What is Sound?

As the tines move back and forth they exert pressure on the air around them.

(a) The first displacement of the tine compresses the air molecules causing high
pressure.

(b) Equal displacement of the tine in the opposite direction forces the molecules to
widely disperse themselves and so, causes low pressure.

(c) These rapid variations in pressure over time form a pattern which propogates
itself through the air as a wave. Points of high and low pressure are sometimes
reffered to as "compression’ and ’rarefaction’ respectively.

(a) compression (b) rarefaction (¢) wave propegation of a tuning fork
seen from above

Simple Harmonic Motion -- a Pendulum

=When a pendulum approaches equlibrium it doesn’t slow down;
it simply travels a smaller distance from the point of rest.
=Any body undergoing simple harmonic motion moves periodically
with uniform speed.
=If the tuning fork is moving periodically
then the pressure variations it creates will also be periodic.

The time taken to get from position a to b in all three cases is the same

a b a b a b

i
\
| |

Maximum di cel
at 0 seconds after say, 3 seconds after say, 6 seconds

Maximum aceme Maximum

The Unit Circle

These pressure patterns can be represented using as a circle.
Imagine the journey of the pendulum or the tine in four stages:
from its point of rest to its first point of maximum displacement...

2) its first point of maximum displacement back through the point of rest...

3) ... to its second point of maximum displacement...

4) ... and back from there through its point of rest again
We can map that journey to a circle. This is called the Unit Circle. The sine wave
represents this journey around and around the unit circle over time.

P

Time

Sine Waves

The sine wave or sinusoid or sinusoidal signal is probably the most commonly
used graphic representation of sound waves. The diagram below shows one cycle
or period’ of a wave, i.e., the build-up from equilibrium to maximum high
pressure, to maximum low pressure, to equilibrium again.

high pressure
or "compression”

+1
low pressure
or ‘rarefaction
Pressure or density 0.5 1
of air 0
*Amplitude’ in
deciBels

—

Time in seconds

Sine Waves
The specific properties of a sine wave are described as follows.

= the number of cycles per second (this wave has a frequency of 6 hertz)
= variations in air pressure (measured in decibels)
= physical length of 1 period of a wave (measured in metres per second)

= The starting point of a wave along the y-axis (measured in degrees)

1 second

Frequency

Frequency refers to the number of cycles of a wave per second. This is measured
in Hertz. So if a sinusoid has a frequency of 100hz then one period of that
wave repeats itself every 1/100" of a second. Humans can hear frequencies
between 20hz and 20,000hz (20Khz).

1) Frequency is closely related to, but not the same as!!!, pitch.

2) Frequency does not determine the speed a wave travels at. Sound waves travel
at approximately 340metres/second regardless of frequency.

3) Frequency is inherent to, and determined by the vibrating body — not the
amount of energy used to set that body vibrating. For example, the tuning
fork emits the same frequency regardless of how hard we strike it.

N \

(2)800hz [+

(b) 100hz

i
f
i
i
i
i
i

Amplitude

Amplitude describes the size of the pressure variations. It is measured along the
vertical y-axis. Amplitude is closely related to but not the same as!!!, loudness.

(a) Two signals of equal frequency and (b) Two signals of varying frequency and
varying amplitude equal amplitude

Amplitude Envelope

The amplitude of a wave changes or "decays’ over time as it loses energy.

These changes are normally broken down into four stages;
Attack , Decay, Sustain and Release.

Collectively, the four stages are described as the amplitude envelope.

4 Attack ‘Dccuy‘ Sustain ‘ Release ‘

08 i

06 AN
\

W

I —— ==
L T
7 T~

q T T N
|
|

Introduction to
Sampling

What is SAMPLING?

eProcess by which an
analog signal is measured
in order to convert the
analog signal to digital.

Sampling

¢ VValue of the analog
signal is read at
evenly spaced time
intervals.

e Sample rate
(frequency) is
measured in kilohertz.

e 1 kHz=1,000 cps.
¢ (Cycles per second).

Time

Sampling

? i
11 i
f I
0
0.8
an
A a 5 10 15 0 25 ao a5 40 45 50

Quantization

The
digital '
signal is
defined
only at

R i
the T M

points at e
which it
is)

sampled.

