
1

CSE 466 Interrupts 1

Interrupts

n  Fundamental concept in computation
n  Interrupt execution of a program to “handle” an event

q  Don’t have to rely on program relinquishing control
q  Can code program without worrying about others

n  Issues
q  What can interrupt and when?
q  Where is the code that knows what to do?
q  How long does it take to handle interruption?
q  Can an interruption be, in turn, interrupted?
q  How does the interrupt handling code communicate its results?
q  How is data shared between interrupt handlers and programs?

CSE 466 Interrupts 2

What is an Interrupt?

n  Reaction to something in I/O (human, comm link)
n  Usually asynchronous to processor activities
n  “interrupt handler” or “interrupt service routine” (ISR)

invoked to take care of condition causing interrupt
q  Change value of internal variable (count)
q  Read a data value (sensor, receive)
q  Write a data value (actuator, send)

Main Program
Instruction 1
Instruction 2
Instruction 3
Instruction 4
…..

ISR

Save state
Instruction 1
Instruction 2
Instruction 3
…..
Restore state
Return from Interrupt

2

CSE 466 Interrupts 3

Interrupts

n  Code sample that does not interrupt
char SPI_SlaveReceive(void)
{
/* Wait for reception complete */
while(!(SPSR & (1<<SPIF)))
;
/* Return data register */
return SPDR;
}

n  Instead of busy waiting until a byte is received the
processor can generate an interrupt when it sets SPIF

SIGNAL(SIG_SPI) {
 RX_Byte = SPDR

}

CSE 466 Interrupts 4

Saving and Restoring Context

n  Processor and compiler dependent

n  Where to find ISR code?
q  Different interrupts have separate ISRs

n  Who does dispatching?
q  Direct

n  Different address for each interrupt type
n  Supported directly by processor architecture

q  Indirect
n  One top-level ISR
n  Switch statement on interrupt type

q  A mix of these two extremes?

3

CSE 466 Interrupts 5

Saving and Restoring Context

n  How much context to save?
q  Registers, flags, program counter, etc.
q  Save all or part?
q  Agreement needed between ISR and program

n  Where should it be saved?
q  Stack, special memory locations, shadow registers, etc.
q  How much room will be needed on the stack?
q  Nested interrupts may make stack reach its limit – what then?

n  Restore context when ISR completes

CSE 466 Interrupts 6

Ignoring Interrupts

n  Can interrupts be ignored?
q  It depends on the cause of the interrupt
q  No, for nuclear power plant temperature warning
q  Yes, for keypad on cell phone (human timescale is long)

n  When servicing another interrupt
q  Ignore others until done
q  Can’t take too long – keep ISRs as short as possible

n  Just do a quick count, or read, or write – not a long computation

n  Interrupt disabling
q  Will ignored interrupt “stick”?

n  Rising edge sets a flip-flop
q  Or will it be gone when you get to it?

n  Level changes again and its as if it never happened
q  Don’t forget to re-enable

4

CSE 466 Interrupts 7

Prioritizing Interrupts

n  When multiple interrupts happen simultaneously
q  Which is serviced first?
q  Fixed or flexible priority?

n  Priority interrupts
q  Higher priority can interrupt
q  Lower priority can’t

n  Maskable interrupts
q  “don’t bother me with that right now”
q  Not all interrupts are maskable, some are non-maskable

CSE 466 Interrupts 8

Interrupts in the ARM Cortex M processors

n  External interrupts
q  From I/O pins of microcontroller

n  Internal interrupts
q  Timers

n  Output compare
n  Input capture
n  Overflow

q  Communication units
n  Receiving something
n  Done sending

q  ADC
n  Completed conversion

5

CSE 466 Interrupts 9

Interrupt Jump Vector Table

n  Fixed location
in memory to find
first instruction for
each type of
interrupt

n  Only room for one
instruction
q  JMP to location

of complete ISR
n  On system reset, the vector

 table is fixed at
 address 0x00000000.

