0Pb(λ )] dλ . (10.9)

Ẑ =
∫ 700

400
s(λ ) [l0Pr(λ )+m0Pg(λ )+ s0Pb(λ )] dλ

To match the color, we require only that the tristimulus values match, i.e., X = X̂ , Y = Ŷ ,
and Z = Ẑ. Equating Equations 10.8 and 10.9, we have
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


∫
Pr(λ )l(λ )dλ

∫
Pg(λ )l(λ )dλ

∫
Pb(λ )l(λ )dλ∫

Pr(λ )m(λ )dλ
∫

Pg(λ )m(λ )dλ
∫

Pb(λ )m(λ )dλ∫
Pr(λ )s(λ )dλ

∫
Pg(λ )s(λ )dλ

∫
Pb(λ )s(λ )dλ




︸ ︷︷ ︸
P




l0
m0
s0




︸ ︷︷ ︸
vc

=




l(λ0)
m(λ0)
s(λ0)




︸ ︷︷ ︸
v

. (10.10)

This equation is fundamental to color science. Several remarks can be made for the
matrix equation above:

1. The vector vc is the only unknown in the above equation. With three equations and
three unknowns, the solution is unique provided that the matrix P is not singular.

2. The process can be repeated for different values of λ0. If we view l0 above not as a
scalar but as a value of the curve x(λ ) at λ = λ0, by repeating the process at different
wavelengths we can generate the entire curve of x(λ ). Similarly, we generate y(λ )
from m0 and z(λ ) from s0. These curves are called color-matching functions.

3. The color-matching functions depend on the primaries (R(λ ), G(λ ), and B(λ )) and
the observer (l(λ ), m(λ ), and s(λ )). Changing either, or both, of these quantities
would result in new color-matching functions.

4. The vector v is fixed for the same observer. In this case, the color-matching functions
with different primaries are simply linear combinations of one another. Therefore,
the two sets of color-matching can be described as P1vc1 = v and P2vc2 = v, and thus

vc1 = P−1
1 P2vc2. (10.11)

5. One particularly useful set of color-matching functions defined by the Commission
Internationale de l’Éclairage (CIE), called the CIE Standard Colorimetric Observer
color-matching functions, is shown in Figure 10.7. They are used in the calculation
of the CIE tristimulus values X , Y , and Z, which quantify the trichromatic character-
istics of color stimuli [8].
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The CIE standard colorimetric observer color-matching functions.
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10.3 Challenges in Automatic White Balancing

In the previous section, we have discussed how the color stimulus is equally dependent on
the illumination and the object reflectance. Mathematically, we would thus expect the color
stimulus of the same object to be different under different lighting conditions. However,
our experience seems to the contrary: the same object appears to be of the same color even
under different illuminations. This is known as color constancy. It is also known that the
human visual system corrects for the prevailing scene illumination [9], [10]. However, for
digital cameras, this is a challenging engineering problem.

Digital cameras nowadays use a single-image sensor, with a mosaic of color filters on top
of each photodetector. For details refer to Chapters 1 and 5. These filters can be fabricated
as a photoresist layer mixed with the red, green, or blue dyes [11], with spectral sensitivities
such as those shown in Figure 10.5b.

When an object with stimulus S(λ ) = I(λ )R(λ ) is observed, each filter responds to the
stimulus by summing up the reaction at all wavelengths. Therefore, three values are pro-
duced from the three filters, in accordance with the equation

Rsensor =
∫ 700

400
r(λ )I(λ )R(λ )dλ

Gsensor =
∫ 700

400
g(λ )I(λ )R(λ )dλ , (10.12)

Bsensor =
∫ 700

400
b(λ )I(λ )R(λ )dλ

where r(λ ), g(λ ), and b(λ ) refer to the spectral sensitivities of the sensors under the red,
green, and blue filters respectively. This equation is essentially identical to Equation 10.6
except that we are now concerned with the spectral sensitivities of the camera sensors rather
than our cone responses in our eyes. We can now state our AWB goal as follows: we seek
to minimize the effect of I(λ ) and ensure that Rsensor, Gsensor, and Bsensor correlate with the
object reflectance R(λ ) only [12].

