Debugging

9 Indispensable Rules for Finding
the Most Elusive Software and
Hardware Problems

David Agans’ Debugging

® A short book on general principles of debugging
® Structured around a set of simple rules that really

are a good idea DEBUGGING

The 9 Indispensable Rules

for Finding Even the Most

Elusive Software and Hard-
ware Problems

DAVID J. AGANS

10/29/14

Rule #1: “Understand the System”

\

“‘READ THE MANUAL (Datasheet)”

=
-
Y
\

RTFM

® Debugging something you don’t understand
is pointlessly hard

® Just as with testing, subject knowledge
matters — here you need knowledge of the
source code as well

[III”%DD

® You can’t debug what you can'’t produce

® Find a way to reliably make a system fail

® Record everything, and look for correlation
- Don’t assume something “can’t” be a cause

10/29/14

Rule #3: “Quit Thinking and Look”

® Don’t hypothesize before examining the failure in
detail — examine the evidence, then think

® Engineers like to think, don’t like to look nearly as
much (instrumentation and running a debugger
both look like work)

® “If it is doing X, must be Y” — maybe
- Check

Rule #4: “Divide and Conquer

CDNGUER!

® This rule is the heart of debugging
- Heart of delta-debugging
- Narrow down the source of the problem
- “Does it still fail if this factor is removed?”

- Use a debugger to check system state at
checkpoints; if everything is ok, you’re before
the problem

10/29/14

Rule #5: “Change One Thing at a Time”

06 i)
m (:)
-Lb
07 .
® A common very bad debugging strategy:
- “It could be one of X, Y, Z. I'll change all three,

and run it again.”

® |solate factors, because that's how you get
experiments that tell you something

® If code worked before last checkin, maybe you

should look at just those changes

Rule #6: “Keep an Audit Trail”

Dear
debugging
diary...

® Don'’t rely on your perfect memory to
remember everything you tried

® Don’t assume only you will ever work on
this problem

10/29/14

Rule #7: “Check the Plug”

® Question assumptions B
® Don’t always trust the debugger

® Don't trust your tests

Rule #8: “Get a Fresh View”

® |t's ok to ask for help
® Experts can be useful

® Explain what happens, not what you think is
going on

10/29/14

Rule #9: “If You Didn’t Fix It,
It Ain’t Fixed” [Si fractum non sit,

noli id reﬁccre.

® Once you “find the cause of a bug” confirm
that changing the cause actually removes
the effect

® A bug isn’t done until the fix is in place and
confirmed to actually fix the problem

- You might have just understood a symptom, not
the underlying problem

9 Indispensable Rules for Finding
the Most Elusive Software and

Hardware Problems
DEBUGG

I

Understand The System

Get A Fresh View ;
If You Didn’ t Fix It, It Ain’ t Fixed

1.

2. Make It Fail II:&?..'.“.;’:’E:::‘;:':::E" :
3. Quit Thinking and Look R
4. Divide and Conquer

5. Change One Thing At A Time

6. Keep An Audit Trall

7. Check The Plug polidlio

8. ,

9.

10/29/14