Quantization

The height of each
vertical bar can \

take on only

certain values,

shown by o
horizontal dashed 0t

lines, which are

sometimes higher

Sanple Height
—;

and sometimes F ¢
lower than the 0z l

original signal,

indicated by the

dashed curve. 28

Quantization

If the
graphic has !
11 —
quantization -
levels, how .
many bits

are needed ;i il T\‘l T

to encode
each a4
sample?

Quantization

e 4 bits... why?

e 1 bit would allow up to 2 levels

e 2 bits would allow up to 4 levels
e 3 bits would allow up to 8 levels
e 4 bits would allow up to 16 levels

Quantization

2 The difference between a quantized
representation and an original analog
signal is called the quantization noise.

2 The more bits for quantization of a
signal, the more closely the original
signal is reproduced.

Quantization

2 Using higher sampling frequency and
more bits for quantization will produce
better quality digital audio.

= But for the same length of audio, the

file size will be much larger than the low

quality signal.

Quantization

e The number of bits available to
describe sampling values determines
the resolution or accuracy of
quantization.

e For example, if you have 8-bit analog
to digital converters, the varying
analog voltage must be quantized to
1 of 256 discrete values;

e a 16-bit converter has 65,536
values.

Nyquist Theorem

e A theorem, developed by
Harry Nyquist, which states
that an analog signal
waveform may be uniquely
reconstructed, without error,
from samples taken at equal
time intervals.

Nyquist Theorem

eThe sampling rate must
be equal to, or greater
than, twice the highest
frequency component in
the analog signal.

Nyquist Theorem

eStated differently:

eThe highest frequency
which can be accurately
represented is one-half of
the sampling rate.

Error

e Sampling an analog signal can
introduce ERROR.

e ERROR is the difference between a
computed, estimated, or measured
value and the true, specified, or
theoretically correct value.

Nyquist Theorem

e By sampling at TWICE the highest
frequency:
-One number can describe the
positive transition, and...
-One number can describe the
negative transition of a single
cycle.

Nyquist Theorem

The vertical lines are sample intervals,
and the white dots are the crossing
points - the actual samples taken by
the conversion process.

AN A

e

Nyquist Theorem

This under-sampling results in aliasing
which shows up as noise in digitized
sound.

To correct the aliasing, A/D converters
use lowpass filters to remove all
signals above the Nyquist frequency.

To eliminate aliasing and to get high-
fidelity sound, use a high sample rate.

Nyquist Theorem

The sampling rate was below the
Nyquist frequency, so the
reconstructed waveform does not
accurately reproduce the original:

upper => sampling 6 times per cycle(fs=6f);
middle => sampling 3 times per cycle(fs=3f);

lower=> sampling 6 times in 5 cycles, from[1]

ANVANYANNANYA"
AR RS

AP
“’vf?vff‘z v

Audio Synthesis
Basics

Analog Synthesis
Intro to Digital Oscillators

Analog Synthesis Overview

» Sound is created by controlling electrical current
within synthesizer, and amplifying result.
» Basic components:
— Oscillators
— Filters
— Envelope generators
— Noise generators
» Voltage control

Oscillators

 Creates periodic fluctuations in current,
usually with selectable waveform.

« Different waveforms have different
harmonic content, or frequency spectra.

Filters

 Given an input signal, attenuate or boost a
frequency range to produce an output
signal

» Basic Types:

—Low pass

—High pass

— Band pass

— Band reject (notch)

Envelope Generators

» Generate a control function that can be
applied to various synthesis parameters,
including amplitude, pitch, and filter
controls.

Noise Generators

» Generate a random, or semi-random
fluctuation in current that produces a
signal with all frequencies present.

Digital Synthesis Overview

» Sound is created by manipulating numbers,
converting those numbers to an electrical
current, and amplifying result.

» Numerical manipulations are the same whether
they are done with software or hardware.

» Same capabilities (components) as analog
synthesis, plus significant new abilities

Digital Oscillators

e Everything is a Table

- A table is an indexed list of elements
(or values)

—-The index is the address used to find a
value

Generate a Sine Tone
Digitally (1)

e Compute the sine in real time, every time it is needed.
- equation:

signal(t) = rsin(ar)

- t = apointintime; r = the radius, or amplitude of the signal;
w (omega) = 2pi*f the frequency

- Advantages: It's the perfect sine tone. Every value that you
need will be the exact value from the unit circle.

- Disadvantages: must generate every sample of every oscillator
present in a synthesis patch from an algorithm. This is very
expensive computationally, and most of the calculation is
redundant.