The solution, however, involves dealing with an underdetermined set of equations. We
can count the number of variables and equations as follows. For simplicity, assume for
the moment that our sensors do not rely on demosaicking to recover the full RGB image.
Hence, for an image of size n× n, we have n2 pixels and therefore 3n2 captured values.
From these known values, we want to estimate parameters for the n2 pixels together with
the illuminant. Assume we discretize Equation 10.12 above so that

Rsensor =
m

∑
j=1

r(λ j)I(λ j)R(λ j)∆λ

Gsensor =
m

∑
j=1

g(λ j)I(λ j)R(λ j)∆λ . (10.13)

Bsensor =
m

∑
j=1

b(λ j)I(λ j)R(λ j)∆λ
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Lambertian

surface

viewpoints

light source

FIGURE 10.8

The Lambertian reflection model.

We are then using m sample points to represent the integral. Thus, for each pixel we want to
derive R(λ j) for m values, hence there are a total of mn2 unknowns. In addition, we have m
unknowns for the illuminant. Thus, comparing 3n2 known values with mn2 +m = m(n2 +1)
unknowns, it is clear that we do not have sufficient equations [12].

Moreover, we also need to note that Equations 10.12 and 10.13 above correspond to a
simplified two-dimensional world in which all objects are flat, matte, Lambertian surfaces,
and uniformly illuminated [12]. A Lambertian, or diffuse, surface assumes that light en-
ergy reaching a surface is reflected evenly in all directions [13], as shown in Figure 10.8.
Thus, a planar patch appears to be of uniform brightness for all visible viewpoints. This
occurs when the surface is rough enough relative to the wavelength of the light. Otherwise,
considerations such as flare will substantially complicate the problem further.

To deal with the underconstrained nature of this problem, we often make additional as-
sumptions about the world. Many of the AWB techniques to be mentioned in the following
section rely on particular assumptions. For instance, the gray world method, as the name
implies, considers that the average intensity of the scene is gray. The white patch method
assumes there are always some white pixels in the image. Different assumptions thus lead
to different implementations, and the efficacy of various AWB algorithms can be judged
from how well the actual scenes satisfy the prior assumptions.

10.4 Automatic White Balancing Algorithms

For the above discussions, it can be seen that ideally AWB techniques require information
about the camera being used, and possibly are based on assumptions about the statistical
properties of the expected illumination and spectral reflectance [14]. In practice, many
AWB algorithms follow a two-stage process:
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1. Illuminant estimation — This may be done explicitly, often choosing from a known
set of possible illuminants, or implicitly with assumptions about the effect of such
illuminants.

2. Image color correction — This generates a new image as if it had been taken under
a standard illuminant. The correction is often achieved through an independent gain
regulation of the three color signals. This is known as the Von Kries hypothesis [15].
Commonly, it is achieved by adjusting the intensities of red and blue only, as AWB
is concerned about the ratio of the three color signals.

Below we discuss several representative algorithms. We present them independently, but
we should also note that combination techniques exist (e.g., Reference [14]) where multiple
algorithms are run simultaneously, and a consensus decision is required afterwards to select
the best results.

10.4.1 Gray World

The first method incorporates the gray world assumption, which argues that the average
reflectance of a scene is achromatic. In other words, the mean of the red (Rsensor), green
(Gsensor), and blue (Bsensor) channels in a given scene should be roughly equal. This method
has its root in film photography, where for the negatives the average is biased towards dark
regions of the scene, which tend to be neutral [4]. Algorithmically, as stated above we can
adjust a gain factor to two of the channels so that both their means are now equal to the
reference channel, which is often taken to be green.

We denote a full-color image of size n× n as RGBsensor(x,y), where x and y denote the
indices of the pixel position. The individual red, green, and blue color components are then
Rsensor(x,y), Gsensor(x,y), and Bsensor(x,y), respectively. We compute

Ravg =
1
n2

n

∑
x=1

n

∑
y=1

Rsensor(x,y)

Gavg =
1
n2

n

∑
x=1

n

∑
y=1

Gsensor(x,y). (10.14)

Bavg =
1
n2

n

∑
x=1

n

∑
y=1

Bsensor(x,y)

If the three values are identical, the image already satisfies the gray world assumption and
no further adjustment is necessary. In general, they may not be. We then compute the gain
for the red and blue channels as α̂ and β̂ , where

α̂ =
Gavg

Ravg
and β̂ =

Gavg

Bavg
. (10.15)

The corrected image is formed with R̂sensor(x,y), Ĝsensor(x,y), and B̂sensor(x,y), where

R̂sensor(x,y) = α̂Rsensor(x,y)
Ĝsensor(x,y) = Gsensor(x,y). (10.16)

B̂sensor(x,y) = β̂Bsensor(x,y)
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Often, this image has sufficient intensity range for all the channels. In the event that the
highest intensity of the three channels is significantly below the maximum allowable value,
we can scale all three channels by the same amount so that the average intensity is still
preserved. This gray world method is quite effective in practice, except in situations where
a certain color may dominate, such as a blue hue for the sky, or when an object with a
substantial amount of a certain color occupies the majority of the view.

