Introduction to Active-HDL

TUTORIAL #2 — HIERARCHY, BUSSESAND TEST FIXTURES

Thistutorial will use the 1-bit full adder you designed in Tutorial #1 to construct larger
adders. Thiswill introduce the concept of hierarchy to use simple componentsto
construct more complex components. In thistutorial, you will build a4-bit
adder/subtractor component using the 1-bit full adder you already designed. Since the 4-
bit adder isimplemented using another design component, this forms a ssmple design
hierarchy. A design hierarchy is similar to a procedure call hierarchy in programming
languages. The important difference isthat each call or “instantiation” of a simpler
component by a more complex component actually creates a new instance of the smple
component. After completing this tutorial you will know how to:

» Design using hierarchy.

» Test components using test fixtures.

* Useblock symbolsin Active-HDL.

* Usebuses.

* Run simulations with multi-bit signals using atest fixture.
* (Optional) Create and connect arrays of components.

Start Active-HDL

1. Open Active-HDL.
2. Select the “Open existing workspace” option and select your workspace from
Tutorial #1 in the window, or click the browse button to find and select it.

Getting Started H

é &+ Open existing workspace

czed70 falll2 bore... |
1

zhmy_dezignzhoceed 0 falld2

| " Create new workspace

[Always open last workspace

0k, I Cancel

Figurel

3. Click OK.

Test Fixtures

What is atest fixture? Test fixtures are used to test and/or simulate adesign or a
component of adesign. A test fixture isusually generated in Verilog. It drives the input
signals of a design and samples the outputs. We are particularly interested in “ self-
checking” test fixtures that check the outputs and report an error automatically so that we
don’'t have to look at the waveforms,

Before using components as part of other components, you should test them, just like you
test procedures before using them. In Tutorial #1, you used a simulation and a waveform
to verify your 1-bit full adder. Test fixtures will not eliminate the need to use the
debugging skills you learned in the first tutorial, but they will make verifying the
correctness of adesign faster and simpler. Thisis accomplished by the test fixture's
ability to send messages to the Console in addition to producing waveforms.

At some point when you have learned Verilog, you will be writing your own test fixtures.
For thistutorial, we will provide you with two test fixture files to test the components
you design. (It’s pretty easy to follow these examples to generate your own Verilog text
fixtures.) The code provided will test anumber of cases for each component and print a
series of messages to help you find errors, if any. These messages will be printed to the
Console and atext file.

1. Youwill need to add the following two filesto your design: FA_tf.v (thistest
fixture tests a 1-bit full adder), and fourbitA_tf.v (this test fixture tests the 4-bit
adder/subtractor you will design in thistutorial). Double-click “Add New File” in
the Design Browser.

Now, click the “Add Existing File” button.

Navigate to the class folder, which contains these files, check the “Make local
copy” box, and add the test fixture for the full adder (See[Figure 2). Noticeitis
added to the design hierarchy in the Design Browser. We use the naming
convention: <design name>_tf.v to name test fixtures so that it is easy to associate
test fixtures with the components they test. If you choose different names for your
full adder and 4-bit adder/subtractor, make sure you rename these test fixtures by
right-clicking the file in the Design Browser.

Wn

#Aadd Fdes ko [Fazagn EE

Lm-l‘.,'r\-:[—o hulonial_bestimiures :I = B of T

M| sddsubd2 v

M| addeubd_Hv

I X

[
Flername: [Fa_ili~ | feckd I
Filiis o higsi |nIF.¢-: == ﬂ Cancml |
Clpe=n a2 ||:.|,n; 3_!7 Hﬁhumw.:
Figure?2

-2-

4.

5.

£
£
£
£
£
£

£ ==

£
£
£
£
£
£

L=

£
£
£
£

Double-click the test fixture in the Design Browser to open thisfilein the main
window.
Y ou do not need to understand the code completely, but read through the code
and try to understand what it is doing and why it isdoing it. If you renamed the
file, change the title and the module name to reflect this change. (Optional) Y ou
may also change the name of the text file that the test fixture prints to (See
). Once you have familiarized yourself with the code, save it then compileit. If
you choose to modify thisfile, save the file after each modification, and
recompileit after you have saved it. Repeat this section to add the test fixture for
the 4-bit adder/subtractor component to the design.

