1/0 Blocks (I0OBs)

#@ﬁ?@@%@@@%@@@@
S e

B e R A T e S
B e R A T e S
e R
e RN
T T
T S T

T St i R
ShmEREBEEE R

/N

CLB

\ /
o ° o 2% d
: g
<
o " pe T
4
o

Programmable
Interconnect

Applications of FPGAs

Implementation of random logic
= easier changes at system-level (one device is modified)
= can eliminate need for full-custom chips
Prototyping
= ensemble of gate arrays used to emulate a circuit to be manufactured
= get more/better/faster debugging done than possible with simulation
Reconfigurable hardware
= one hardware block used to implement more than one function
= functions must be mutually-exclusive in time
= can greatly reduce cost while enhancing flexibility
= RAM-based only option
Special-purpose computation engines
= hardware dedicated to solving one problem (or class of problems)
= accelerators attached to general-purpose computers

Evolution of implementation technologies

= Logic gates (1950s-60s) trend toward
= Regular structures for two-level logic (1960s-70s) higher levels

= muxes and decoders, PLAs of integration
= Programmable sum-of-products arrays (1970s-80s)

= PLDs, complex PLDs
= Programmable gate arrays (1980s-90s)

= densities high enough to permit entirely new
class of application, e.g., prototyping, emulation
acceleration

Gate Array Technology (IBM - 1970s)

= Simple logic gates \

= combine transistors to T . -

implement combinational

and sequential logic

= Interconnect —_ --- ---

= wires to connect inputs and

outputs to logic blocks

s |/O blocks

= special blocks at periphery

for external connections

= Add wires to make connections
= done when chip is fabbed
= ‘mask-programmable’
= construct any circuit

Field-Programmable Gate Arrays

= Logic blocks

= to implement combinational

and sequential logic

= Interconnect

= wires to connect inputs and

outputs to logic block

s |/O blocks

= special logic blocks at periphery

of device for external connections

= Key questions:
= how to make logic blocks programmable?
= how to connect the wires?
= after the chip has been fabbed

Enabling Technology

= Cheap/fast fuse connections
= small area (can fit lots of them)
= low resistance wires (fast even if in multiple segments)
= very high resistance when not connected
= small capacitance (wires can be longer)
= Pass transistors (switches)
= used to connect wires
= bi-directional
= Multiplexors
= used to connect one of a set of possible sources to input
= can be used to implement logic functions

Programming Technologies

= Fuse and anti-fuse
= fuse makes or breaks link between two wires
= typical connections are 50-300 ohm
= one-time programmable (testing before programming?)
= EPROM and EEPROM
= high power consumption
= typical connections are 2K-4K ohm
= fairly low density
= RAM-based
= memory bit controls a switch that connects/disconnects two wires
= typical connections are .5K-1K ohm
= can be programmed and re-programmed easily (tested at factory)

Tradeoffs in FPGASs

= Logic block - how are functions implemented: fixed functions
(manipulate inputs) or programmable?

support complex functions, need fewer blocks, but they are bigger
so less of them on chip

support simple functions, need more blocks, but they are smaller so
more of them on chip

= Interconnect

how are logic blocks arranged?
how many wires will be needed between them?
are wires evenly distributed across chip?

programmability slows wires down — are some wires specialized to
long distances?

how many inputs/outputs must be routed to/from each logic block?
what utilization are we willing to accept? 50%7? 20%7? 90%?

= CLB - Configurable Logic Block
= 5-input, 1 output function
= or 2 4-input, 1 output functions
= optional register on outputs
= Built-in fast carry logic
= Can be used as memory

= Three types of routing -

= direct
= general-purpose

= long lines of various lengths —

= RAM-programmable
= can be reconfigured

10B

T

10

T T

10B

T

10
T

Xilinx Programmable Gate Arrays

CLB

#

CLB

-« Wiring Channels—p=

CLB

The Xilinx 4000 CLB

T ' T
o T 7

Hq ypiH3 SF/HQ EC
Gy — | SR Bypass
’ CONTROL |-
Gy — LOGIC ﬁ v ¥o
FUNCTION . o o a
oF i

Gy —] G1-Gd [:_}f ‘:
—~ [
b= T/

LoGIC ! \\I e

L rLINg;lom "__\';1 |_afj RD
ra U JH/J 1 s
AND ¥
H1
Fa — =R Eypass
[, CONTROL
Fs — Looic o s *a
FUNCTION L. I\ . D a
oF
—H
Fz — F1-F4 L'_.f !
Fq — !
EC
« RD
[CLOCK) 1 S
o
i x

Multiplexer Controlled
by Configuralion Pragram
KBRS

Figure 1: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown)

Two 4-

Figure 1:

input functions, registered output

3

I th | L

Hq O pgiHz SFHQ EC
Gy —] | T BiR Eypass
’ CONTROL |
'33 — LOEc ﬁ a0 v
FUNCTICN o " o Q
OF —

Gy —] ey Ret [:_}f ‘:
- [
b= T/

LoGIC ! \\I e

L] runcTion P |_afj RD
FGE H' (i ' I K]
AND .
H1
Fq — - B
BiR VpAES
CONTROL |
[N (o}
Fy — LOGIC I =0
FUNCTION [™)