There are a number of extensions to this method that can deal with such situations. One
example is given in Reference [16]. In this method, one defines a region in the Ravg−Gavg
versus Bavg −Gavg plane. If the computed {Ravg,Gavg,Bavg} falls within the region, the
scene is considered good enough and AWB adjustments using Equation 10.16 will not be
performed.

10.4.2 White Patch

The second method is based on the Retinex theory2 of visual color constancy, which
argues that perceived white is associated with the maximum cone signals [18]. This is
also known as the white world assumption [19]. This is because the brightest point in
an image is often due to reflectance of a glossy surface, which tends to reflect the actual
color of the light source [20]. The white balancing scheme then attempts to equalize the
maximum value of the three channels to produce a white patch. To avoid disturbances to
the calculation caused by a few bright pixels, one can treat clusters of pixels or lowpass the
image [4]. To implement this, we compute

Rmax = max
x,y

Rsensor(x,y)

Gmax = max
x,y

Gsensor(x,y). (10.17)

Bmax = max
x,y

Bsensor(x,y)

If Gmax is too small we can scale the green intensities up first, otherwise we keep the green
channel unchanged. We define the gain for the red and blue channels as α̃ and β̃ , where

α̃ =
Gmax

Rmax
and β̃ =

Gmax

Bmax
. (10.18)

The corrected image is formed with R̃sensor(x,y), G̃sensor(x,y), and B̃sensor(x,y), where

R̃sensor(x,y) = α̃Rsensor(x,y)
G̃sensor(x,y) = Gsensor(x,y). (10.19)

B̃sensor(x,y) = β̃Bsensor(x,y)

Gray world and white patch methods have their respective strengths. It is conceivable
that satisfying the conditions in both methods would result in even better images. But we
first need to make the following remarks:

2Retinex, which comes from the words retina and cortex, was coined to suggest that both the eye and the brain
are involved in visual color constancy [17].
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• For most images, the two methods produce different results. In other words, the
corrected image can rarely satisfy both the gray world assumption and the Retinex
theory.

• Equations 10.16 and 10.19 are both linear adjustments to the pixel intensities. Fur-
thermore, there is also a fixed point in the mappings: for pixels with zero intensity,
the two mappings would not affect their values. Evidently, it is rarely possible to
achieve the requirements of both gray world assumption and Retinex theory with a
linear technique.

Instead, a simple adjustment with a quadratic mapping of intensities was described in Ref-
erence [21]. Let the change to the red channel be

R̆sensor(x,y) = µR2
sensor(x,y)+νRsensor(x,y), (10.20)

where µ and ν are parameters to be found. The adjustment to the blue channel is computed
analogously. To satisfy the gray world assumption, we require that

n

∑
x=1

n

∑
y=1

R̆sensor(x,y) = n2Gavg, (10.21)

and therefore,

µ
n

∑
x=1

n

∑
y=1

R2
sensor(x,y)+ν

n

∑
x=1

n

∑
y=1

Rsensor(x,y) = n2Gavg. (10.22)

Simultaneously, to satisfy the Retinex assumption to produce a white patch, we need

max
x,y

R̆sensor(x,y) = Gmax, (10.23)

and therefore, if we assume that Rsensor(x,y) takes on integer values between 0 and 255,
and that µ and ν are positive numbers,

µ max
x,y

R2
sensor(x,y)+ν max

x,y
Rsensor(x,y) = Gmax. (10.24)

Equations 10.22 and 10.24 together form two equations in two unknowns. We can represent
them in a matrix form

[
∑n

x=1 ∑n
y=1 R2

sensor(x,y) ∑n
x=1 ∑n

y=1 Rsensor(x,y)
maxx,y R2

sensor(x,y) maxx,y Rsensor(x,y)

][
µ
ν

]
=

[
n2Gavg
Gmax

]
. (10.25)

This can be solved analytically for µ and ν using Cramer’s rule.

