Excerpt from

An Introduction to Low-Density Parity-Check Codes

Paul H. Siegel Electrical and Computer Engineering University of California, San Diego

1

5/31/07

© Copyright 2007 by Paul H. Siegel

Decoding for the BEC

• Recall: Binary erasure channel, BEC(ε)

$$x = (x_1, x_2, \dots, x_n)$$

 $y = (y_1, y_2, \dots, y_n)$

transmitted codeword received word

• Note: if $y_i \in \{0,1\}$, then $x_i = y_i$.

Local Decoding of Erasures

- d_{min} = 3, so any two erasures can be uniquely filled to get a codeword.
- Decoding can be done *locally*: Given any pattern of one or two erasures, there will always be a parity-check (circle) involving exactly one erasure.
- The parity-check represented by the circle can be used to fill in the erased bit.
- This leaves at most one more erasure. Any parity-check (circle) involving it can be used to fill it in.

Local Decoding - Example

- All-0's codeword transmitted.
- Two erasures as shown.
- Start with either the red parity or green parity circle.
- The red parity circle requires that the erased symbol inside it be 0.

Local Decoding -Example

- Next, the green parity circle or the blue parity circle can be selected.
- Either one requires that the remaining erased symbol be 0.

Local Decoding -Example

• Estimated codeword:

 $[0\ 0\ 0\ 0\ 0\ 0\ 0]$

- Decoding successful!!
- This procedure would have worked no matter which codeword was transmitted.

Decoding with the Tanner Graph: an a-Peeling Decoder

- Initialization:
 - Forward known variable node values along outgoing edges
 - Accumulate forwarded values at check nodes and "record" the parity
 - Delete known variable nodes and all outgoing edges

Peeling Decoder – Initialization

LDPC Codes

Peeling Decoder - Initialization

Decoding with the Tanner Graph: an a-Peeling Decoder

- Decoding step:
 - Select, if possible, a check node with one edge remaining; forward its parity, thereby determining the connected variable node
 - Delete the check node and its outgoing edge
 - Follow procedure in the initialization process at the known variable node
- Termination
 - If remaining graph is empty, the codeword is determined
 - If decoding step gets stuck, declare decoding failure

5/31/07

LDPC Codes

Message-Passing Decoding

- The local decoding procedure can be described in terms of an iterative, "message-passing" algorithm in which all variable nodes and all check nodes in parallel iteratively pass messages along their adjacent edges.
- The values of the code bits are updated accordingly.
- The algorithm continues until all erasures are filled in, or until the completion of a specified number of iterations.
 5/31/07 LDPC Codes

