CMOS Fabrication Process and MOSIS SCMOS Mask Layers
CMOS Inverter
P-Type Substrate and N-Well

- N-well
 - PMOS devices go here
- P-type substrate
 - NMOS devices go here
- N-well mask
Active Area

deposited nitride layer

active mask defines p-type and n-type mosfet locations (drain-gate-source)
Field Oxide Growth

- Thick field oxide electrically isolates transistors
- Nitride prevents field oxide growth
- Thin gate oxide grown after nitride removed

- SiO$_2$ formation consumes Si
- Si-SiO$_2$ interface below original Si surface
Polysilicon Gate

poly mask added to layout
P-Select Mask and N-Type Source/Drain Implant

- p-select covers p-type source/drain regions
- select mask must overlap active areas
- n-type ion implant creates n-type source/drain regions
- high temperature anneal repairs silicon lattice and causes diffusion of implanted ions
N-Select Mask and P-Type Source/Drain Implant

p-type implant finished mosfets both select masks added
Contact Cuts
Metal 1

non-planar surface
Via 1 and Metal 2

- Multilevel interconnect fabrication processes planarize between layers (expensive)
- MOSIS SCMOS does not allow stacked vias