10.4.3 Iterative White Balancing

The gray world method and white patch method described above are global techniques in
that all pixels are involved in the computation. A drawback is that both may be susceptible
to statistical anomalies. For the former, the method will give incorrect results if the scene
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is heavily biased towards certain color cast, such as an outdoor scene of an ocean and the
sky is typically rich in blue. For the white patch method, if a few pixels in the image have
very large red, green, or blue values, they end up dominating the calculations.

In contrast, we have algorithms that pre-select a subset of pixels fulfilling certain a priori
criteria, and the necessary color correction is derived from these pixels, although the ad-
justment is performed on all pixels subsequently. We can, for instance, perform an iterative
white balancing technique as follows by extracting certain white points. We first convert
the RGB values to YUV, a color space commonly used in video signals such as the PAL
format, given by the following formula:




Y
U
V


 =




0.299 0.587 0.114
−0.147 −0.289 0.436

0.615 −0.515 −0.100







Rsensor
Gsensor
Bsensor


 . (10.26)

An ideal white point is when Rsensor = Gsensor = Bsensor = 255, which when put to the
equation above makes Y = 255 and U = V = 0. Relaxing this condition a bit, we extract
the pixels as white points if they satisfy the condition [22]

Y > ξ
|U | < ρ, (10.27)

|V | < τ

or an alternative criterion defined as [23]:

Y −|U |− |V |> ζ , (10.28)

where ξ , ρ , τ , and ζ are some pre-defined constants. While such a local method can avoid
the scene being dominated by statistical anomalies, there are also situations that this would
fail such as when there is no white object in the scene.

Another refinement is to look at gray points, which form a superset of the white points
and therefore are more abundant in a typical scene. Reference [24] proposes selecting these
points by the formula

|U |+ |V |
Y

< η , (10.29)

where η is a positive threshold value much less than 1. The rationale is that if the light
source is biased, say, to have a stronger red component, we can represent the captured red
component R̃ as

R̃ = (1+κR)R, (10.30)

where R is the true red component if captured in a canonical light source, and κR denotes
the percentage increase. This gives rise to a set of Y , U , and V where




Y
U
V


 =




0.299 0.587 0.114
−0.147 −0.289 0.436

0.615 −0.515 −0.100







(1+κR)R
G
B


 . (10.31)
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Note that for a canonical illumination, we have R = G = B for a gray point, and therefore



Y
U
V


 =




0.299 0.587 0.114
−0.147 −0.289 0.436

0.615 −0.515 −0.100







(1+κR)R
R
R


 (10.32)

=




1+0.299κR

−0.147κR

0.615κR


R. (10.33)

Putting the above in Equation 10.29, we get

|U |+ |V |
Y

=
0.147κR +0.615κR

1+0.299κR
(10.34)

=
0.762κR

1+0.299κR
< ν . (10.35)

This value is close to zero if κR is small. Similar results can be derived if the color cast is
in green or blue.

After selecting these gray points, we compute their average U and V values as Ûavg and
V̂avg. An iterative procedure is then employed to adjust them both to zero. At the jth
iteration, we compute

φ j = max(|Ûavg|, |V̂avg|). (10.36)

If this equals to Ûavg, implying that the color is biased towards blue, we adjust the gain of
the blue channel. Otherwise, the color is biased towards red, and the gain of the red channel
is adjusted. The amount of adjustment used in Reference [24] is empirical and determined
by trial and error. This changes Ûavg and V̂avg for the next iteration, and Equation 10.36 is
computed again until satisfactory results are obtained.

10.4.4 Illuminant Voting

The three methods discussed above all make assumptions about the effects of illumina-
tion and adjust the pixel intensities directly. In principle, such methods attempt to adjust
the intensity values of an image so that they appear “normal,” but there is no guarantee that
the resulting image is indeed possible under any illuminant! In other words, we may have
created an image that is not physically realizable with any lighting condition on the partic-
ular object. On the other hand, there are also various techniques that aim at recovering the
illuminant explicitly from the observed images. One such example is the illuminant voting
technique [25]. After identifying the illuminant, the correction to any alternative lighting
condition will ensure that the resulting image is realizable.

