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Debugging 

9 Indispensable Rules for Finding 
the Most Elusive Software and 

Hardware Problems	
  

David Agans’ Debugging 
l A short book on general principles of debugging 
l Structured around a set of simple rules that really 

are a good idea 
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Rule #1:  “Understand the System” 
  

l “READ THE MANUAL (Datasheet)” 

l Debugging something you don’t understand 
is pointlessly hard 

l Just as with testing, subject knowledge 
matters – here you need knowledge of the 
source code as well 
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Rule #2: “Make It Fail” 

 

l You can’t debug what you can’t produce 
l Find a way to reliably make a system fail 

l Record everything, and look for correlation 
•  Don’t assume something “can’t” be a cause 
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l Don’t hypothesize before examining the failure in 
detail – examine the evidence, then think 

l  Engineers like to think, don’t like to look nearly as 
much (instrumentation and running a debugger 
both look like work) 

l  “If it is doing X, must be Y” – maybe 
•  Check 

Rule #3: “Quit Thinking and Look” 
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l This rule is the heart of debugging 

•  Heart of delta-debugging 
•  Narrow down the source of the problem 
•  “Does it still fail if this factor is removed?” 
•  Use a debugger to check system state at 

checkpoints; if everything is ok, you’re before 
the problem 
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Rule #4: “Divide and Conquer” 
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l A common very bad debugging strategy: 
•  “It could be one of X, Y, Z.  I’ll change all three, 

and run it again.” 

l  Isolate factors, because that’s how you get 
experiments that tell you something 

l  If code worked before last checkin, maybe you 
should look at just those changes 

Rule #5: “Change One Thing at a Time” 
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Rule #6: “Keep an Audit Trail” 

l Don’t rely on your perfect memory to 
remember everything you tried 

l Don’t assume only you will ever work on 
this problem 

Dear 
debugging 
diary… 
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Rule #7: “Check the Plug” 

l Question assumptions 
l Don’t always trust the debugger 
l Don’t trust your tests 

9 

Rule #8: “Get a Fresh View” 

l It’s ok to ask for help 
l Experts can be useful 

l Explain what happens, not what you think is 
going on 

1
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Rule #9: “If You Didn’t Fix It, 
It Ain’t Fixed” 

 

l Once you “find the cause of a bug” confirm 
that changing the cause actually removes 
the effect 

l A bug isn’t done until the fix is in place and 
confirmed to actually fix the problem 
•  You might have just understood a symptom, not 

the underlying problem 
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