Title :[ful;_adder_tf]

Nesign

Autkor P ¥OUR NAME HOERK

Company

File :

Tenerated ;oWed Aug 14 QersSrEx Zooz

Firom p interfice description £ile

Faytd r TEFEVRAD ver., 1.20

Nescription : Drives inputs For 2 1-bit Full adder and samples the

cutputs to verify the correctness of the design.

"timescale 1ns 4 1ns

wodule (full_adder tf |{ & ,B ,Cin ,Cout ,Swm);

input Cout
Wwire Cout
input Swuam
wire 3w

output &L
reg AL
output E
reg B
output Cin
reg Cin

integer results:

initial kbegin OPTIOMNAL

results = $fnpeniEfull_adder_tf_Dutput.txtﬂ];

Figure3

-3-

Block Symbols:

Active-HDL can create block symbols from your compiled schematic designs and
Verilog source code files in the Symbols Toolbox. We will create block symbols
for the full adder you designed earlier and the full adder test fixture. This portion
of the tutorial will walk you through placing a block symbol for the full adder into
anew schematic and connecting it to atest fixture to ensure that it functions

properly.

1.

Add anew empty block diagram file called: <design name>_test. Do this by
double-clicking “Add New File” in the Design Browser, select the “Block
Diagram” option under the Empty Files tab, and enter the name in the “Name”
field. Then, click OK.

Open the Symbols Toolbox. Find the name of your design, and expand your
design’s part list. Y ou should see a*“Units without symbols” list. Expand it
and find the name of your full adder schematic. Select it, and notice that a
block symbol appearsin the bottom window of the Symbols Toolbox. Add
this part to your schematic and notice that this component no longer appears
in the “Units without symbols’ list.

Repeat step 2 to add the symbol for full adder test fixture to the schematic.

Y ou can edit block symbols by right clicking the part in the schematic and
selecting the “Edit” option. (Note: if thisoption is not available, save, close,
and reopen the file and try again.) While in edit mode, you can drag the pins
to anew position within the symbol. Clicking outside of the part will end the
edit session, and you will be prompted to save your changes.

Thetest fixture will drive the input signals of the full adder and test the full
adder’ s outputs. Connect the two units using wires. The outputs of the test
fixture connect to the corresponding inputs of the full adder, and the inputs of
the test fixture connect to the corresponding outputs of the full adder.

UELH
et ap———————+la co
alm H H S
. I:I.; =LFI

full_addertf - - full_adder- -

Figure4

Now that the units are connected, save, run the check diagram tool, and
compile the test schematic.

Set the test schematic as the top level, close any waveforms, initialize a
simulation, and run the simulation for 80 ns. If you have forgotten how to do
any of these steps, refer to Tutorial #1.

The Console, along with atext file, will contain the results of the ssimulation.
If al eight cases passed, end the simulation, and continue with the tutorial. If
not, there may be some problems with your full adder (see Tutorial #1 for
examples on how to debug your design).

-4-

Theright way to design isto write atest fixture for every component you design. If you
change the gate logic with in the design without adding or removing pins, all you have to
do isre-run the test fixture to make sure you haven’'t screwed anything up. However,
more drastic changes to your design require alittle more work.

Updating Block Symbols:

1. After making changesto your schematic, select the block symbol for the
schematic and right click it.

2. Now select the “Compare symbol with contents...” option.

3. You will be asked if you would like to update the symbol or the schematic file
viatwo radio buttons. Well, in this case it is obvious you want to update the
symbol. However, you could choose to update the schematic in instances
where you have made the desired change to the symbol instead (thisis not
usually the method you will or want to use).

Compare Interfaces EE
Syrnbal number_11 File &:4. . Sercnumber_11.bde
E M ame |M|:ude|T_l,l|:|e |Dela_l,l | |Name |M|:||:IE|T_I,I|:|E |De|a_l,l |
o LAl in 1ire Aan in WWire
? &1 ifn wire
15}
E B0 in wire BO in wire
£ [B1 ifn wire B1 ifn wire
— Q out Cwire Q out o wine
i~ Update file Z:%.. \number_11.bde % Lpdate symboal
Differences in 1 partfz] found 0 I Cemes]

Figure5

Asapractical matter, we typically write test fixtures only when the components get
reasonably complicated. Whether we'd write atest fixture for afull adder is mostly a
matter of how optimistic we are. It’s best to assume that you’ re going to make mistakes,
and the sooner you find them, the easier your lifeis going to be.

