
Contiki – a Lightweight and Flexible 
Operating System for Tiny

Networked Sensors

Adam Dunkels, Björn Grönvall, Thiemo Voigt

Swedish Institute of Computer Science

IEEE EmNetS-I, 16 November 2004



Sensor OS trade-offs:

static vs dynamic

event-driven vs multi-threaded



What we have done

● Contiki – an OS for sensor network nodes
● Ported Contiki to a number of platforms

● MSP430, AVR, HC12, Z80, 6502, x86, ...

● Simulation environment for BSD/Linux/Windows

● Built a few applications for experimental 
network deployments



Contributions

● Dynamic loading of programs
● Selective reprogramming

● Static vs dynamic linking

● Concurrency management 
mechanisms

● Events vs threads

● Trade-offs: preemption, size



Contiki design target

● “Mote”-class device
● 10-100 kilobytes of code ROM

● 1-10 kilobytes of RAM

● Communication (radio)

● ESB from FU Berlin
● MSP430, 2k RAM, 60k ROM



Contiki size (bytes)

Module

Kernel

Program loader

Multi-threading library

Timer library

Memory manager

Event log replicator

µIP TCP/IP stack

Code AVR

1044

-

678

90

226

1934

5218

Code MSP430 

810

658

582

60

170

1656

4146

RAM

10 + e + p

8

8 + s

0

0

200

18 + b



Run-time reprogramming 
and

loadable programs



Reprogramming sensor nodes

● Software development for sensor nets
● Need to reprogram many nodes quite often

● Utilize radio for reprogramming
● Radio inherently broadcast

● Reprogram many nodes at once
● Much faster than firmware download via cable 

or programming adapter

● Reprogram deployed networks



Traditional systems:
entire system a monolithic binary

● Most systems statically 
linked at compile-time

● Entire system is a monolithic 
binary

● Compile-time optimizations, 
analysis possible

● Makes code smaller

● But: hard to change
● Must download entire 

system 



Contiki:
loadable programs

● Contiki: one-way 
dependencies

● Core resident in memory
● Language run-time, 

communication

● Programs “know” the core
● Statically linked against core

● Individual programs 
can be 
loaded/unloaded

Core



Loadable programs

● Programs can be loaded 
from anywhere

● Radio (multi-hop, single-
hop), EEPROM, etc

● During software 
development, usually 
change only one module

Core



How well does it work?
● Works well

● Program typically much smaller than entire 
system image (1-10%)

● Much quicker to transfer over the radio

● Reprogramming takes seconds

● Static linking can be a problem
● Small differences in core means module cannot 

be run

● We are implementing a dynamic linker



Concurrency in Contiki



Concurrency is tricky!

● Event-driven vs multi-threaded
● Event-driven (TinyOS)

● Compact, low context switching overhead, fits 
well for reactive systems

● Not suitable for e.g. long running computations
● Public/private key cryptography

● Multi-threading
● Suitable for long running computations

● Requires more resources



Event-driven

● Event-driven 
(TinyOS)

● Processes do not run 
without events

● Event occurs: kernel 
invokes event handler

● Event handler runs to 
completion (explicit 
return;)

Kernel

Handler

Handler

Handler

Handler



Multi-threaded

● Threads blocked, 
waiting for events

● Kernel unblocks 
threads when event 
occurs

● Thread runs until next 
blocking statement

● Each thread requires 
its own stack

● Larger memory usage

Kernel

Thread Thread Thread



Event-driven vs multi-threaded

Event-driven
- No wait() statements

- No preemption

- State machines

+ Compact code

+ Locking less of a problem

+ Memory efficient

Multi-threaded
+ wait() statements

+ Preemption possible

+ Sequential code flow

- Larger code overhead

- Locking problematic

- Larger memory requirements

Why don't we try to combine them?



Contiki: event-based kernel with 
threads

● Contiki: kernel is event-based
● Most programs run directly on top of the kernel

● Multi-threading implemented as a library

● Threads only used if explicitly needed
● Long running computations, ...

● Preemption possible
● Responsive system with running computations





Contiki: implementing threads on 
top of an event-based kernel

Kernel

Event

Event

Event

Event ThreadThread







Conclusions



Conclusions
● Contiki – OS for “mote”-class sensor nodes
● Contiki explores trade-offs in

● static vs dynamic
● event-driven vs multi-threaded

● Loadable programs, works well
● Static linking can be a problem

● Threads on an event-driven kernel
● Multi-threading suitable for certain 

applications



Thank you!
Adam Dunkels <adam@sics.se>

http://www.sics.se/~adam/contiki/



Backup slides



Memory management

● Memory allocated when module is loaded
● Both ROM and RAM

● Fixed block memory allocator

● Code relocation made by module loader
● Exercises flash ROM evenly



Protothreads: light-weight
stackless threads

● Protothreads: mixture between event-driven 
and threaded

● A third concurrency mechanism

● Allows blocked waiting
● Requires per-thread no stack
● Each protothread runs inside a single C 

function

● 2 bytes of per-protothread state



Embedded operating systems

Simple control loop

Event-driven system

Lightweight multi-threading, preemption

Heavy-weight processes with memory protection
Linux

eCos, OSE, Mantis

TinyOS

Contiki


