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Decoding for the  BEC

• Recall: Binary erasure channel, BEC(ε)

x = (x1, x2,  , xn)            transmitted codeword
y = (y1, y2,  , yn)            received word 

• Note:  if yi{0,1}, then xi = yi.
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Local Decoding of Erasures

• dmin = 3, so any two erasures can be 
uniquely filled to get a codeword.

• Decoding can be done locally:    
Given any pattern of one or two 
erasures, there will always be a 
parity-check (circle) involving 
exactly one erasure. 

• The parity-check represented by the 
circle can be used to fill in the erased 
bit.  

• This leaves at most one more erasure. 
Any parity-check (circle) involving it 
can be used to fill it in.
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Local Decoding - Example

• All-0’s codeword transmitted.

• Two erasures as shown.

• Start with either the red parity   
or green parity circle.

• The red parity circle requires 
that the erased symbol inside it 
be 0.
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Local Decoding -Example

• Next, the green parity circle or 
the blue parity circle can be 
selected.

• Either one requires that the 
remaining erased symbol be 0.
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Local Decoding -Example

• Estimated codeword:

[0 0 0 0 0 0 0]   

• Decoding successful!!

• This procedure would have    
worked no matter which   
codeword  was transmitted.
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Decoding with the Tanner Graph:  
an a-Peeling Decoder 

• Initialization: 
• Forward known variable node 

values along outgoing edges
• Accumulate forwarded values at 

check nodes and “record” the 
parity

• Delete known variable nodes and 
all outgoing edges
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Peeling Decoder  – Initialization 
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Peeling Decoder - Initialization

Delete known variable 
nodes and edgesx
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Decoding with the Tanner Graph:  
an a-Peeling Decoder 

• Decoding step:
• Select, if possible, a check node with one edge remaining; 

forward its parity, thereby determining the connected 
variable node

• Delete the check node and its outgoing edge
• Follow procedure in the initialization process at the known 

variable node

• Termination
• If remaining graph is empty, the codeword is determined
• If decoding step gets stuck, declare decoding failure
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Peeling Decoder – Step 1 

x

0

0

0

?

0

?

1

Find degree-1 check node; 
forward accumulated parity; 
determine variable node value
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forward new variable node value
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Peeling Decoder – Step 1 
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Peeling Decoder – Step 2 
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Find degree-1 check node; 
forward accumulated parity; 
determine variable node value

Delete check node and edge; 
forward new variable node valuex
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Peeling Decoder – Step 2 
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Peeling Decoder – Step 3 
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Find degree-1 check node; 
forward accumulated parity; 
determine variable node value

Delete check node and edge; 
decoding completex
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Message-Passing Decoding 

• The local decoding procedure can be 
described in terms of an iterative, 
“message-passing” algorithm in 
which all variable nodes and all 
check nodes in parallel iteratively 
pass messages along their adjacent 
edges.

• The values of the code bits are 
updated accordingly.

• The algorithm continues until all 
erasures are filled in, or until the 
completion of a specified number of 
iterations.


