Logic analyzers and testing

- Logic analyzers
- Testing: The big picture
- Debugging

3 tools for testing

- 1. The oscilloscope
 - Shows electrical details
 - Benefits: Wideband, accurate
 - Disadvantages: < 4 inputs; triggering

- 2. The logic analyzer
 - Shows thresholded data
 - Benefits: Many channels, trigger on patterns
 - Disadvantages: Idealized waveforms, insufficient access

- 3. Embedded test
 - For design in built-in test features
 - Benefits: Only way to test large chips
 - Disadvantages: Uses chip area, incomplete scan, difficult design

Logic analyzers

- Instruments for acquiring digital data
 - Wide data “bus”
 - Memory stores bus data
 - Smart triggering decides what data to store
 - Embedded computer processes the data

- We use the Tektronix TLA714-716
 - 132 channels
 - 32k memory per channel
 - 100MHz state
 - 2GSaPS sampling
 - Win2k interface

Logic analyzer physical model

- A mainframe
 - Housing, bus, controller, UI
- Plug-in modules
 - Modules acquire data
 - Ours TLAs have 4 TL1 modules
 - 32k memory depth
 - 100MHz state
 - 32 data and 2 clock each
- Probe pods
 - Pods are wire bundles
 - Probes attach to your circuit
 - We have P6417 probes

Probe pods

Logic analyzer conceptual model

- All parameters are adjustable
 - Threshold voltage
 - Clock rate
 - Trigger conditions
 - Memory depth
Clocking a logic analyzer
- Samples data every clock cycle
- External/synchronous clocking
 - You supply the clock
 - Use when you need to see long data records
 - Analyzer stores one sample per clock period
- Internal/asynchronous clocking
 - Analyzer supplies the clock
 - 4ns to 50ms
 - Use when you need to see precise timing
 - Find glitches

Triggering and acquisition
- Derive trigger from sampled data
 - Data values
 - Data ranges
 - Signals from another module
 - Internal counters
- Data acquisition in continuous
 - Memory is a circular buffer
 - New samples continually overwrite oldest samples
 - Trigger tells the acquisition to stop
- Triggers can qualify acquisition
 - Store only selected data

Modules are semi-autonomous
- Each module has its own setup
 - Its own clock
 - Its own trigger
 - Acquires and stores its own data
- Modules communicate via their trigger programs
 - Can trigger all modules
 - Or have one module arm another
- All data is time correlated
 - Regardless of the module

System window
- Top-level in hierarchy
 - Open other windows
 - Module
 - Data
 - Create new data, listing, and waveform windows
 - Shows which modules are associated with a data window
 - Enable/disable modules
 - Save and load files
- *Note: We don’t have DSO modules

Module setup window
- Each module has its own setup and trigger windows
 - Set up each module independently
- Set all parameters
 - Assign channels to groups
 - Thresholds
 - Clock rate
 - Comparisons
- Configure setup before trigger
 - Trigger settings depend on the module settings

Module trigger window
- Triggering is the key feature of a logic analyzer
 - Tells the analyzer how to find the data that you want
 - Trigger off a data pattern
 - Trigger off a data sequence
 - Multiple states
 - Multiple clauses per state
- Analyzer has a trigger library!
- Logic analyzers are designed for non-repetitive data
 - Unlike an oscilloscope
Data windows

- Many types
 - Listing window
 - Waveform window
 - Histogram window
 - Source-data window
- Features common to all
 - Cursors
 - Flags
 - Scroll
 - Search

Capturing glitches

- Trigger on the glitch
 - Triggering looks for multiple transitions in a clock cycle
 - Captures dynamic hazards
- Can also trigger on setup and hold violations

Other features: Activity indicator

- How do you know if a pod is active?
 - Hooked up properly?
 - Seeing data?

Other features: Programmability

- Symbols
 - You define in a LUT
 - Analyzer assigns symbols to data patterns
- User programs
 - e.g. export to file and continue

Other features: µP support

- Analyzer disassembles data to µP mnemonics
- Requires special module podsets

Testing: The big picture

- The difference between internal and external BW has driven test technology
 1. External test
 2. Embedded scan path
 3. High-BW embedded
 4. Embedded source
 5. ???

External BW \(n \times (\# \text{ of IO}) \times (\text{external clock rate}) \)
Internal BW \(\frac{n \times (\# \text{ of transistors})}{(\text{internal clock rate})} \)

From IEEE Spectrum, 7/99, pgs. 55-57
Semiconductor scaling confounds testing

- Testing is a key obstacle to future advancement in digital technology
- Need to ensure logic functionality
 - Despite ever-more-limited access to internal logic
- Testing at the board, subsystem, and system level becomes ever harder

From IEEE Spectrum, 7/99, p. 55

System-on-a-chip testing

- IEEE P1500 standard
 - For embedded core test
 - In development
- Standardized core test language
- Standardized core test wrapper
 - Configurable
 - Scalable

From IEEE Spectrum, 7/99, p. 59

Debugging

- It doesn’t work, now what?