This illuminant voting method is based on the idea of Hough transform. This is a well
known technique in image processing, especially in pattern detection, and can be illustrated
as follows. Suppose we would like to detect a straight line in an image. This line can be
represented as

ρ = xcosθ + ysinθ (10.37)

in the x–y plane, where ρ is the distance from the origin and θ is the angle of the line.
The Hough transform of this line is then the point (ρ,θ) in a new parameter space. We
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can think of the Hough transform as mapping a line to a point, but we can also think of
it as mapping a point to a line, because a point in the original x–y plane can relate to a
set of (ρ j,θ j), where j is the index for the element, as long as they satisfy Equation 10.37
above. In theory there is an infinite number of (ρ j,θ j), but in practice they are quantized
and therefore there is only a finite number of elements. Thus, we can imagine each point
casts one vote to each member of the element. When we have multiple points, the (ρ j,θ j)
with the most number of votes denotes the strongest presence of a line. In implementation,
we commonly pick θ j first and then solve for ρ j and eventually count the votes, before
moving on to a new value of θ j. Details of the Hough transform can be found in many
image processing textbooks (e.g., Reference [26]).

In a similar manner, we rely on the observed data to vote for the most likely illuminant.
This requires modelling of the illuminant and reflectance by using low order linear com-
binations, as described in Equations 10.1 and 10.2. Putting them to Equation 10.12, we
have




Rsensor
Gsensor
Bsensor


 =




∫ 700
400 r(λ )∑m

j=1 ∑n
k=1 α jβkI j(λ )Rk(λ )dλ∫ 700

400 g(λ )∑m
j=1 ∑n

k=1 α jβkI j(λ )Rk(λ )dλ∫ 700
400 b(λ )∑m

j=1 ∑n
k=1 α jβkI j(λ )Rk(λ )dλ


 (10.38)

=

(
n

∑
k=1

βkMk

)
α, (10.39)

where the jth column of Mk, denoted as (Mk) j, equals

(Mk) j =




∫ 700
400 r(λ )I j(λ )Rk(λ )dλ∫ 700
400 g(λ )I j(λ )Rk(λ )dλ∫ 700
400 b(λ )I j(λ )Rk(λ )dλ


 (10.40)

and α = [α1,α2, . . . ,αm]T . Thus, it is clear that the equation above is linear in α. In fact, it
is bilinear in α and β, where β = [β1,β2, . . . ,βn]T , because the above equation can also be
written by interchanging illumination and spectral reflectance [27].

Given this bilinearity, we can use the observed pixel data to vote for the set of illuminant
and reflectance parameters in a way similar to the Hough transform. The procedure consists
of the following steps:

1. Selection of the reflectance parameters — We pick a set of β j, which determine the
object reflectance given the basis functions R j(λ ) in Equation 10.2. Since there could
be many possible object spectral reflectances in the scene, we have to go through the
three-step procedure many times, each with a different set of β j.

2. Determination of illumination parameters — We solve for α j using Equation 10.39
above. Note that this is an inverse problem. Provided that (∑n

k=1 βkMk) is not sin-
gular, a solution can be found. However, it should also be noted that if the matrix is
ill-conditioned [28], [29], the solution can be very sensitive to noise. To deal with
this problem, typically we retain only the cases where the system matrix is well-
conditioned.
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3. Casting of vote — A vote is cast for the α obtained. As with most implementations
of Hough transform, this is quantized so that similar values are grouped together.
Otherwise, there will be too many singleton votes.

After repeating the procedure for different object reflectances, the one with the most votes
is deemed the illuminant.

10.4.5 Color by Correlation

The fundamental premise of the color by correlation method is that although there are
numerous possible spectral power distributions such as those in Figure 10.1, for instance,
different hours of the day and different days would present different spectral power distri-
butions of sunlight, there are only a small selection of substantially different illuminants
(e.g., sunlight, fluorescent light, tungsten light, etc.). Some of these are modes or illumina-
tion conditions used in semi-automatic white balancing, where the user selects the partic-
ular mode and the camera performs white balancing accordingly. Similar to the previous
method, the goal of AWB is achieved through illuminant identification, but the difference
between the two is that the current method seeks not just a simple answer of the illumina-
tion function I(λ ), but a set of possible illuminants together with their likelihoods. Thus,
not only does it determine the most likely illuminant, but it also computes the likelihood of
all other illuminants so that the error margin of the subsequent choices is also known.

