Interrupts

Fundamental concept in computation
Interrupt execution of a program to “handle” an event

[u]

Q

Don’ t have to rely on program relinquishing control
Can code program without worrying about others

Issues

0O 0 0o o0 0o o

CSE 466

What can interrupt and when?

Where is the code that knows what to do?
How long does it take to handle interruption?
Can an interruption be, in turn, interrupted?

How does the interrupt handling code communicate its results?
How is data shared between interrupt handlers and programs?

Interrupts

What is an Interrupt?

Reaction to something in I/O (human, comm link)
Usually asynchronous to processor activities

“interrupt handler” or “interrupt service routine” (ISR)
invoked to take care of condition causing interrupt

]

[u]

u]

CSE 466

Change value of internal variable (count)
Read a data value (sensor, receive)
Write a data value (actuator, send)

Main Program

Instruction 1 / ISR

Instruction 2
Instruction 3
Instruction 4

Interrupts

Save state
Instruction 1
Instruction 2
Instruction 3

Restore state

Return from Interrupt

2

Interrupts

Code sample that does not interrupt
char SPI_SlaveReceive(void)

{

/* Wait for reception complete */
while(!(SPSR & (1<<SPIF)))

/* Return data register */
return SPDR;

}

Instead of busy waiting until a byte is received the
processor can generate an interrupt when it sets SPIF
SIGNAL(SIG_SPI) {
RX_Byte = SPDR
}

CSE 466 Interrupts

Saving and Restoring Context

Processor and compiler dependent

Where to find ISR code?
o Different interrupts have separate ISRs
Who does dispatching?
o Direct
Different address for each interrupt type
Supported directly by processor architecture
o Indirect
One top-level ISR
Switch statement on interrupt type
o A mix of these two extremes?

CSE 466 Interrupts

Saving and Restoring Context

How much context to save?

o Registers, flags, program counter, etc.

o Save all or part?

o Agreement needed between ISR and program

Where should it be saved?

o Stack, special memory locations, shadow registers, etc.

o How much room will be needed on the stack?

o Nested interrupts may make stack reach its limit — what then?

Restore context when ISR completes

CSE 466 Interrupts 5

Ignoring Interrupts

Can interrupts be ignored?

o It depends on the cause of the interrupt

o No, for nuclear power plant temperature warning

o Yes, for keypad on cell phone (human timescale is long)

When servicing another interrupt
o Ignore others until done
o Can’ttake too long — keep ISRs as short as possible
Just do a quick count, or read, or write — not a long computation
Interrupt disabling
o Will ignored interrupt “stick”?
Rising edge sets a flip-flop
o Or will it be gone when you get to it?
Level changes again and its as if it never happened
o Don’t forget to re-enable

CSE 466 Interrupts 6

Prioritizing Interrupts

When multiple interrupts happen simultaneously
o Which is serviced first?

o Fixed or flexible priority?

Priority interrupts

o Higher priority can interrupt

o Lower priority can’ t

Maskable interrupts

o “don’t bother me with that right now”

o Not all interrupts are maskable, some are non-maskable

CSE 466 Interrupts

Interrupts in the ARM Cortex M processors

External interrupts
o From I/O pins of microcontroller

Internal interrupts

o Timers
Output compare
Input capture
Overflow

o Communication units
Receiving something
Done sending

o ADC
Completed conversion

CSE 466 Interrupts

Interrupt Jump Vector Table

Exception number IRQ number Offset Vector

16+n n IRQn
0x0040+4n
Fixed location el
in memory to find " e
first instruction for . 5 oo —
eaCh type of 14 2 0x003C PendSV
. 13 0x0038 Reserved
N te rru pt 12 Reserved for Debug
11 -5 0x002C Svcall
Only room for one K
instruction 8 Reserved
o JMP to location ; A0 oot Usage fault
of complete ISR s U L i B—
4 -12 0x0010 Memory management fault
On system reset, the vector 3 A3 o0 Hard fault
2 -14 NMI
table is fixed at 1 znggj Reset
x nitial value
address 0x00000000. oxo000 AP

On system reset, the vector table is fixed at address 0x00000000.
CSE 466 Interrupts 9

Chain of Events on Interrupt

Finish executing current instruction
Disable all interrupts Automatic
Push program counter on to stack

Jump to interrupt vector table
Jump to start of complete ISR
Save any context that ISR may otherwise change

o Registers and flags must be saved within ISR and restgred before it
returns — this is very important! -
SEI

Re-enable interrupts if nested interrupts are ok
Complete ISR’ s code

Re-enable interrupts upon return

Jump back to next instruction before interruption

Compiler

CSE 466 Interrupts 10

Shared Data Problem

When you use interrupts you create the opportunity for
multiple sections of code to update a variable.

