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C

Some Mathematics

�
C.1 Finite field theory

Most linear codes are expressed in the language of Galois theory

Why are Galois fields an appropriate language for linear codes? First, a defi-
nition and some examples.

A field F is a set F = {0, F ′} such that

1. F forms an Abelian group under an addition operation ‘+’, with
0 being the identity; [Abelian means all elements commute, i.e.,
satisfy a + b = b + a.]

2. F ′ forms an Abelian group under a multiplication operation ‘·’;
multiplication of any element by 0 yields 0;

3. these operations satisfy the distributive rule (a+ b) · c = a · c+ b · c.

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Table C.1. Addition and
multiplication tables for GF (2).

For example, the real numbers form a field, with ‘+’ and ‘·’ denoting
ordinary addition and multiplication.

A Galois field GF (q) is a field with a finite number of elements q.

A unique Galois field exists for any q = pm, where p is a prime number
and m is a positive integer; there are no other finite fields.

GF (2). The addition and multiplication tables for GF (2) are shown in ta-
ble C.1. These are the rules of addition and multiplication modulo 2.

GF (p). For any prime number p, the addition and multiplication rules are
those for ordinary addition and multiplication, modulo p.

GF (4). The rules for GF (pm), with m > 1, are not those of ordinary addition
and multiplication. For example the tables for GF (4) (table C.2) are not

+ 0 1 A B

0 0 1 A B
1 1 0 B A
A A B 0 1
B B A 1 0
· 0 1 A B

0 0 0 0 0
1 0 1 A B
A 0 A B 1
B 0 B 1 A

Table C.2. Addition and
multiplication tables for GF (4).

the rules of addition and multiplication modulo 4. Notice that 1+1 = 0,
for example. So how can GF (4) be described? It turns out that the
elements can be related to polynomials. Consider polynomial functions
of x of degree 1 and with coefficients that are elements of GF (2). The
polynomials shown in table C.3 obey the addition and multiplication
rules of GF (4) if addition and multiplication are modulo the polynomial
x2 + x + 1, and the coefficients of the polynomials are from GF (2). For
example, B ·B = x2 + (1 + 1)x + 1 = x = A. Each element may also be
represented as a bit pattern as shown in table C.3, with addition being
bitwise modulo 2, and multiplication defined with an appropriate carry
operation.

Element Polynomial Bit pattern

0 0 00

1 1 01

A x 10

B x + 1 11

Table C.3. Representations of the
elements of GF (4).
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GF (8). We can denote the elements of GF (8) by {0, 1, A,B,C,D,E,F}. Each
element can be mapped onto a polynomial over GF (2). The multiplica-
tion and addition operations are given by multiplication and addition of
the polynomials, modulo x3 + x + 1. The multiplication table is given
below.

element polynomial binary representation

0 0 000
1 1 001
A x 010
B x + 1 011
C x2 100
D x2 + 1 101
E x2 + x 110
F x2 + x + 1 111

· 0 1 A B C D E F

0 0 0 0 0 0 0 0 0
1 0 1 A B C D E F
A 0 A C E B 1 F D
B 0 B E D F C 1 A
C 0 C B F E A D 1
D 0 D 1 C A F B E
E 0 E F 1 D B A C
F 0 F D A 1 E C B

Why are Galois fields relevant to linear codes? Imagine generalizing a binary
generator matrix G and binary vector s to a matrix and vector with elements
from a larger set, and generalizing the addition and multiplication operations
that define the product Gs. In order to produce an appropriate input for
a symmetric channel, it would be convenient if, for random s, the product
Gs produced all elements in the enlarged set with equal probability. This
uniform distribution is easiest to guarantee if these elements form a group
under both addition and multiplication, because then these operations do not
break the symmetry among the elements. When two random elements of a
multiplicative group are multiplied together, all elements are produced with
equal probability. This is not true of other sets such as the integers, for which
the multiplication operation is more likely to give rise to some elements (the
composite numbers) than others. Galois fields, by their definition, avoid such
symmetry-breaking effects.

�
C.2 Eigenvectors and eigenvalues

A right-eigenvector of a square matrix A is a non-zero vector eR that satisfies

AeR = λeR, (C.1)

where λ is the eigenvalue associated with that eigenvector. The eigenvalue
may be a real number or complex number and it may be zero. Eigenvectors
may be real or complex.

A left-eigenvector of a matrix A is a vector eL that satisfies

eT
LA = λeT

L. (C.2)

The following statements for right-eigenvectors also apply to left-eigenvectors.

• If a matrix has two or more linearly independent right-eigenvectors with
the same eigenvalue then that eigenvalue is called a degenerate eigenvalue
of the matrix, or a repeated eigenvalue. Any linear combination of those
eigenvectors is another right-eigenvector with the same eigenvalue.

• The principal right-eigenvector of a matrix is, by definition, the right-
eigenvector with the largest associated eigenvalue.

• If a real matrix has a right-eigenvector with complex eigenvalue λ =
x + yi then it also has a right-eigenvector with the conjugate eigenvalue
λ∗ = x− yi.