E o o
oF
) .
e Q |
Fy — !
EC

. RD
[CLOCK] 1 S

o

" %

Multiplexer Controlled
by Configuralion Pragram

Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown)

HEEGE

5-input function, combinational output

i~ d i e
SR — | 1T
Hq DypiHz SR/Hp EC
Gy — | 3R Bypass
3 COMTROL |
GS — LG E.IN %0 ¥
FUNCTION . . & a
oF I
Gy — GGl E_}f ‘:
— [
by /1
]
LOGIC \I -
| rLINg;lom "__lb |_f'] RD
S) I 1 —
AND ¥
H1
Fa — R Eiypass
[, CONTROL |
Fs — Looic E.”" e X0
FUNCTION L . ¥ 0
oF .
Fo — FiF4 "_:1_.«‘ |
Fy — !
EC
. RD
[CLOCK) 1 S
"
P X

Multiplexer Controlled
ty Configuralion Pragram
KBRS

Figure 1: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown)

CLB Used as RAM

SN SR SR S
WE o, Op EC
. DN [,
WRITE 16-LATCH
DECODER ARRAAY ALK,
- 8w 4] 4
Gy =2 v Gy 7 7 1o 16
LATCH
EMABLE
-| } Iy READ
iy
* - WRITE PLILSE ADDRESS
L] |
— Dy [
WRITE 16-LATCH
DECODER ARAAY ML
FqsssF 4 14
1 4 7 7 10f 18
LATCH
EMABLE
]—-—I READ
WRITE PULSE ADDRESS

K I\
[CLOCK) ‘)

Figure 4: 16x2 (or 16x1) Edge-Triggered Single-Port RAM

Fast Carry Logic
imﬁ ~
sl A

/A

Xilinx 4000 Interconnect

CLB CLB CLB
s L | Doubles
:g PSM PSM E Singles
T ! X] Doubles
CLB CLB CLB
| L >< """ ":_
————F psMm | i psm S
CLB CLB CLB

XE601

Figure 28: Single- and Double-Length Lines, with
Programmable Switch Matrices (PSMs)

Double

Singles <

Double

Figure 26:

Switch Matrix

"‘\a &
‘SO N \\0}
Q

~ -y
L
-
o e e il s ol L R T I -
-
-
I s
~
"
.

Six Pass Transistors

Per Switch Matrix

Interconnect Point

X6600
Programmable Switch Matrix (PSM)

Xilinx 4000 Interconnect Detalls

|

y

1

3

CLB =
L 25
_h / iy
i 1
b O N—— O <y @ O —~
%% 9 T % % A
e g S % Y

< DOUBLE

SINGLE

DOUBLE

LONG

DIRECT

}FEEDBACK

LONG

Passive
| | e
_ FPull-Down

|
Y
/

]

| ""ﬂ -
| _>G_H ‘ Flip-Flop
| D Q
Out i . - Output
CE Buffer
el ™ \
Output :
Clock ! :;“
| : i
L E—
: .y Flip- Input |
:] Flop/ Buffer
| Latch
log —— _l
| - Q D
|
|
|
Clock !
Enable | *—CE <
|
e
Input _;
|

Clock

_—— e e e e e e e e — — — —— — — — —— — — — — — — — — —— — — — —— — — — —— — — —

Fad

Xilinx FPGA Combinational Logic
Examples

= Key: Functions are limited to 5 inputs (4 even better)
= No limitation on function complexity

= Examples:
= 5-input parity generator implemented with 1 CLB

F = (A xor B xor C xor D xor E)’

= 2-bit comparator: AB=C D or AB > C D implemented with 1 CLB

(GT) F =
(EQ) G

I
>

Xilinx FPGA Combinational Logic

= Examples

= n-input majority function: 1 whenever n/2 or more inputs are 1
5-input Majority Circuit

CLB — >

Wyvyy

7-input Majority Circuit

CLB

CLB — >

YYY vy

CLB

| yiy

Xilinx FPGA Combinational Logic

= Examples
= n-input parity function: 5 input = 1 CLB, 2 levels yield up to 25 inputs

9 Input Parity Logic

CLB

YWY YY

v_J

CLB —>>

YYYY

Xilinx FPGA Adder Example

= Example
= 2-bit binary adder - inputs: A1, A0, B1, BO, CIN

3 CLB solution outputs: S0, S1, Cout 2 CLB solution
single CLB delay for Cout of second bit double CLB delay for Cout of second bit

e ‘”_

Cout Cout

Computer-aided Design

Can't design FPGAs by hand

= way too much logic to manage, hard to make changes
Hardware description languages

= specify functionality of logic at a high level
Validation - high-level simulation to catch specification errors

= Vverify pin-outs and connections to other system components

= low-level to verify mapping and check performance
Logic synthesis

= process of compiling HDL program into logic gates and flip-flops
Technology mapping

= map the logic onto elements available in the implementation
technology (LUTs for Xilinx FPGAS)

CAD Tool Path (cont'd)

= Placement and routing
= assign logic blocks to functions
= make wiring connections
= Timing analysis - verify paths
= determine delays as routed
= look at critical paths and ways to improve
= Partitioning and constraining
= if design does not fit or is unroutable as placed split into multiple chips
= if design it too slow prioritize critical paths, fix placement of cells, etc.
= few tools to help with these tasks exist today
= Generate programming files - bits to be loaded into chip for configuration