Design a 4-bit adder/subtractor component

igure 6]is an example of the schematic you will be designing in this portion of the
tutorial. You aready know how to place parts and connect them. However, this design
uses buses as well aswires, therefore, you will learn how to use and connect buses.
Additionally, you should gain a better understanding of hierarchy.

L] el - . 1:::" EE——

bR ~— [, &

—_—
o

] e pp——]il

BR|

] oy

AdelSul

Figure6

1. Add anew schematic block diagram file to the design using the block diagram
wizard and then create this schematic just like you created the schematic in
Tutoria #1. The only thing you do not know how to do is to add the ports
(terminals), specifically the bus ports. You can add these when you first create
the block diagram with the Wizard. Or you can add the terminals in the schematic
afterwards.

2. Toadd amulti-bit termina while in the wizard, type in the name of the terminal
and select whether it isan input or output terminal. Now in the “Array Indexes’
fields, place a3 in thefield on the left (the “to” field), and a0 in the field on the
right (the “from” field). Y ou can enter in the numbers or use the arrow buttons to
theright of each field. The fieldswill read “from 0 to 3", or in other words, a 4-bit
port (see[Figure 7/on the next page). To add multi-bit terminalsin the schematic,
click the drop down arrow next to the Terminalsicon in the toolbar. Mouse over
the options, select the desired terminal, and drop it into the schematic. Double-
click the terminal in the design, and adjust the “Index Range” fields in the
Terminal Properties window (not shown) to the desired number of bits.

Hew Source File Wizard - Ports

]

To add a new part, click Mew.
To edit a port, zelect in on the list. Then pou can change
itz name, direction ahd tupe. To quickly change the index
constraint of a port of a one-dimenzional aray tipe, uze
the Array |ndexes box.
Toremove a port, zelect it on the lizt, and then click
Delete.
[3:0] M ame: Array Indexes:
o201 = E =
Paort direction A
[T ™ inout
ot
fourbitAS
Mew Delete | Type... |
< Back | Finizh | Cancel |
Figure?7

Using the methods described here and Tutorial #1, add two 4-bit inputs named
“A” and “B”, add one 1-bit input named “ AddSub”, add one 4-bit output named
“S’, and a 1-bit output named “Over”. Then, click Finish. (See[Figure 8§ on the
next page)

Hew Source File Wizard - Ports
To add a new part, click Mew.
To edit a port, select in on the lizk. Then pou can change
itz name, direction and tvpe. To gquickly change the index
A[30] cohztraint of a part of a one-dimenzional aray bpe, use

— ’ the Amay Indexes box.

S[30) fumm T remowve a port, select it on the list, and then click
Delete.

e B[3:0] M arne: Array Indexes:
Al3:0] P P
addub ! = | =
B[2:0] Port direction

— Addaub Over— e i " inout
S[3:0] & out

fourbitAS
=T Delete | WEE,.. |
< Back | Finizh | Cancel |
Figure8

Place the parts from|[Figure 6)into the design (use the standard classlibrary), and
make the appropriate wire connections. Y ou will find the multiplexor under the
name “MUX2", and the inverter is under the name “INV”.

Using Buses

Asyou can seein you can use the naming connections described in Tutorial
#1 for connecting buses as well aswires. Thisis the simplest method and thus the
method we will use. (There are other ways to create so-called bus taps. Since we
don't like them, we won'’t describe them. But you can (and should) take alook at the
online documentation, which explains other kinds of taps, as well as the method used
in thistutorial. To view the online documentation, go to Help/On-line Documentation
in the menu bar.)

The steps provided below explain how to:

e Draw buses.
¢ Name buses.
* Move buses.
e Deéelete buses.

Drawing buses:

1. Click onthe Busicon in the toolbar.

2. Buseswork just like wires. The only differenceis that a bus contains
several wires, named viaindices. Click anywhere in the schematic and
drag to the point where you want the bus to end. Clicking on a port or
terminal will connect an end of the bus to that port or terminal. When
connecting buses to pins and terminals of different width, the bus or the
bus pins are connected so their leftmost bits are aligned.