This might cause a problems in your logic if an interrupt
updates a variable between two lines of code that are
directly dependent on each other (e.g. if statement)

One solution is to create critical sections where you
disable the interrupts for a short period of time while you
complete your logic on the shared variable

cli();
..... critical section code goes here.....
sei();
CSE 466 Interrupts 1
Flex Tj =] T
CX 11mer — :
P — 3 —
Flex Timer Module (FTM) == (TR0 rge
o Clear timer on compare mal e -
(auto reload) - mamaan
=] Prescaler == palr cinnels 0- chamnels 0 end 1
divide-by 1, 2, 4, 8, 16, -), o G) e
dual. capturs. CHK ‘match trigger |
32, 64, or 128 e
Input Input capture ‘output modes logic
= A U e
o Overflow and compare , L, LG s e pee ey ||
. e [me MG T Gl | i
match interrupts ;";m:"—':‘
M ‘ = . P et
o Many PWM modes =
o Registers Trasis —_—]
Configuration 5 smm} . ozmes £
Count value e ’—3?:.' -?7”’*‘"“
Output compare value i | o T g e,
s e

cortrol)
! y.channel 7
ErrTRig) etch trigger

CSE 466

prescaler

(1,2, 4,8, 16,32, 64 or 128)

.

no clock selected QUADEN
(FTM counter disable) o
system clock o Ry
fixed frequency clock o
external clock. 4’,: o
phase A O .
phase B decoder QUADEN
CPWMS
[CAPTEST]
FAULTMIT0]] FTM counter
FFVAL[3:0]
FAULTIE
FAULTnEN"
FFLTRnEN"

fault input n™ 44

fault control
“wheran=3,2,1,0

FAULTF
FAULTFn
fault interrupt

initialization
trigger

timer overflow
interrupt

fault condition

pair channels 0 - channels 0 and 1

DECAPEN
COMBINEO
CPWMS
MS0B:MS0A
ELSOB:ELS0A|
dual edge capture
> mode logic

CHOIE channel 0
+—Jcror | interrupt

output modes logic
ion of channels 0 and 1 outputs signals in output

compare, EPWM, CPWM and combine modes according to

'y mode, inverting, software output

channel 1—
input mode logic

DECAPE

COMBINE
CPWMS
MS1B:MS1A

ELS1B:ELS1A

channel 0
input_ L 2] input capture
npul &+ Bl mode logic Cov
- |_’
» input capture c1v

control, deadtime insertion, output mask, fault control
and polarity control)

channel 0
‘match rigger

ICHOTRIG .
iy
€
<

channel 1
interrupt

CHITRIG .

- channel 0
output signal
channel 1
output signal

- channel 1
maich trigger

=
CSE 466

Interrupts

=

Interfacing

Connecting the computation capabilities of a
microcontroller to external signals

o Transforming variable values into voltages and vice-versa
o Digital and analog

Issues

o How many signals can be controlled?
o How can digital and/or analog inputs be used to measure
different physical phenomena?
o How can digital and/or analog inputs be used to control different
physical phenomena?

CSE 466

Interfacing

Controlling and reacting to the environment

To control or react to the environment we need to
interface the microcontroller to peripheral devices
o Microcontroller may contain specialized interfaces to sensors and

actuators

Things we want to measure or control
o light, temperature, sound, pressure, velocity, position

Sensors

o e.g., switches, photoresistors, accelerometers, compass, sonar

Actuators

o e.g., motors, relays, LEDs, sonar, displays, buzzers

CSE 466

Interfacing

Typical control system

physical
system

A

sensors

actuators

A

CSE 466

controller

N

v

interfaces

Interfacing

Digital to analog conversion

= Map binary values to analog outputs (voltages)
= Most devices have a digital interface — use time to encode value
= Time-varying digital signals — almost arbitrary resolution

o pulse-code modulation (data = number or width of pulses)

o pulse-width modulation (data = duty-cycle of pulses)

o frequency modulation (data = rate at which pulses occur)
V—> <—

11 0 B t
1 B . t
il B N N

CSE 466 Interfacing 17

Pulse-width modulation

= Pulse a digital signal to get an average “analog” value
= The longer the pulse width, the higher the voltage

t
Pulse-width ratio T ©
- t, period average

I I I /alue

t
B B B t
B B

CSE 466 Interfacing 18

Why pulse-width modulation works

Most mechanical systems are low-pass filters
o Consider frequency components of pulse-width modulated signal
o Low frequency components affect components
They pass through
o High frequency components are too fast to fight inertia
They are “filtered out”
Electrical RC-networks are low-pass filters

o Time constant (r = RC) sets “cutoff” frequency
that separates low and high frequencies

CSE 466 Interfacing 19

Why pulse-width modulation works

LEDs
o NOT low pass filters
o But, your vision is, effectively
Persistence of vision
The reason motion pictures and video work

]

[m]

analogWrite(3, 50);
analogWrite(5, 140);
o Here are the actual waveforms this code creates on pins 3 and 5:

(]

CSE 466 Interfacing 20

Teensy: PWM is controlled with the analogWrite(pin, value) function.

10