Generate a Sine Tone
Digitally (2)

e Compute the sine tone once, store it in a
table, and have all oscillators look in the
table for needed values.

- Advantages: Much more efficient, hence faster,
for the computer. You are not, literally, re-
inventing the wheel every time.

- Disadvantages: Table values are discrete
points in time. Most times you will need a
value that falls somewhere in between two
already computed values.

Table Lookup Synthesis

e Sound waves are very repetitive.

e For an oscillator, compute and store
one cycle (period) of a waveform.

e Read through the wavetable

repeatedly to generate a periodic
sound.

Changing Frequency

The Sample Rate doesn’t change within a
synthesis algorithm.

e You can change the speed that the table is
scanned by skipping samples.

e skip size is the increment, better known as the
phase increment.

***phase increment is a very important
concept***

Algorithm for a Digital
Oscillator

¢ Basic, two-step program:

— phase_index = mod; (previous_phase + increment)

— output = amplitude X wavetable[phase_index]

e increment = (TableLength X DesiredFrequency)

SampleRate

If You're Wrong, it's Noise

e What happens when the phase increment
doesn’t land exactly at an index location in
the table?

- It simply looks at the last index location
passed for a value.
In other words, the phase increment is
truncated to the integer.

e Quantization
e Noise
e The greater the error, the more the noise.

Interpolation
e Rather than truncate the phase location...

- look at the values stored before and after the calculated
phase location

- calculate what the value would have been at the
calculated phase location if it had been generated and
stored.

Interpolate

e More calculations, but a much cleaner signal.

Linear interpolation

e Interpolate between two audio

samples
double inbetween = fmod(sample, 1);
return (1. — inbetween) * wave[int(sample)] +

inbetween * wave[int(sample) + 1];

e More accurate, yet still efficient

1021 1021.35 1022

Envelopes

e We commonly will make samples
with fixed amplitudes, then make a
synthetic envelope for the sound
event.

Attack and Release

Amplitude

Attack . Release
Time

ADSR

e ADSR: Attack, decay, sustain,
relea

Amplitude

Sustain level

" Attack Decay Sustain Release

PWM: Pulse Width
Modulation

JAN A
VT VN

I

e Signal is coﬁwpared to a sawtooth
wave producing a pulse width
proportional to amplitude

What Can Be Done With

PWM?
on-rgh o tow ot

Low F R
DutyCycle |b }'—‘7 ‘ ‘
Medium 4‘& 1 D
Duty Cycle — LI L
High J """""
Duty Cycle _ _ =

e Question: What happens if voltages like the
ones above are connected to an LED?

e Answer: The longer the duty cycle, the longer
the LED is on and the brighter the light.

What Can Be Done With
PWM?

Typical Air Flow va Duty Cycls
Pinil Gokencid Vabre Cantral

o
a

w

N
o

Al Flzw) 5t 4.5 peig
o

40 &0
Ferent Duty at 80 Hz.
° Averagc PUWEI Lall UT LUl vlicu

e Average flows can also be controlled by
fully opening and closing a valve with
some duty cycle

PULSE WIDTH
MODULATION

e Pulse Width Modulation (PWM)
involves the generation of a series of
pulses at a fixed period and
frequency.

e The duty cycle defines the width of
each pulse which is varied to
generate waveforms.

PULSE WIDTH
MODULATION

e A simple low pass filter is then used
to generate an output voltage
directly proportional to the average
time spent in the HIGH state.

e (i.e., 50% duty cycle is equal to 2.5
volts when VDD =5.0V).

RC low pass filter
(integrator)

Choosing the -3 dB point at
4 kHz, and using the

PWM1
Relation: OCRI Analog
out
RC = 1/(2 - pi f) /
we get R=4k, if Cis
chosen as 0.01 mF: VoUT
R=4.0k

fSIGNAL frwm
C=0.01 mF FREQUENCY

OPB Audio Controller

e The opb_audio_controller unit is used to
communicate with the audio boards mounted
on the AFX BG560 boards. The chip requires
that all communications with it be in a serial
format.

e This controller allows you to have memory
mapped I/0 to the component so that you can
build software to communicate with the audio
chip.