Just like wires, clicking on an empty space in the schematic will anchor
the bus at that point, and double-clicking an empty space in the schematic
will create an end to the bus at that point.

3. Pressthe Esc key to return to Select Mode.

Naming buses:

1. Double-click the bus segment to be named. This opens the Bus Properties
window.

2. Typethe name of the busin the “Segment” field, and select the index
range. By default, buses are 8-bits wide when drawn (see on the

next page).

Goerewal | Pussmrestis | Viess Tests | Conment | Appearnce |

;T

Hel rears ELISHIF O]

Sagrent [571 RE|
SR =l =
[ierlssbon

- 4 | 2

o] oo |

Figure9

Moving and deleting buses are done the same way as with wires. Remember that
Active-HDL uses the standard Window user-interface to select, move, copy, and
delete items in the schematic.

For this assignment, you only need to know how to extract members of buses
from the input terminal's using naming connections and connect wires to multi-bit
output terminals via naming connections as well. However, you can learn how to
use wiretaps, and extract slices from buses by doing the optional portion of this
assignment and reading the online documentation under “Help” in the menu bar.

Simulate the design using a test fixture

Y our design should now look like[Figure 6] Now you are ready to test your design. In the
“Test Fixtures’ section of this tutorial, you learned how to place ablock symbol for a
design into a new schematic along with a block symbol for atest fixture and how to edit
block symbols. Save, run the check diagram tool, debug (if necessary), and compile your
4-bit adder/subtractor design and follow the steps described in the “ Test Fixtures’ section
to connect the block symbol of this design to the 4-bit adder/subtractor test fixturein a
new schematic. Remember to follow the naming convention. The remaining steps will
guide you through running a simulation with your test fixture as well as adding multi-bit
signalsto awaveform.

1. Once you have finished connecting the test fixture block symbol to your design’s
block symbol, save, run the check diagram tool, and compile the new schematic.

Y our schematic should look like|Figure 10

FRdaEma P b [=Fkii]

ST — O @

Adedak| Adaiib

Figure 10
-9-

Set this schematic as the top-level, and initialize a ssmulation.

Close any open waveforms and open a new waveform by clicking the New

Waveform icon in the toolbar.

4. With the “ Structures’ tab active in the Design Browser, expand the list of files
under your new schematic file in the top window of the Design Browser.

5. Selecting the name of your design or the test fixture will show the corresponding
symbol’ s signalsin the lower window of the Design Browser. Multi-bit signals
are preceded by a plus symbol.

6. Use the same methods you used in Tutoria #1 to add the inputs and outputs from

the 4-bit adder/subtractor component. Notice that if you add a multi-bit signal all

of its bits will be added to the waveform, or you can add specific bits by
expanding the multi-bit signal’s list and add only the desired bit. Y our waveform

should look something like Figure 11]

Wn

& Aciom DL 51 |ssw_pessc| - o sssles [dis 1 °

Fie Gl Semgh Yo Do Jandsen gl [ee edes Hep oemem
Desagn | i E-oHl as EVNOEYUR O LSS me - M s Talnae
[N bt sl = e [= M TR - LR - O Mok &k W
5 s bit_sekivek._jre | fou] it
(B TS JSTE A i v = [
] s '
@ i visraad

I s s bmps 1R
[rpirn bypr

= AET1TH
= LTI

Sl R 111 11T
i) Fins WFStac . . fan 8 odeagn ELE s - R fly mpad_ O i Dl s Okl s Kurhi 8 3 smin
Figure 1l

7. Run the simulation for 100 ns. Notice how the waveform shows the decimal
values as well as the bit values for the individual signals (not shown). Y ou could
verify the correctness or incorrectness of your design using the waveform, but this
would be confusing and easy to miss any inconsistencies. To make verifying your
design easier, the test fixture prints the results of the ssmulation in the Console
and to afile. You may need to scroll up or down to see the results of each case
tested in the Console, or go to your design folder and open the text file shown in
which islocated in the “ Test Fixtures’ section of thistutorial. Using the
outputs and the waveform, verify the correctness of your design. Test fixtures
typically only print errors.

