
Modulation and Demodulation

Channel sharing

 Suppose we have TWO CARRIERS that are orthogongal
to one another…then we can separate the effects of
these two carrriers…

 Whoa….

CSE 466 Interfacing 2

Vectors and modulation

CSE 466 Interfacing 3

S’pose m and n are orthogonal unit vectors.
Then inner products (dot products) are
<m,m>=1 <n,n>=1
<m,n>=<n,m>=0

Can interpret inner product as projection of vector 1 (“v1”)
onto vector 2 (“v2”)…in other words, inner product of v1
and v2 tells us “how much of vector 1 is there in the
direction of vector 2.”

If a channel lets me send 2 orthogonal vectors through it, then
I can send two independent messages. Say I need to send two numbers, a
and b…I can send am+bn through the channel.
At the receive side I get am+bn
Now I project onto m and onto n to get back the numbers:
<am+bn, m>=<am,m> + <bn, m>=a+0=a
<am+bn, n>=<am,n> + <bn, n>=0+b=b
The initial multiplication is modulation; the projection to separate the signals
is demodulation. Each channel sharing schemea set of basis vectors.
In single-channel e-field sensing, the “carrier” we transmit is m, the sensed
value is a, and the noise is n

Vectors: bold blue
Scalars: not

Physical set up for multiplexed sensing

Interfacing 4

RCV
Electrode

TX
Electrode

TX
Electrode

Amp

Micro

We can measure multiple sense channels simultaneously, sharing 1
RCV electrode, amp, and ADC!

Choice of TX wave forms determines multiplexing method:
• TDMA --- Time division: TXs take turns
• FDMA --- Frequency division: TXs use different frequencies
• CDMA ---- Code division: TXs use different coded waveforms

In all cases, what makes it work is ~orthogonality of the TX waveforms!

Interfacing 5

Single channel sensing / communication

Where C is the carrier vector and ADC is the vector of samples.
Let’s write out ADC:

acc = <C, ADC>

ADC = hC
Where h (hand) is sensed value and hC means scalar h x vector C
Acc
= <C,hC>
= h <C,C>
= h
if < C,C > = 1

Interfacing 6

Multi-access sensing / communication

Suppose we have two carriers, C1 and C2

And suppose they are orthogonal, so that < C1, C2 >=0
The received signal is

Let’s demodulate with C1:

ADC = h1C1+h2C2

acc
=<C1, ADC >
=< C1, h1C1+h2C2 >
=< C1, h1C1> + <C1,h2C2 >
=h1< C1, C1> + h2<C1,C2 >
= h1

If < C1, C1> = 1 and < C1, C2> = 0

Interfacing 7

TDMA
Abstract view

Horizontal axis: time
Vertical axis: amplitude (arbitrary units)

Verify that
<C1,C2>=0

Modulated
carriers

Sum of
modulated
carriers

<C1, .2C1 +.7C2>=
<C1, .2C1> +<C1,.7C2>=
.2 <C1, C1> + 0

Interfacing 8

FDMA
Abstract view

>> n1=sum(c1 .* c1)
n1 = 2.5000e+003

>> n2=sum(c2 .* c2)
n2 = 2.5000e+003

>> n12=sum(c1 .* c2)
n12 = -8.3900e-013

>> rcv = .2*c1 + .7*c2;
>> sum(c1/n1 .* rcv)
ans = 0.2000

>> sum(c2/n2 .* rcv)
ans = 0.7000

Horizontal axis: time
Vertical axis: amplitude (arbitrary units)

Interfacing 9

CDMA

>> n1=sum(c1 .* c1)
n1 = 5000

>> n2=sum(c2 .* c2)
n2 = 5000

>> n12=sum(c1 .* c2)
n12 = -360

>> rcv = .2*c1 + .7*c2;
>> sum(c1/n1 .* rcv)
ans = 0.1496

>> sum(c2/n2 .* rcv)
ans = 0.6856

S’pose we pick random carriers: c1 = 2*(rand(1,500)>0.5)-1;

Horizontal axis: time
Vertical axis: amplitude (arbitrary units)

Note: Random carriers here consist of 500 rand values repeated
10 times each for better display

Interfacing 10

LFSRs (Linear Feedback Shift Registers)
The right way to generate pseudo-random carriers for CDMA