= Block Diagram

A Audio
w e I
RN — ADC [HPE

T LRCK

Bicic BICK

ROUT! <

3

DAC

o
2
El

DAUX

LouT2 < DAC

o
<]
5

Fomat
Converer
)AC
soouT] #\.77 sos
c
soro

ROUT2 <

g

LouT3 <

51 6] 5]
] [&] [¢]
HEEIRE
EIREIRE]

g

SDINY
SDIN2

ROUTS <

g

A

SDING O1i3

SDING s

<]
5
]

LouTs <

I
H

DAC

ROUT4 41— LPF [# DAC

5
E
El

AK4529

LRCK

BICK(B4fs) |

SDTO() _|

SDTI()

AK4529 Serial Timing

3 2 0 3

:23 2] 1[0 pontcare

2] 1] 0] Dontcare

23:MSB, 0:.LSB
-

Leh Data —br

Reh Data —>

Audio Controller Register
Map

BASEADDR + 0x00 | Control register R/W
BASEADDR + 0x04 |Input Left channel R
BASEADDR + 0x08 |Input Right channel R
BASEADDR + 0x0C |Outputl Left channel R/W
BASEADDR + 0x10 |Outputl Right channel R/W

¢ All registers are 32 bits wide,
however, only the lower order 24 bits
are used in the input and output
registers. They are signed 24-bit
values, however they are sign
extended to 32-bits when you read
them.

Audio Controller Register

Map

BASEADDR + 0x00 | Control register R/W
BASEADDR + 0x04 |Input Left channel R
BASEADDR + 0x08 |Input Right channel R
BASEADDR + 0x0C |Outputl Left channel R/W
BASEADDR + 0x10 |Outputl Right channel R/W

e There are only 2 flags in the control register. The

lowest order bit (0x00000001) is the enable bit and
enables the codec. It is tied to the PDN pin. The next
bit (0x00000002) is the interrupt enable. When this

is high, an interrupt is generated every time the
codec is ready for a new sample. The interrupt is

cleared by writing or reading from any register in the

codec.

OPB Audio Controller

e The codec requires several different clocks so
this component contains a DLL to generate
these clock signals.

e All other component's clock inputs to use an

internal net that is connected to the SYS_CLK

output of the opb_audio_controller.

Connect the XTAL_CLK input of the

opb_audio_controller to the off-chip crystal

clock source (probably an external net that
gets connected to AL17).

*

Lab- Interrupt routine

void audio_interrupt_handler(void *InstancePtr)
{

/
* TODO: calculate the next sample and give it to the audio controller.
*

* Note that this interrupt will happen every 23 microseconds, or
* at 43.4kHz (the sample rate of the codec)
s

/* this currently makes a triangle wave */
if(curr_value == HIGH_VALUE) climbing = 0;
if(curr_value == LOW_VALUE) climbing = 1;

if(climi

i

else

i

bing)

curr_value++;

curr_value--;

XAudio_mWriteOutput(XPAR_AUDIO_BASEADDR, LEFT, 0, curr_value << SHIFT_AMOUNT);

10

Lab- Main

int main()
/* TODO: initialization code should go here */

curr_value
climbing = 1;

/* register for the interrupts */
XIntc_InterruptVectorTable[0].Handler = audlo nterrupt | handler;
XIntc_InterruptVectorTable[0].CallBackRef =

XIntc_mEnableIntr(XPAR_INTC_SINGLE | BASEADDR XPAR_AUDIO_INTERRUPT_MASK);
XIntc_mMasterEnable(XPAR_INTC_SINGLE_BASEADDR);

/* globally enable the interrupts on the microblaze */
microblaze_enable_interrupts();

/* enable the audio codec and make it interrupt me every time it wants new data */
Xaudio msetControlReg(XPAR_ALIDIO_BASEADDR, AUDIO_CR_INT_ENABLE_MaSK
AUDIO_CR_ENABLE.
for(;;)
/* do nothing, just let the interrupts handle the rest of the work */

return 0; /* never reached */

Tidbits

The sample rate of the codec is 43.4kHz. Use a table length of 256
entries.

The Microblaze has no floating point operations. If you use floatin
point, the compiler will emulate it, however, it will be extremely slow,
so0 you should not use floating pomt

The Microblaze does not have a hardware multiplier, so multiplies are
done in software. As a result, they are very slow. You probably have
about enough time between samples to do about 2 multiplies, maybe

Don't even think about doing a divide by a number other than a
power of 2 (bit shift).
The audio codec takes 24-bit signed numbers, centered at 0. This
means that:
- The highest value it can receive is 2223 - 1, or 8388607, or 0x007FFFFF.
- The lowest value it can receive is -(2°23) or -8388608, or 0xFF800000.

11

