
5/ 31/ 07
1

An Introduction to
Low-Density Parity-Check Codes

Paul H. Siegel
Electrical and Computer Engineering
University of California, San Diego

© Copyright 2007 by Paul H. Siegel© Copyright 2007 by Paul H. Siegel

Excerpt from

LDPC Codes5/ 31/ 07 2

Decoding for the BEC

• Recall: Binary erasure channel, BEC(ε)

x = (x1, x2,  , xn) transmitted codeword
y = (y1, y2,  , yn) received word

• Note: if yi{0,1}, then xi = yi.

0 0

1 1

?ε
ε

1-ε

1-ε

xi yi

LDPC Codes5/ 31/ 07 3

Local Decoding of Erasures

• dmin = 3, so any two erasures can be
uniquely filled to get a codeword.

• Decoding can be done locally:
Given any pattern of one or two
erasures, there will always be a
parity-check (circle) involving
exactly one erasure.

• The parity-check represented by the
circle can be used to fill in the erased
bit.

• This leaves at most one more erasure.
Any parity-check (circle) involving it
can be used to fill it in.

1
2 3

47

5

6

LDPC Codes5/ 31/ 07 4

0
? 0

?
0

0

0

Local Decoding - Example

• All-0’s codeword transmitted.

• Two erasures as shown.

• Start with either the red parity
or green parity circle.

• The red parity circle requires
that the erased symbol inside it
be 0.

LDPC Codes5/ 31/ 07 5

0
0 0

?
0

0

0

Local Decoding -Example

• Next, the green parity circle or
the blue parity circle can be
selected.

• Either one requires that the
remaining erased symbol be 0.

LDPC Codes5/ 31/ 07 6

0
0 0

0
0

0

0

Local Decoding -Example

• Estimated codeword:

[0 0 0 0 0 0 0]

• Decoding successful!!

• This procedure would have
worked no matter which
codeword was transmitted.

LDPC Codes5/ 31/ 07 7

Decoding with the Tanner Graph:
an a-Peeling Decoder

• Initialization:
• Forward known variable node

values along outgoing edges
• Accumulate forwarded values at

check nodes and “record” the
parity

• Delete known variable nodes and
all outgoing edges

LDPC Codes5/ 31/ 07 8

Peeling Decoder – Initialization

x

0

?

0

?

0

?

1

Forward known valuesForward known valuesx

0

?

0

?

0

?

1

LDPC Codes5/ 31/ 07 9

Peeling Decoder - Initialization

Delete known variable
nodes and edgesx

0

?

0

?

0

?

1

Accumulate parity x

0

?

0

?

0

?

1

LDPC Codes5/ 31/ 07 10

Decoding with the Tanner Graph:
an a-Peeling Decoder

• Decoding step:
• Select, if possible, a check node with one edge remaining;

forward its parity, thereby determining the connected
variable node

• Delete the check node and its outgoing edge
• Follow procedure in the initialization process at the known

variable node

• Termination
• If remaining graph is empty, the codeword is determined
• If decoding step gets stuck, declare decoding failure

LDPC Codes5/ 31/ 07 11

Peeling Decoder – Step 1

x

0

0

0

?

0

?

1

Find degree-1 check node;
forward accumulated parity;
determine variable node value

x

0

0

0

?

0

?

1

Delete check node and edge;
forward new variable node value

LDPC Codes5/ 31/ 07 12

Peeling Decoder – Step 1

x

0

0

0

?

0

?

1

Accumulate parityx

0

0

0

?

0

?

1

Delete known variable
nodes and edges

LDPC Codes5/ 31/ 07 13

Peeling Decoder – Step 2

x

0

0

0

1

0

?

1

Find degree-1 check node;
forward accumulated parity;
determine variable node value

Delete check node and edge;
forward new variable node valuex

0

0

0

1

0

?

1

LDPC Codes5/ 31/ 07 14

Peeling Decoder – Step 2

x

0

0

0

1

0

?

1

Accumulate parityx

0

0

0

1

0

?

1

Delete known variable
nodes and edges

LDPC Codes5/ 31/ 07 15

Peeling Decoder – Step 3

x

0

0

0

1

0

1

1

Find degree-1 check node;
forward accumulated parity;
determine variable node value

Delete check node and edge;
decoding completex

0

0

0

1

0

1

1

LDPC Codes5/ 31/ 07 16

Message-Passing Decoding

• The local decoding procedure can be
described in terms of an iterative,
“message-passing” algorithm in
which all variable nodes and all
check nodes in parallel iteratively
pass messages along their adjacent
edges.

• The values of the code bits are
updated accordingly.

• The algorithm continues until all
erasures are filled in, or until the
completion of a specified number of
iterations.