A prerequisite for this method is that we need to know the range and distribution of im-
age colors that can be recorded by the camera under a set of possible lights [12]. We can
then correlate the observed image with these distributions and identify the closest one as
the most likely illuminant. More precisely, assume that there are k possible illuminants
altogether. Instead of working with three sensory responses, we deal with only the chro-
maticity, where we can compute the chromaticities (c1,c2) as

c1 =
Rsensor

Gsensor
and c2 =

Bsensor

Gsensor
. (10.41)

In practice, Reference [12] advocates the equation

c1 =
(

Rsensor

Gsensor

) 1
3

and c2 =
(

Bsensor

Gsensor

) 1
3

(10.42)

which leads to chromaticities that are more uniformly distributed.
We partition the space of all chromaticities into N×N bins. The task is now to determine

the possible (c1,c2) under each illuminant. There are a few possibilities:

1. The empirical way is to take the camera and capture a wide range of objects with
various surface reflectances under each illuminant. We can then obtain the gamut
of colors which the camera records under each lighting condition. This approach
however can be rather cumbersome when there are many possible illuminants, and
some may not be easily obtained at will (e.g., a bright sunlight illumination when it
happens that the experimenters are experiencing rainy days!).
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2. We can generate the chromaticities using Equations 10.12 and 10.42. This requires us
to know the spectral response characteristics of the camera (such as in Figure 10.5b),
the spectral power distribution of each illuminant, and the surface reflectance of a
range of objects. In addition, we can take the convex hull of these chromaticities to
form the gamut, setting all entries inside the gamut to be 1 and those outside to be 0.

3. We can further refine the scheme above by assigning the probability of each chro-
maticity value as the entries. This is computed empirically from the relative frequen-
cies of occurrence estimated from the number of surfaces falling in each bin of the
discretized chromaticity space.

We record the information above in an N2× k correlation matrix C, where each column
(denoted as (C) j for the jth column) corresponds to a possible illuminant. Its row entry is
the likelihood of observing that chromaticity under the particular illumination.

Now for a given image, we correlate the above information with that present in the image.
We transform the pixel intensities to chromaticity values using the same formula as above,
such as Equation 10.42. We then form a vector ω of length N2, where the jth element ω j

is one if the corresponding chromaticity value is present in the image, and zero otherwise.
We can then compute the most appropriate illuminant ĵ by the formula

ĵ = argmax
j
〈ω,(C) j〉 (10.43)

where 〈·, ·〉 denotes inner product. Another way to view this is that if we compute

χ = ωTC (10.44)

then the vector χ is a row vector of length k, where each value suggests the likelihood of
the illuminant. Thus, in a single operation we can find not only the most likely illuminant
but also the error margin of the others.

In summary, the color by correlation method entails the following three-step process:

1. Preprocessing step — Information about the interaction between image colors and
illuminants is coded. This is considered the prior information about the illuminants.

2. Correlation step — This prior information is correlated with the information that is
present in a particular image. In other words, the colors in an image determine the
likelihood of each possible illuminant.

3. Recovery step — These likelihoods are used to recover an estimate of the scene
illuminant.

10.4.6 Other Methods

The above discussion of AWB techniques is by no means exhaustive. Other promis-
ing techniques include the gamut mapping algorithm using coefficient rule (CRULE) [30],
color in perspective [31], Bayesian formulation [10], neural networks [32], adaptive gains
[33], [34], and combined strategies [14]. We refer readers to these original papers for fur-
ther descriptions of their methods.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 10.9 (See color insert.)

AWB methods for the Macbeth color chart: (a) original image, (b) gray world, (c) white patch, (d) iterative

white balancing, (d) illuminant voting, and (f) color by correlation.

10.5 Implementations and Quality Evaluations

In this section, we consider the performance of the above methods using a few test im-
ages. Our aim is not to extensively compare the various methods, which can often be found
in the respective original papers and others written specifically for such a purpose [35], [36],
but to give readers some general ideas of the performance of these techniques. It is also
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known to be difficult to objectively evaluate image quality. With synthetic data, we can gen-
erate an ideal image with the desirable illumination, and a test image captured with another
illumination but corrected with one of the AWB algorithms. If the former has intensities
{Rideal,Gideal,Bideal} in the three channels and the latter has intensities {Rtest,Gtest,Btest},
we can compute the mean square error (MSE) between these images using the formula

MSE =
n

∑
x=1

n

∑
y=1

[
(Rideal−Rtest)

2 +(Gideal−Gtest)
2 +(Bideal−Btest)

2
]
, (10.45)

where each of the quantities above has the argument (x,y). A large MSE means that the
ideal and test images are dissimilar, and suggests that the AWB algorithm may not be
working well.