Save the waveform using the naming convention <design name>_wv.

End the simulation, and close the waveform. Y ou are now finished with the
mandatory portion of the assignment. Y ou may continue to the optional portion
below (recommended), or go to the Concluding Remarks section on the last page.

© ©

-10-

Design a 32-bit adder/subtractor component (Optional)

In this portion of the tutorial, you will design a 32-bit adder/subtractor using a full adder.
Designing this like we just designed the 4-bit unit would be tedious, painful and error-
prone, even taking advantage of cut-and-paste techniques. Active-HDL, however,
provides the ability to create arrays of components, which will help to make easy to read
designs even when these designs consist of many components. shows the final
schematic for the thirty-two-bit adder/subtractor component.

o3

-

e L PO T
1A —

AL 0NE— A f ol zapEry
SR RN = o] -om_ e S 5310
{:’5" I CO[ENOpAddEug |
AoddSulb 2 i
i
Figure 12

1. Using the Block Diagram Wizard, create a new block diagram schematic with two

32-bit inputs named “A” and “B”, one 1-bit input named “AddSub”, one 32-bit

output named “S’, and one 1-bit output named “Over”.

Place your full adder component into the newly created schematic.

Right click the full adder, and select “Properties’. Thiswill open the Symbol

Properties window.

4. Under the heading “ Sourcefile”, select the “ Create an array of (#) instances’, and
enter 32 in thisfield. (See[Figure 13)

Symhbol Fropestiez EHE

W

Geraal | P List | Parmmetnes | Viess Tooks | Conmnnt |

Sumbal
Skl narme Tull_axichet
| nsisnos name
Libiane nEwy_ s
Sap ot ik

¥ Craste avapof [E8 2 irntances

[ok | Coxel |

Figure 13

5. Under the “View Texts’ tab in Figure 12, check the box next to the “ Array Value’
option. Then click the OK button.

6. Place aninverter and a 2:1 multiplexer from the standard class library into the
schematic and repeat the above steps to create arrays of 32 for each component.

7. Use busesto connect the arrays of components to each other. When connecting
the inverter to the multiplexer and the multiplexer to the full adder, you will need

-11-

to name the buses and set their width to 32. Remember, buses by default are 8-bits
and need to be named in order to adjust their width. (Refer back to[Figure 12)

8. Thebusthat connectsto the carry-in of the full adder is called adlice. Double-
click the busto bring up the Bus Properties window. In the segment field, enter
the dlices of the buses and/or wires separated by a comma with no spaces.

Buz Properties
General | Wiews Tests I Comment I Appearance I
Bus
Met name: CO[30:0) AddSub
Segment: IED[SD:D]ﬁddS ubi ’ | ,l
|ndex range; I ::II j
Declaration
|ndex range; I j j
Tupe narme: I wire j
Delay: I
] I Cancel |

Figure 14

9. Usewiresto connect the xor gate to the proper carryout bits, and to connect the
AddSub signal to the multiplexer.

10. Save the schematic, run the check diagram tool, and compile the schematic.

11. Using the steps outlined in this tutorial, place a block symbol for the 32-bit
adder/subtractor component into a new schematic. For this part of the tutorial, we
will provide you with a“real” test fixture. This test fixture will test 100 random
cases and print the results. The printed results simply show whether the
component passed or not. If not, it will print the number of errors.

12. Navigate to the class folder and locate the optional test fixture. Add it to the
project, place the block symbol for thistest fixture into the schematic, connect the
two components together, and run asimulation as you did for the full adder and 4-
bit adder/subtractor components. Why is this not a good test fixture?

Concluding Remarks

Y ou should now understand bottom-up designing and hierarchy. If you took the time to
do the optional portion of thistutorial (we highly recommend you do), then you also
know how to make easy to read schematic designs even when the design contains many
components. Continue to experiment with Active-HDL, and begin to read and try to
understand the Verilog code we provided you with for this tutorial.

-12 -

	Introduction to Active-HDL
	
	Tutorial #2 – Hierarchy, Busses and Test Fixtures

	Start Active-HDL
	Test Fixtures
	Block Symbols:
	Design a 4-bit adder/subtractor component
	Using Buses

	Simulate the design using a test fixture

