
10/29/14	

1	

Debugging

9 Indispensable Rules for Finding
the Most Elusive Software and

Hardware Problems	

David Agans’ Debugging
l A short book on general principles of debugging
l Structured around a set of simple rules that really

are a good idea

2

10/29/14	

2	

Rule #1: “Understand the System”

l “READ THE MANUAL (Datasheet)”

l Debugging something you don’t understand
is pointlessly hard

l Just as with testing, subject knowledge
matters – here you need knowledge of the
source code as well

3

Rule #2: “Make It Fail”

l You can’t debug what you can’t produce
l Find a way to reliably make a system fail

l Record everything, and look for correlation
•  Don’t assume something “can’t” be a cause

4

10/29/14	

3	

l Don’t hypothesize before examining the failure in
detail – examine the evidence, then think

l  Engineers like to think, don’t like to look nearly as
much (instrumentation and running a debugger
both look like work)

l  “If it is doing X, must be Y” – maybe
•  Check

Rule #3: “Quit Thinking and Look”

5

l This rule is the heart of debugging

•  Heart of delta-debugging
•  Narrow down the source of the problem
•  “Does it still fail if this factor is removed?”
•  Use a debugger to check system state at

checkpoints; if everything is ok, you’re before
the problem

6

Rule #4: “Divide and Conquer”

10/29/14	

4	

l A common very bad debugging strategy:
•  “It could be one of X, Y, Z. I’ll change all three,

and run it again.”

l  Isolate factors, because that’s how you get
experiments that tell you something

l  If code worked before last checkin, maybe you
should look at just those changes

Rule #5: “Change One Thing at a Time”

7

Rule #6: “Keep an Audit Trail”

l Don’t rely on your perfect memory to
remember everything you tried

l Don’t assume only you will ever work on
this problem

Dear
debugging
diary…

8

10/29/14	

5	

Rule #7: “Check the Plug”

l Question assumptions
l Don’t always trust the debugger
l Don’t trust your tests

9

Rule #8: “Get a Fresh View”

l It’s ok to ask for help
l Experts can be useful

l Explain what happens, not what you think is
going on

1
0

10/29/14	

6	

Rule #9: “If You Didn’t Fix It,
It Ain’t Fixed”

l Once you “find the cause of a bug” confirm
that changing the cause actually removes
the effect

l A bug isn’t done until the fix is in place and
confirmed to actually fix the problem
•  You might have just understood a symptom, not

the underlying problem

10

9 Indispensable Rules for Finding
the Most Elusive Software and
Hardware Problems

1.  Understand The System
2.  Make It Fail
3.  Quit Thinking and Look
4.  Divide and Conquer
5.  Change One Thing At A Time
6.  Keep An Audit Trail
7.  Check The Plug
8.  Get A Fresh View
9.  If You Didn’t Fix It, It Ain’t Fixed

