Excerpt from

An Introduction to
Low-Density Parity-Check Codes

Paul H. Siegel
Electrical and Computer Engineering
University of California, San Diego
Decoding for the BEC

- Recall: Binary erasure channel, BEC(\(\varepsilon\))

\[
x = (x_1, x_2, \ldots, x_n) \quad \text{transmitted codeword}
\]
\[
y = (y_1, y_2, \ldots, y_n) \quad \text{received word}
\]

- Note: if \(y_i \in \{0,1\}\), then \(x_i = y_i\).
Local Decoding of Erasures

- $d_{\text{min}} = 3$, so any two erasures can be uniquely filled to get a codeword.

- Decoding can be done locally: Given any pattern of one or two erasures, there will always be a parity-check (circle) involving exactly one erasure.

- The parity-check represented by the circle can be used to fill in the erased bit.

- This leaves at most one more erasure. Any parity-check (circle) involving it can be used to fill it in.
Local Decoding - Example

- All-0’s codeword transmitted.
- Two erasures as shown.
- Start with either the red parity or green parity circle.
- The red parity circle requires that the erased symbol inside it be 0.
Local Decoding - Example

- Next, the green parity circle or the blue parity circle can be selected.
- Either one requires that the remaining erased symbol be 0.

\[
\begin{array}{ccc}
0 & & 0 \\
0 & ? & 0 \\
0 & 0 & 0
\end{array}
\]
Local Decoding - Example

- Estimated codeword:

 $[0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]$

- Decoding successful!!

- This procedure would have worked no matter which codeword was transmitted.
Decoding with the Tanner Graph: an α-Peeling Decoder

- **Initialization:**
 - Forward known variable node values along outgoing edges
 - Accumulate forwarded values at check nodes and “record” the parity
 - Delete known variable nodes and all outgoing edges
Peeling Decoder – Initialization

X

0
?
0
?
0
?
1

X

0
?
0
?
0
?
1

Forward known values
Peeling Decoder - Initialization

Accumulate parity:

Delete known variable nodes and edges:

LDPC Codes
Decoding with the Tanner Graph: an a-Peeling Decoder

• Decoding step:
 • Select, if possible, a check node with one edge remaining; forward its parity, thereby determining the connected variable node
 • Delete the check node and its outgoing edge
 • Follow procedure in the initialization process at the known variable node

• Termination
 • If remaining graph is empty, the codeword is determined
 • If decoding step gets stuck, declare decoding failure
Peeling Decoder – Step 1

Find degree-1 check node; forward accumulated parity; determine variable node value

Delete check node and edge; forward new variable node value
Peeling Decoder – Step 1

Accumulate parity

Delete known variable nodes and edges
Peeling Decoder – Step 2

Find degree-1 check node; forward accumulated parity; determine variable node value

Delete check node and edge; forward new variable node value
Peeling Decoder – Step 2

Accumulate parity

Delete known variable nodes and edges

LDPC Codes
Peeling Decoder – Step 3

Find degree-1 check node; forward accumulated parity; determine variable node value

Delete check node and edge; decoding complete
Message-Passing Decoding

- The local decoding procedure can be described in terms of an iterative, “message-passing” algorithm in which all variable nodes and all check nodes in parallel iteratively pass messages along their adjacent edges.

- The values of the code bits are updated accordingly.

- The algorithm continues until all erasures are filled in, or until the completion of a specified number of iterations.