Unfortunately, MSE is commonly not a good metric for two reasons [37]. First, with
real data we may not have the ideal image that we can compare with the test image. Even
if we do, a second problem is that MSE does not correspond to the human perception of
images. For instance, if we scale the intensities of the test image or shift it spatially by
a small amount, the effects may be rather negligible perceptually, but mathematically the
MSE can be significantly increased. There are other possibilities to compare the color dif-
ferences objectively, such as using S-CIELAB [38] and CIEDE2000 [39]. Below, however,
we mainly evaluate three sets of images subjectively to give readers a flavor of the AWB
algorithms.

This first one is shown in Figure 10.9. In Figure 10.9a, the original image is seen to have
a reddish-orange hue. The performance of the AWB algorithms is shown in Figure 10.9b to
Figure 10.9f. In this particular case, the results of these algorithms are all quite satisfactory,
and resemble each other. This can be attributed to the nature of this color chart object. For
example, because many colors are present and there is no bias towards, for example, red,
green, or blue, the assumption that the average intensity should be gray is quite agreeable.
In a similar way, the object has a white patch that should correspond to the maximum
intensity of the red, green, and blue channels. After the correction, the white patch is
clearly evident.

Next, we consider the performance on another set of images shown in Figure 10.10. As
in the previous example, Figure 10.10a is the original image. In this case, a bluish-green
cast is visible in the image. Note that the actual image should be binary with black and
white only. After the correction on the original image, the gray world technique shown
in Figure 10.10b and the iterative white balancing scheme in Figure 10.10d both result
in images that contain shades of gray only. However, the white background is rendered
somewhat grayish in both cases. This can be attributed to the fact that both algorithms aim
at reducing the chromatic components of the image, but do not have any mechanism that
favors white to gray. On the other hand, the white patch technique in Figure 10.10c and the
color by correlation method in Figure 10.10f are better in forcing the background to appear
white. Note that in the white patch algorithm, we have filtered out the isolated bright pixels
as mentioned in Section 10.4.2. Finally, the illuminant voting algorithm in Figure 10.10e
seems to have over-compensated for the bluish cast and the resulting corrected image now
contains mild shades of yellow.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 10.10 (See color insert.)

AWB methods for the resolution chart: (a) original image, (b) gray world, (c) white patch, (d) iterative white

balancing, (d) illuminant voting, and (f) color by correlation.

The third set of experimental results is given in Figure 10.11. This is an image of a
bookshelf taken under fluorescent light but with incorrect white balance setting in the cam-
era. We can observe that the white patch method in Figure 10.11c seems to perform the
best in this case, whereas the gray world method in Figure 10.11b and the iterative white
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(a) (b)

(c) (d)

(e) (f)

FIGURE 10.11 (See color insert.)

AWB methods for the bookshelf image: (a) original image, (b) gray world, (c) white patch, (d) iterative white

balancing, (d) illuminant voting, and (f) color by correlation.

balancing scheme in Figure 10.11d again appear to produce an image that is slightly gray-
ish. Both the illuminant voting and color by correlation methods, in Figure 10.11e and
Figure 10.11f respectively, perform white balancing insufficiently. This result seems to
agree with the comment made in Reference [36] that algorithms taking advantage of the
chromaticity statistics seem to perform worse than expected.
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10.6 Conclusion

In this chapter we considered the issue of automatic white balancing (AWB) in digital
photography. We discussed the nature of the problem, and various algorithms that could be
implemented to achieve AWB, including gray world, white patch, iterative white balanc-
ing, illuminant voting, and color by correlation. Nevertheless, we should note that color
constancy — the root problem of AWB — is still recognized as a difficult problem that has
not been solved satisfactorily, or even understood well enough how humans and some other
animals possess this fascinating quality. Even the state-of-the-art algorithms are not nearly
as good as our own color constancy [10] or in some cases, sufficient for machine vision
tasks such as object recognition [40]. Evidently, there is much room for research both in
understanding color constancy in human visual systems and the possibility of adapting it
or using some other methods to achieve AWB in digital camera systems design.
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