C

Some Mathematics

- C. 1 Finite field theory

Most linear codes are expressed in the language of Galois theory

Why are Galois fields an appropriate language for linear codes? First, a definition and some examples.

A field F is a set $F=\left\{0, F^{\prime}\right\}$ such that

1. F forms an Abelian group under an addition operation ' + ', with 0 being the identity; [Abelian means all elements commute, i.e., satisfy $a+b=b+a$.]
2. F^{\prime} forms an Abelian group under a multiplication operation '''; multiplication of any element by 0 yields 0 ;
3. these operations satisfy the distributive rule $(a+b) \cdot c=a \cdot c+b \cdot c$.

For example, the real numbers form a field, with ' + ' and ' $'$ ' denoting ordinary addition and multiplication.

A Galois field $G F(q)$ is a field with a finite number of elements q.
A unique Galois field exists for any $q=p^{m}$, where p is a prime number and m is a positive integer; there are no other finite fields.
$G F(2)$. The addition and multiplication tables for $G F(2)$ are shown in table C.1. These are the rules of addition and multiplication modulo 2 .
$G F(p)$. For any prime number p, the addition and multiplication rules are those for ordinary addition and multiplication, modulo p.
$G F(4)$. The rules for $G F\left(p^{m}\right)$, with $m>1$, are not those of ordinary addition and multiplication. For example the tables for $G F(4)$ (table C.2) are not the rules of addition and multiplication modulo 4 . Notice that $1+1=0$, for example. So how can $G F(4)$ be described? It turns out that the elements can be related to polynomials. Consider polynomial functions of x of degree 1 and with coefficients that are elements of $G F(2)$. The polynomials shown in table C. 3 obey the addition and multiplication rules of $G F(4)$ if addition and multiplication are modulo the polynomial $x^{2}+x+1$, and the coefficients of the polynomials are from $G F(2)$. For example, $B \cdot B=x^{2}+(1+1) x+1=x=A$. Each element may also be represented as a bit pattern as shown in table C.3, with addition being bitwise modulo 2, and multiplication defined with an appropriate carry operation.

+	0	1			
0	0	1			
1	1	0		0	1
0	0	0			
1	0	1			

Table C.1. Addition and multiplication tables for $G F(2)$.

+	0	1	A	B
0	0	1	A	B
1	1	0	B	A
A	A	B	0	1
B	B	A	1	0
\cdot	0	1	A	B
0	0	0	0	0
1	0	1	A	B
A	0	A	B	1
B	0	B	1	A

Table C.2. Addition and multiplication tables for $G F(4)$.

Element	Polynomial	Bit pattern
0	0	00
1	1	01
A	x	10
B	$x+1$	11

Table C.3. Representations of the elements of $G F(4)$.
$G F(8)$. We can denote the elements of $G F(8)$ by $\{0,1, A, B, C, D, E, F\}$. Each element can be mapped onto a polynomial over $G F(2)$. The multiplication and addition operations are given by multiplication and addition of the polynomials, modulo $x^{3}+x+1$. The multiplication table is given below.

element	polynomial	binary representation
0	0	000
1	1	001
A	x	010
B	$x+1$	011
C	x^{2}	100
D	$x^{2}+1$	101
E	$x^{2}+x$	110
F	$x^{2}+x+1$	111

\cdot	0	1	A	B	C	D	E	F
0	0	0	0	0	0	0	0	0
1	0	1	A	B	C	D	E	F
A	0	A	C	E	B	1	F	D
B	0	B	E	D	F	C	1	A
C	0	C	B	F	E	A	D	1
D	0	D	1	C	A	F	B	E
E	0	E	F	1	D	B	A	C
F	0	F	D	A	1	E	C	B

Why are Galois fields relevant to linear codes? Imagine generalizing a binary generator matrix \mathbf{G} and binary vector \mathbf{s} to a matrix and vector with elements from a larger set, and generalizing the addition and multiplication operations that define the product Gs. In order to produce an appropriate input for a symmetric channel, it would be convenient if, for random s, the product Gs produced all elements in the enlarged set with equal probability. This uniform distribution is easiest to guarantee if these elements form a group under both addition and multiplication, because then these operations do not break the symmetry among the elements. When two random elements of a multiplicative group are multiplied together, all elements are produced with equal probability. This is not true of other sets such as the integers, for which the multiplication operation is more likely to give rise to some elements (the composite numbers) than others. Galois fields, by their definition, avoid such symmetry-breaking effects.

- C. 2 Eigenvectors and eigenvalues

A right-eigenvector of a square matrix \mathbf{A} is a non-zero vector \mathbf{e}_{R} that satisfies

$$
\begin{equation*}
\mathbf{A} \mathbf{e}_{R}=\lambda \mathbf{e}_{\mathrm{R}} \tag{C.1}
\end{equation*}
$$

where λ is the eigenvalue associated with that eigenvector. The eigenvalue may be a real number or complex number and it may be zero. Eigenvectors may be real or complex.

A left-eigenvector of a matrix \mathbf{A} is a vector \mathbf{e}_{L} that satisfies

$$
\begin{equation*}
\mathbf{e}_{\mathrm{L}}^{\top} \mathbf{A}=\lambda \mathbf{e}_{\mathrm{L}}^{\top} . \tag{C.2}
\end{equation*}
$$

The following statements for right-eigenvectors also apply to left-eigenvectors.

- If a matrix has two or more linearly independent right-eigenvectors with the same eigenvalue then that eigenvalue is called a degenerate eigenvalue of the matrix, or a repeated eigenvalue. Any linear combination of those eigenvectors is another right-eigenvector with the same eigenvalue.
- The principal right-eigenvector of a matrix is, by definition, the righteigenvector with the largest associated eigenvalue.
- If a real matrix has a right-eigenvector with complex eigenvalue $\lambda=$ $x+y i$ then it also has a right-eigenvector with the conjugate eigenvalue $\lambda^{*}=x-y i$.