 A simple pseudo-random number generator
 Pick a start state, iterate

 Maximum Length LFSR visits all states before repeating
 Based on primitive polynomial…iterating LFSR equivalent to multiplying by

generator for group
 Can analytically compute auto-correlation

 This form of LFSR is easy to compute in HW (but not as nice in SW)
 Extra credit: there is another form that is more efficient in SW

 Totally uniform auto-correlation

Image source: wikipedia

Image source: wikipedia

Interfacing 11

LFSR TX
8 bit LFSR with taps at 3,4,5,7 (counting from 0). Known to be maximal.
for (k=0;k<3;k++) { // k indexes the 4 LFSRs

low=0;
if(lfsr[k]&8) // tap at bit 3
low++; // each addition performs XOR on low bit of low

if(lfsr[k]&16) // tap at bit 4
low++;

if(lfsr[k]&32) // tap at bit 5
low++;

if(lfsr[k]&128) // tap at bit 7
low++;

low&=1; // keep only the low bit
lfsr[k]<<=1; // shift register up to make room for new bit
lfsr[k]&=255; // only want to use 8 bits (or make sure lfsr is 8 bit var)
lfsr[k]|=low; // OR new bit in

}
OUTPUT_BIT(TX0,lfsr[0]&1); // Transmit according to LFSR states
OUTPUT_BIT(TX1,lfsr[1]&1);
OUTPUT_BIT(TX2,lfsr[2]&1);
OUTPUT_BIT(TX3,lfsr[3]&1);

Interfacing 12

LFSR demodulation

meas=READ_ADC(); // get sample…same sample will be processed in different ways
for(k=0;k<3;k++) {

if(lfsr[k]&1) // check LFSR state
accum[k]+=meas; // make sure accum is a 16 bit variable!

else
accum[k]-=meas;

}

Interfacing 13

LFSR state sequence

>> lfsr1(1:255)

ans =
2 4 8 17 35 71 142 28 56 113 226 196 137 18
37 75 151 46 92 184 112 224 192 129 3 6 12 25
50 100 201 146 36 73 147 38 77 155 55 110 220 185
114 228 200 144 32 65 130 5 10 21 43 86 173 91
182 109 218 181 107 214 172 89 178 101 203 150 44 88
176 97 195 135 15 31 62 125 251 246 237 219 183 111
222 189 122 245 235 215 174 93 186 116 232 209 162 68
136 16 33 67 134 13 27 54 108 216 177 99 199 143
30 60 121 243 231 206 156 57 115 230 204 152 49 98
197 139 22 45 90 180 105 210 164 72 145 34 69 138
20 41 82 165 74 149 42 84 169 83 167 78 157 59
119 238 221 187 118 236 217 179 103 207 158 61 123 247
239 223 191 126 253 250 244 233 211 166 76 153 51 102
205 154 53 106 212 168 81 163 70 140 24 48 96 193
131 7 14 29 58 117 234 213 170 85 171 87 175 95
190 124 249 242 229 202 148 40 80 161 66 132 9 19
39 79 159 63 127 255 254 252 248 240 225 194 133 11
23 47 94 188 120 241 227 198 141 26 52 104 208 160
64 128 1

Interfacing 14

LFSR output

>> c1(1:255) (EVEN LFSR STATE -1, ODD LFSR STATE +1)

ans =
-1 -1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 -1
1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1

-1 -1 1 -1 -1 1 1 -1 1 1 1 -1 -1 1
-1 -1 -1 -1 -1 1 -1 1 -1 1 1 -1 1 1
-1 1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 -1
-1 1 1 1 1 1 -1 1 1 -1 1 1 1 1
-1 1 -1 1 1 1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 1 1 -1 1 1 -1 -1 -1 1 1 1 1
-1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 1 -1
1 1 -1 1 -1 -1 1 -1 -1 -1 1 -1 1 -1

-1 1 -1 1 -1 1 -1 -1 1 1 1 -1 1 1
1 -1 1 1 -1 -1 1 1 1 1 -1 1 1 1
1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1
1 -1 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 1
1 1 -1 1 -1 1 -1 1 -1 1 1 1 1 1

-1 -1 1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1
1 1 1 1 1 1 -1 -1 -1 -1 1 -1 1 1
1 1 -1 -1 -1 1 1 -1 1 -1 -1 -1 -1 -1

-1 -1 1

Interfacing 15

CDMA by LFSR

>> n1 = sum(c1.*c1)
n1 = 5000

>> n2 = sum(c2.*c2)
n2 = 5000

>> n12 = sum(c1.*c2)
n12 = -60

>> rcv = .2 *c1 + .7*c2;
>> sum(c1/n1 .* rcv)
ans = 0.1916

>> sum(c2/n2 .* rcv)
ans = 0.6976Note: CDMA carriers here consist of 500 pseudorandom values repeated

10 times each for better display

Interfacing 16

Autocorrelation of pseudo-random (non-LFSR)
sequence of length 255

PR seq
Generated
w/ Matlab
rand cmd

Interfacing 17

Autocorrelation (full length 255 seq)

-1

End of lecture

CSE 466 - Winter 2008 Interfacing 18

Interfacing 19

Autocorrelation (length 254 sub-seq)

0 or -2

Interfacing 20

Autocorrelation (length 253 sub-seq)

1,-1, or -3

Interfacing 21

Autocorrelation (length 128 sub-seq)

LFSRs…one more thing…

Interfacing 22

“Fibonacci”
“Standard”
“Many to one”
“External XOR”
LFSR

“Galois”
“One to many”
“Internal XOR”
LFSR
Faster in SW!!

Note: In a HW implementation, if you have XOR gates with as many inputs
as you want, then the upper configuration is just as fast as the lower. If you
only have 2 input XOR gates, then the lower implementation is faster in HW
since the XORs can occur in parallel.

Advantage of Galois LFSR in SW

Interfacing 23

“Galois”
“Internal XOR”
“One to many”
LFSR

Faster in SW because XOR can happen word-wise (vs the multiple bit-wise tests
that the Fibonacci configuration needs)

#include <stdint.h>
uint16_t lfsr = 0xACE1u;
unsigned int period = 0;
do {

unsigned lsb = lfsr & 1; /* Get lsb (i.e., the output bit). */
lfsr >>= 1; /* Shift register */
if (lsb == 1) /* Only apply toggle mask if output bit is 1. */
lfsr ^= 0xB400u; /* Apply toggle mask, value has 1 at bits corresponding

* to taps, 0 elsewhere. */
++period;

} while(lfsr != 0xACE1u);

LFSR in a single line of C code!

#include <stdint.h>
uint16_t lfsr = 0xACE1u;
unsigned period = 0;
do { /* taps: 16 14 13 11; char. poly: x^16+x^14+x^13+x^11+1 */
lfsr = (lfsr >> 1) ^ (-(lfsr & 1u) & 0xB400u);
++period;

} while(lfsr != 0xACE1u);

Interfacing 24

NB: The minus above is two’s complement negation…here the result is all
zeros or all ones…that is ANDed that with the tap mask…this ends up doing
the same job as the conditional from the previous implementation. Once the
mask is ready, it is XORed to the LFSR

Some “polynomials” (tap sequences) for
Max. Length LFSRs

Interfacing 25

Bits Feedback polynomial Period
n 2n − 1
2 x2 + x + 1 3
3 x3 + x2 + 1 7
4 x4 + x3 + 1 15
5 x5 + x3 + 1 31
6 x6 + x5 + 1 63
7 x7 + x6 + 1 127
8 x8 + x6 + x5 + x4 + 1 255
9 x9 + x5 + 1 511

10 x10 + x7 + 1 1023
11 x11 + x9 + 1 2047
12 x12 + x11 + x10 + x4 + 1 4095
13 x13 + x12 + x11 + x8 + 1 8191
14 x14 + x13 + x12 + x2 + 1 16383
15 x15 + x14 + 1 32767
16 x16 + x14 + x13 + x11 + 1 65535
17 x17 + x14 + 1 131071
18 x18 + x11 + 1 262143
19 x19 + x18 + x17 + x14 + 1 524287

CSE 466 - Winter 2008 Interfacing 26

More on why modulation is useful

 Discussed channel sharing already
 Now: noise immunity

Interfacing 27

Interfacing 28

Noise
Why modulated sensing?

 Johnson noise
 Broadband thermal noise

 Shot noise
 Individual electrons…not usually a

problem

 “1/f” “flicker” “pink” noise
 Worse at lower frequencies
 do better if we can move to higher

frequencies

 60Hz pickup

From W.H. Press, “Flicker noises in
astronomy and elsewhere,” Comments
on astrophysics 7: 103-119. 1978.

CSE 466 Interfacing 29

Modulation

 What is it?
 In music, changing key
 In old time radio, shifting a signal from one frequency to another
 Ex: voice (10kHz “baseband” sig.) modulated up to 560kHz at radio station
 Baseband voice signal is recovered when radio receiver demodulates
 More generally, modulation schemes allow us to use analog channels to

communicate either analog or digital information
 Amplitude Modulation (AM), Frequency Modulation (FM), Frequency hopping spread

spectrum (FHSS), direct sequence spread spectrum (DSSS), etc

 What is it good for?
 Sensitive measurements

 Sensed signal more effectively shares channel with noise better SNR
 Channel sharing: multiple users can communicate at once

 Without modulation, there could be only one radio station in a given area
 One radio can chose one of many channels to tune in (demodulate)

 Faster communication
 Multiple bits share the channel simultaneously more bits per sec
 “Modem” == “Modulator-demodulator”

Modulation --- A software perspective

 Q: What determines number of messages we can send
through a channel (or extract from a sensor, or from a
memory)?

 A: The number of inputs we can reliably distinguish when
we make a measurement at the output

CSE 466 Interfacing 30

Shannon

Other applications of modulation /
demodulation or correlation computations

Interfacing 31

Other applications of modulation /
demodulation or correlation computations
These are extremely useful algorithmic techniques that are not
commonly taught or are scattered in computer science

 Amplitude-modulated sensing (what we’ve been doing)
 Also known as synchronous detection

 Ranging (GPS, sonar, laser rangefinders)
 Analog RF Communication (AM radio, FM radio)
 Digital Communication (modem==modulator demodulator)
 Data hiding (digital watermarking / steganography)
 Fiber Fingerprinting (biometrics more generally)
 Pattern recognition (template matching, simple gesture rec)

Interfacing 32

Interfacing 33

CDMA in comms: Direct Sequence Spread Spectrum (DSSS)

 Other places where DSSS is used
 802.11b, GPS

 Terminology
 Symbols: data
 Chips: single carrier value
 Varying number of chips per symbol varies data rate…when SNR

is lower, increase number of chips per symbol to improve
robustness and decrease data rate

 Interference: one channel impacting another
 Noise (from outside)

Interfacing 34

Visualizing DSSS

https://www.okob.net/texts/mydocuments/80211physlayer/images/dsss_interf.gif

Interfacing 35

Practical DSSS radios
 DSSS radio communication systems in practice use the

pseudo-random code to modulate a sinusoidal carrier
(say 2.4GHz)

 This spreads the energy somewhat around the original
carrier, but doesn’t distribute it uniformly over all bands,
0-2.4GHz

 Amount of spreading is determined by chip time
(smallest time interval)

Data hiding

Interfacing 36

“Modulation and Information Hiding in Images,” Joshua R. Smith and Barrett O.
Comiskey. Presented at the Workshop on Information Hiding, Isaac Newton
Institute, University of Cambridge, UK, May 1996; Springer-Verlag Lecture Notes in
Computer Science Vol. 1174, pp 207-226.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Error rate

P
ro

ba
bi

lit
y

200 byte Fiberfingerprints - 39,750 observations

Genuine

Counterfeit
Variance Sigma2

Variance 2Sigma2

FiberFingerprint

FiberFingerprint Identification
Proceedings of the Third Workshop on Automatic Identification, Tarrytown, NY, March 2002
E. Metois, P. Yarin, N. Salzman, J.R. Smith

Key in this application: remove DC component before correlating

Gesture recognition by cross-correlation of
sensor data with a template

Interfacing 38

“RFIDs and Secret Handshakes:
Defending Against Ghost-and-
Leech Attacks and Unauthorized
Reads with Context-Aware
Communications,”
A. Czeskis, K. Koscher, J.R.
Smith, and T. Kohno
15th ACM Conference on
Computer and Communications
Security (CCS), Alexandria, VA.
October 27-31, 2008

Limitations

Interfacing 39

 TX and RCV need common time-scale (or length scale)
 Will not recognize a gesture being performed at a different speed

than the template

 Except in sensing (synchronous detection) applications,
need to synchronize TX and RX…this is a search that can
take time

End of section

Interfacing 40