CSE 466 Interrupts 10

Chain of Events on Interrupt

n  Finish executing current instruction
n  Disable all interrupts
n  Push program counter on to stack
n  Jump to interrupt vector table
n  Jump to start of complete ISR
n  Save any context that ISR may otherwise change

q  Registers and flags must be saved within ISR and restored before it
returns – this is very important!

n  Re-enable interrupts if nested interrupts are ok
n  Complete ISR’s code
n  Re-enable interrupts upon return
n  Jump back to next instruction before interruption

Automatic

RETI

Compiler

SEI

CLI

6

CSE 466 Interrupts 11

Shared Data Problem

n  When you use interrupts you create the opportunity for
multiple sections of code to update a variable.

n  This might cause a problems in your logic if an interrupt
updates a variable between two lines of code that are
directly dependent on each other (e.g. if statement)

n  One solution is to create critical sections where you
disable the interrupts for a short period of time while you
complete your logic on the shared variable

 cli();
 …..critical section code goes here…..
 sei();

CSE 466 Interrupts 12

Flex Timer
n  Flex Timer Module (FTM)

q  Clear timer on compare match
(auto reload)

q  Prescaler
divide-by 1, 2, 4, 8, 16,
32, 64, or 128

q  Overflow and compare
match interrupts

q  Many PWM modes
q  Registers

n  Configuration
n  Count value
n  Output compare value

7

CSE 466 Interrupts 13

CSE 466 Interfacing 14

Interfacing

n  Connecting the computation capabilities of a
microcontroller to external signals
q  Transforming variable values into voltages and vice-versa
q  Digital and analog

n  Issues
q  How many signals can be controlled?
q  How can digital and/or analog inputs be used to measure

different physical phenomena?
q  How can digital and/or analog inputs be used to control different

physical phenomena?

8

CSE 466 Interfacing 15

Controlling and reacting to the environment

n  To control or react to the environment we need to
interface the microcontroller to peripheral devices
q  Microcontroller may contain specialized interfaces to sensors and

actuators

n  Things we want to measure or control
q  light, temperature, sound, pressure, velocity, position

n  Sensors
q  e.g., switches, photoresistors, accelerometers, compass, sonar

n  Actuators
q  e.g., motors, relays, LEDs, sonar, displays, buzzers

CSE 466 Interfacing 16

Typical control system

controller

actuators sensors

physical
system

interfaces

9

CSE 466 Interfacing 17

Digital to analog conversion

n  Map binary values to analog outputs (voltages)
n  Most devices have a digital interface – use time to encode value
n  Time-varying digital signals – almost arbitrary resolution

q  pulse-code modulation (data = number or width of pulses)
q  pulse-width modulation (data = duty-cycle of pulses)
q  frequency modulation (data = rate at which pulses occur)

V

t
V

t
V

t

CSE 466 Interfacing 18

Pulse-width modulation

n  Pulse a digital signal to get an average “analog” value
n  The longer the pulse width, the higher the voltage

Pulse-width ratio =
ton

tperiod

t

t

t

average
value

tperiod ton

10

CSE 466 Interfacing 19

Why pulse-width modulation works

n  Most mechanical systems are low-pass filters
q  Consider frequency components of pulse-width modulated signal
q  Low frequency components affect components

n  They pass through
q  High frequency components are too fast to fight inertia

n  They are “filtered out”

n  Electrical RC-networks are low-pass filters
q  Time constant (τ = RC) sets “cutoff” frequency

that separates low and high frequencies

CSE 466 Interfacing 20

Why pulse-width modulation works
n  LEDs

q  NOT low pass filters
q  But, your vision is, effectively

n  Persistence of vision
n  The reason motion pictures and video work

q  Teensy: PWM is controlled with the analogWrite(pin, value) function.
q  analogWrite(3, 50);
q  analogWrite(5, 140);
q  Here are the actual waveforms this code creates on pins 3 and 5:

