
ROS Crash-Course, Part II
ROS Design Patterns, C++ APIs, and Best Practices

Jonathan Bohren
With some information and figures adapted from http: // www. ros. org

http://www.ros.org


Outline

1 ROS Package & Stack Design

2 Integrating ROS With Other Systems

3 Communication Design Patterns
Datagram Design

4 ROS (C++) APIs

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 2 / 20



Outline

1 ROS Package & Stack Design

2 Integrating ROS With Other Systems

3 Communication Design Patterns
Datagram Design

4 ROS (C++) APIs

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 2 / 20



Outline

1 ROS Package & Stack Design

2 Integrating ROS With Other Systems

3 Communication Design Patterns

Datagram Design

4 ROS (C++) APIs

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 2 / 20



Outline

1 ROS Package & Stack Design

2 Integrating ROS With Other Systems

3 Communication Design Patterns
Datagram Design

4 ROS (C++) APIs

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 2 / 20



Outline

1 ROS Package & Stack Design

2 Integrating ROS With Other Systems

3 Communication Design Patterns
Datagram Design

4 ROS (C++) APIs

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 2 / 20



ROS Package & Stack Design

Outline (revisted)

1 ROS Package & Stack Design

2 Integrating ROS With Other Systems

3 Communication Design Patterns
Datagram Design

4 ROS (C++) APIs

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 3 / 20



ROS Package & Stack Design

Reasons to Factor Code
Splitting code into more packages

Modularity / Re-usability
Often, code can be useful in contexts other than those for which it
was built. Without splitting code the right way, the dependency graph
will have cycles and be invalid.

Dependency Minimization
It is best to separate out the smallest unit of code that might be used
as a dependency. This pattern is often used for separating interface
definitions like .msg and .srv files into their own packages.
Wrapper Packages
ROS’s package system can be used as a lightweight way of integrating
third-party software that cannot be acquired through a system’s
package manager.

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 4 / 20



ROS Package & Stack Design

Reasons to Factor Code
Splitting code into more packages

Modularity / Re-usability
Often, code can be useful in contexts other than those for which it
was built. Without splitting code the right way, the dependency graph
will have cycles and be invalid.
Dependency Minimization
It is best to separate out the smallest unit of code that might be used
as a dependency. This pattern is often used for separating interface
definitions like .msg and .srv files into their own packages.

Wrapper Packages
ROS’s package system can be used as a lightweight way of integrating
third-party software that cannot be acquired through a system’s
package manager.

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 4 / 20



ROS Package & Stack Design

Reasons to Factor Code
Splitting code into more packages

Modularity / Re-usability
Often, code can be useful in contexts other than those for which it
was built. Without splitting code the right way, the dependency graph
will have cycles and be invalid.
Dependency Minimization
It is best to separate out the smallest unit of code that might be used
as a dependency. This pattern is often used for separating interface
definitions like .msg and .srv files into their own packages.
Wrapper Packages
ROS’s package system can be used as a lightweight way of integrating
third-party software that cannot be acquired through a system’s
package manager.

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 4 / 20



ROS Package & Stack Design

Reasons to Unify Code
Collecting code into fewer packages

Application-specific Code
If a collection of packages are so application-specific that they cannot
be used separately.

Rapid Development for Experimenting and Prototyping
Sometimes experimental or “hacked”-together code shouldn’t be
over-engineered into a number of packages during initial development.

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 5 / 20



ROS Package & Stack Design

Reasons to Unify Code
Collecting code into fewer packages

Application-specific Code
If a collection of packages are so application-specific that they cannot
be used separately.
Rapid Development for Experimenting and Prototyping
Sometimes experimental or “hacked”-together code shouldn’t be
over-engineered into a number of packages during initial development.

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 5 / 20



ROS Package & Stack Design

When to Make a Stack
Packaging code for distribution

ROS stacks are best made when there are a collection of packages that,
while not necessarily depending on each-other, are useful for a common
purpose, act as companions to some other package, or make up the
components of an application.

Some examples of stacks include:

laser_pipeline - packages for grabbing and manipulating laser data
robot_model - packages for modeling a rigid robot
ros_comm - packages for the ROS middleware & tools
pr2_plugs - the PR2 autonomous recharge application

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 6 / 20



ROS Package & Stack Design

When to Make a Stack
Packaging code for distribution

ROS stacks are best made when there are a collection of packages that,
while not necessarily depending on each-other, are useful for a common
purpose, act as companions to some other package, or make up the
components of an application.

Some examples of stacks include:
laser_pipeline - packages for grabbing and manipulating laser data

robot_model - packages for modeling a rigid robot
ros_comm - packages for the ROS middleware & tools
pr2_plugs - the PR2 autonomous recharge application

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 6 / 20



ROS Package & Stack Design

When to Make a Stack
Packaging code for distribution

ROS stacks are best made when there are a collection of packages that,
while not necessarily depending on each-other, are useful for a common
purpose, act as companions to some other package, or make up the
components of an application.

Some examples of stacks include:
laser_pipeline - packages for grabbing and manipulating laser data
robot_model - packages for modeling a rigid robot

ros_comm - packages for the ROS middleware & tools
pr2_plugs - the PR2 autonomous recharge application

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 6 / 20



ROS Package & Stack Design

When to Make a Stack
Packaging code for distribution

ROS stacks are best made when there are a collection of packages that,
while not necessarily depending on each-other, are useful for a common
purpose, act as companions to some other package, or make up the
components of an application.

Some examples of stacks include:
laser_pipeline - packages for grabbing and manipulating laser data
robot_model - packages for modeling a rigid robot
ros_comm - packages for the ROS middleware & tools

pr2_plugs - the PR2 autonomous recharge application

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 6 / 20



ROS Package & Stack Design

When to Make a Stack
Packaging code for distribution

ROS stacks are best made when there are a collection of packages that,
while not necessarily depending on each-other, are useful for a common
purpose, act as companions to some other package, or make up the
components of an application.

Some examples of stacks include:
laser_pipeline - packages for grabbing and manipulating laser data
robot_model - packages for modeling a rigid robot
ros_comm - packages for the ROS middleware & tools
pr2_plugs - the PR2 autonomous recharge application

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 6 / 20



ROS Package & Stack Design

Naming Conventions
ROS Style Guidelines

under_scored CamelCase camelCase ALL_CAPS
stack_name
package_name
file_name
namespace_name
node_name
topic_name
service_name
liblibrary_name
variable_name

MessageType
ServiceType
ClassName

funcName() CONSTANT_NAME

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 7 / 20



Integrating ROS With Other Systems

Outline (revisted)

1 ROS Package & Stack Design

2 Integrating ROS With Other Systems

3 Communication Design Patterns
Datagram Design

4 ROS (C++) APIs

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 8 / 20



Integrating ROS With Other Systems

Adding ROS Interfaces
Lightweight addition with minimal changes to a codebase

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 9 / 20



Integrating ROS With Other Systems

Adding ROS Interfaces
Lightweight addition with minimal changes to a codebase

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 9 / 20

01100001
01101100
01101111
01110100

ALOT OF CODE

"the alot" (c) hyperboleandahalf.blogspot.com



Integrating ROS With Other Systems

Adding ROS Interfaces
Lightweight addition with minimal changes to a codebase

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 9 / 20

01100001
01101100
01101111
01110100

ALOT OF CODE

"the alot" (c) hyperboleandahalf.blogspot.com

Transparent ROS
package wrapper



Integrating ROS With Other Systems

Adding ROS Interfaces
Lightweight addition with minimal changes to a codebase

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 9 / 20

01100001
01101100
01101111
01110100

ALOT OF CODE

"the alot" (c) hyperboleandahalf.blogspot.com

Transparent ROS
package wrapper

Maybe an
additional thread



Integrating ROS With Other Systems

Adding ROS Interfaces
Lightweight addition with minimal changes to a codebase

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 9 / 20

01100001
01101100
01101111
01110100

ALOT OF CODE

"the alot" (c) hyperboleandahalf.blogspot.com

Transparent ROS
package wrapper

Maybe an
additional thread

WITH ROS



Communication Design Patterns

Outline (revisted)

1 ROS Package & Stack Design

2 Integrating ROS With Other Systems

3 Communication Design Patterns
Datagram Design

4 ROS (C++) APIs

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 10 / 20



Communication Design Patterns Datagram Design

.msg Design

ROS .msg design can be summarized in a few basic principles:
Try to prevent .msg proliferation (ie: try to use existing messages
first)

Complex messages are built through composition
Message design should come after node design
Try to avoid building messages that tend to not get completely filled
out

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 11 / 20



Communication Design Patterns Datagram Design

.msg Design

ROS .msg design can be summarized in a few basic principles:
Try to prevent .msg proliferation (ie: try to use existing messages
first)
Complex messages are built through composition

Message design should come after node design
Try to avoid building messages that tend to not get completely filled
out

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 11 / 20



Communication Design Patterns Datagram Design

.msg Design

ROS .msg design can be summarized in a few basic principles:
Try to prevent .msg proliferation (ie: try to use existing messages
first)
Complex messages are built through composition
Message design should come after node design

Try to avoid building messages that tend to not get completely filled
out

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 11 / 20



Communication Design Patterns Datagram Design

.msg Design

ROS .msg design can be summarized in a few basic principles:
Try to prevent .msg proliferation (ie: try to use existing messages
first)
Complex messages are built through composition
Message design should come after node design
Try to avoid building messages that tend to not get completely filled
out

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 11 / 20



Communication Design Patterns Datagram Design

Namespaces
Like Jersey barriers, but for ROS graph resources

ROS nodes, topics, services, and parameters, can all be created in
namespaces, to better organize the collection of names in the ROS graph.
Any ROS resoource which is named in a launchfile can be created in a
given namespace, using the <group> tag and the ns attribute.

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 12 / 20



Communication Design Patterns Datagram Design

Namespaces for Designating Topics
An illustration

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 13 / 20

viewer

sensor-##1



Communication Design Patterns Datagram Design

Namespaces for Designating Topics
An illustration

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 13 / 20

viewer

sensor-##1

/data



Communication Design Patterns Datagram Design

Namespaces for Designating Topics
An illustration

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 13 / 20

viewer

sensor-##1

/data

/data
sensor-##2



Communication Design Patterns Datagram Design

Namespaces for Designating Topics
An illustration

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 13 / 20

viewer

sensor-##1

/data

/data
sensor-##2



Communication Design Patterns Datagram Design

Namespaces for Designating Topics
An illustration

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 13 / 20

viewer

sensor-##1

/data

/data
sensor-##2



Communication Design Patterns Datagram Design

Namespaces for Designating Topics
An illustration

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 13 / 20

viewer

sensor-##1

/data

/data
sensor-##2



Communication Design Patterns Datagram Design

Resource Name “Remapping”
Powerful abstraction interface

One of the most-used and under-documented patterns in ROS
communication is resource remapping. While remapping might first appear
to simply be another way of reducing naming collisions, it is actually a
powerful design tool.

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 14 / 20



Communication Design Patterns Datagram Design

Resource Name “Remapping”
An illustration

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 15 / 20

viewer

sensor-##1



Communication Design Patterns Datagram Design

Resource Name “Remapping”
An illustration

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 15 / 20

viewer

sensor-##1

/data



Communication Design Patterns Datagram Design

Resource Name “Remapping”
An illustration

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 15 / 20

viewer

sensor-##1

/data

/data
sensor-##2



Communication Design Patterns Datagram Design

Resource Name “Remapping”
An illustration

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 15 / 20

viewer

sensor-##1

/data

/data
sensor-##2



Communication Design Patterns Datagram Design

Resource Name “Remapping”
An illustration

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 15 / 20

viewer

sensor-##1

/data

/data
sensor-##2



Communication Design Patterns Datagram Design

Resource Name “Remapping”
An illustration

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 15 / 20

viewer

sensor-##1

/data

/data
sensor-##2



ROS (C++) APIs

Outline (revisted)

1 ROS Package & Stack Design

2 Integrating ROS With Other Systems

3 Communication Design Patterns
Datagram Design

4 ROS (C++) APIs

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 16 / 20



ROS (C++) APIs

Initialization
The first thing you will ever do with ROS

Any progam that uses the ROS APIs must intialize the ROS runtime. This
is done with a single call to ros::init(). This function generally
conforms to the format:

void ros::init(argc,argc,
std::string node_name,
uint32_t options);

roslaunch passes arguments into ros via argc, argv so these must
be passed into your ros::init() in order for launchfile settings to
take effect.
Note that if using roslaunch, the node_name may be over-written
options is a bitfield for advanced use (see online documentation)

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 17 / 20



ROS (C++) APIs

“Spinning”
Where all the magic happens

Before, it was claimed that ROS is a lightweight architecture, and does
not “take over” your program execution. Processing ROS messages and
callbacks can be done in a few ways:

Single-Threaded Programs

ros::spin()
Block and process ROS messages and callbacks
ros::spinonce()
Block and process only currently waiting ROS messages and callbacks
(for programs that already have a main loop)

Multi-Threaded Programs

ros::MultiThreadedSpinner
Similar to ros::spinonce(), but services callbacks in multiple threads
ros::AsynchSpinner
Non-blocking, multi-threaded service of callbacks (tends to be the most
useful for multi-threaded programs)

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 18 / 20



ROS (C++) APIs

“Spinning”
Where all the magic happens

Before, it was claimed that ROS is a lightweight architecture, and does
not “take over” your program execution. Processing ROS messages and
callbacks can be done in a few ways:

Single-Threaded Programs
ros::spin()
Block and process ROS messages and callbacks

ros::spinonce()
Block and process only currently waiting ROS messages and callbacks
(for programs that already have a main loop)

Multi-Threaded Programs

ros::MultiThreadedSpinner
Similar to ros::spinonce(), but services callbacks in multiple threads
ros::AsynchSpinner
Non-blocking, multi-threaded service of callbacks (tends to be the most
useful for multi-threaded programs)

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 18 / 20



ROS (C++) APIs

“Spinning”
Where all the magic happens

Before, it was claimed that ROS is a lightweight architecture, and does
not “take over” your program execution. Processing ROS messages and
callbacks can be done in a few ways:

Single-Threaded Programs
ros::spin()
Block and process ROS messages and callbacks
ros::spinonce()
Block and process only currently waiting ROS messages and callbacks
(for programs that already have a main loop)

Multi-Threaded Programs

ros::MultiThreadedSpinner
Similar to ros::spinonce(), but services callbacks in multiple threads
ros::AsynchSpinner
Non-blocking, multi-threaded service of callbacks (tends to be the most
useful for multi-threaded programs)

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 18 / 20



ROS (C++) APIs

“Spinning”
Where all the magic happens

Before, it was claimed that ROS is a lightweight architecture, and does
not “take over” your program execution. Processing ROS messages and
callbacks can be done in a few ways:

Single-Threaded Programs
ros::spin()
Block and process ROS messages and callbacks
ros::spinonce()
Block and process only currently waiting ROS messages and callbacks
(for programs that already have a main loop)

Multi-Threaded Programs

ros::MultiThreadedSpinner
Similar to ros::spinonce(), but services callbacks in multiple threads
ros::AsynchSpinner
Non-blocking, multi-threaded service of callbacks (tends to be the most
useful for multi-threaded programs)

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 18 / 20



ROS (C++) APIs

“Spinning”
Where all the magic happens

Before, it was claimed that ROS is a lightweight architecture, and does
not “take over” your program execution. Processing ROS messages and
callbacks can be done in a few ways:

Single-Threaded Programs
ros::spin()
Block and process ROS messages and callbacks
ros::spinonce()
Block and process only currently waiting ROS messages and callbacks
(for programs that already have a main loop)

Multi-Threaded Programs
ros::MultiThreadedSpinner
Similar to ros::spinonce(), but services callbacks in multiple threads

ros::AsynchSpinner
Non-blocking, multi-threaded service of callbacks (tends to be the most
useful for multi-threaded programs)

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 18 / 20



ROS (C++) APIs

“Spinning”
Where all the magic happens

Before, it was claimed that ROS is a lightweight architecture, and does
not “take over” your program execution. Processing ROS messages and
callbacks can be done in a few ways:

Single-Threaded Programs
ros::spin()
Block and process ROS messages and callbacks
ros::spinonce()
Block and process only currently waiting ROS messages and callbacks
(for programs that already have a main loop)

Multi-Threaded Programs
ros::MultiThreadedSpinner
Similar to ros::spinonce(), but services callbacks in multiple threads
ros::AsynchSpinner
Non-blocking, multi-threaded service of callbacks (tends to be the most
useful for multi-threaded programs)

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 18 / 20



ROS (C++) APIs

Shutting Down
The last thing you will ever do with ROS

ROS programs prefer to terminate cleanly. Doing so is supported through
the following mechanisms, which can be called at any time:

ros::shutdown()
Triggers shutdown of all ROS interfaces in this node

SIGINT (Ctrl-C from CLI)
Same effect as ros::shutdown()
ros::ok()
Returns false once this node’s ROS interfaces have completely shut
down
ros::isShuttingDown()
Discouraged except in advanced cases, returns true once
ros::shutdown() has been called

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 19 / 20



ROS (C++) APIs

Shutting Down
The last thing you will ever do with ROS

ROS programs prefer to terminate cleanly. Doing so is supported through
the following mechanisms, which can be called at any time:

ros::shutdown()
Triggers shutdown of all ROS interfaces in this node
SIGINT (Ctrl-C from CLI)
Same effect as ros::shutdown()

ros::ok()
Returns false once this node’s ROS interfaces have completely shut
down
ros::isShuttingDown()
Discouraged except in advanced cases, returns true once
ros::shutdown() has been called

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 19 / 20



ROS (C++) APIs

Shutting Down
The last thing you will ever do with ROS

ROS programs prefer to terminate cleanly. Doing so is supported through
the following mechanisms, which can be called at any time:

ros::shutdown()
Triggers shutdown of all ROS interfaces in this node
SIGINT (Ctrl-C from CLI)
Same effect as ros::shutdown()
ros::ok()
Returns false once this node’s ROS interfaces have completely shut
down

ros::isShuttingDown()
Discouraged except in advanced cases, returns true once
ros::shutdown() has been called

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 19 / 20



ROS (C++) APIs

Shutting Down
The last thing you will ever do with ROS

ROS programs prefer to terminate cleanly. Doing so is supported through
the following mechanisms, which can be called at any time:

ros::shutdown()
Triggers shutdown of all ROS interfaces in this node
SIGINT (Ctrl-C from CLI)
Same effect as ros::shutdown()
ros::ok()
Returns false once this node’s ROS interfaces have completely shut
down
ros::isShuttingDown()
Discouraged except in advanced cases, returns true once
ros::shutdown() has been called

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 19 / 20



ROS (C++) APIs

Time & The ROS Clock
FIXME: 2038 A.D.

ROS provides a time abstraction interface to provide a mechanism to
spoof the wall clock for simulation. ROS time is preferred over a system’s
clock routines (for non-realtime systems). The ros::Time API has the
following features:

ros::Time - (int32 sec, int32 µsec) time point

ros::Time::now() - the current time
ros::Duration - (int32 sec, int32 µsec) time duration
ros::Duration::sleep() - sleep for this duration
ros::[Time/Duration]::toSec() - (double) in seconds
ros::Rate - fixed-rate duration for sleeping

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 20 / 20



ROS (C++) APIs

Time & The ROS Clock
FIXME: 2038 A.D.

ROS provides a time abstraction interface to provide a mechanism to
spoof the wall clock for simulation. ROS time is preferred over a system’s
clock routines (for non-realtime systems). The ros::Time API has the
following features:

ros::Time - (int32 sec, int32 µsec) time point
ros::Time::now() - the current time

ros::Duration - (int32 sec, int32 µsec) time duration
ros::Duration::sleep() - sleep for this duration
ros::[Time/Duration]::toSec() - (double) in seconds
ros::Rate - fixed-rate duration for sleeping

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 20 / 20



ROS (C++) APIs

Time & The ROS Clock
FIXME: 2038 A.D.

ROS provides a time abstraction interface to provide a mechanism to
spoof the wall clock for simulation. ROS time is preferred over a system’s
clock routines (for non-realtime systems). The ros::Time API has the
following features:

ros::Time - (int32 sec, int32 µsec) time point
ros::Time::now() - the current time
ros::Duration - (int32 sec, int32 µsec) time duration

ros::Duration::sleep() - sleep for this duration
ros::[Time/Duration]::toSec() - (double) in seconds
ros::Rate - fixed-rate duration for sleeping

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 20 / 20



ROS (C++) APIs

Time & The ROS Clock
FIXME: 2038 A.D.

ROS provides a time abstraction interface to provide a mechanism to
spoof the wall clock for simulation. ROS time is preferred over a system’s
clock routines (for non-realtime systems). The ros::Time API has the
following features:

ros::Time - (int32 sec, int32 µsec) time point
ros::Time::now() - the current time
ros::Duration - (int32 sec, int32 µsec) time duration
ros::Duration::sleep() - sleep for this duration

ros::[Time/Duration]::toSec() - (double) in seconds
ros::Rate - fixed-rate duration for sleeping

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 20 / 20



ROS (C++) APIs

Time & The ROS Clock
FIXME: 2038 A.D.

ROS provides a time abstraction interface to provide a mechanism to
spoof the wall clock for simulation. ROS time is preferred over a system’s
clock routines (for non-realtime systems). The ros::Time API has the
following features:

ros::Time - (int32 sec, int32 µsec) time point
ros::Time::now() - the current time
ros::Duration - (int32 sec, int32 µsec) time duration
ros::Duration::sleep() - sleep for this duration
ros::[Time/Duration]::toSec() - (double) in seconds

ros::Rate - fixed-rate duration for sleeping

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 20 / 20



ROS (C++) APIs

Time & The ROS Clock
FIXME: 2038 A.D.

ROS provides a time abstraction interface to provide a mechanism to
spoof the wall clock for simulation. ROS time is preferred over a system’s
clock routines (for non-realtime systems). The ros::Time API has the
following features:

ros::Time - (int32 sec, int32 µsec) time point
ros::Time::now() - the current time
ros::Duration - (int32 sec, int32 µsec) time duration
ros::Duration::sleep() - sleep for this duration
ros::[Time/Duration]::toSec() - (double) in seconds
ros::Rate - fixed-rate duration for sleeping

Jonathan Bohren (JHU LCSR) ROS Crash-Course, Part II: Patterns 20 / 20


	ROS Package & Stack Design
	Integrating ROS With Other Systems
	Communication Design Patterns
	Datagram Design

	ROS (C++) APIs



