
OS?

Based on

CSE 466 Tasks And Scheduling 1

Embedded Systems: A Contemporary Design Tool
James Peckol

and
EE472 Lecture Notes Pack
Blake Hannaford, James Peckol, Shwetak Patel

Why would anyone want an OS?
 Goal: run multiple programs on the same HW “simultaneously”

 i.e. multi-tasking…it means more than surfing Facebook during lecture

 Problem: how to share resources & avoid interference
 To be shared: processor, memory, GPIOs, PWM, timers, counters, ADCs, etc
 In embedded case, we may need to do the sharing while respecting “real time”

constraints

 OS is responsible for scheduling the various jobs

 Also:
 OS provides abstractions of HW (e.g. device drivers) that make code more

portable & re-usable, as well as enabling sharing
 Code re-use a key goal of ROS (“meta-operating system”)
 Power: maintain state across power loss, power aware scheduling

CSE 466 Tasks and Scheduling 2

Tasks / Processes, Threads
 Task or process

 Unit of code and data… a program running in its own memory space
 Thread

 Smaller than a process
 A single process can contain several threads
 Memory is shared across threads but not across processes

CSE 466 Tasks and Scheduling 3

Ready
Waiting

Running

With just 1 task, it
is either Running or
Ready Waiting

Task 1 Task 2 Task 3

Types of tasks
 Periodic --- Hard real time

 Control: sense, compute, & generate new motor cmd every 10ms
 Multimedia: sample audio, compute filter, generate DAC output every 22.73 uS
 Characterized by

 P, Period
 C, Compute time (may differ from instance to instance, but C<=P)
 D, Deadline (useful if start time of task is variable)

 C < D < P

 Intermittent
 Characterized by

 C and D, but no P

 Background
 Soft realtime or non-realtime
 Characterized by

 C only

 Complex
 Examples

 MS Word, Web server
 Continuous need for CPU
 Requests for IO or user input free CPU

CSE 466 Tasks and Scheduling 4

Scheduling strategies
 Multiprogramming

 Running task continues until a stopping point (e.g. waiting for an IO
event)

 Real-time
 Tasks must be completed before deadline

 Time sharing
 Running task gives up CPU
 Cooperative multitasking

 App voluntarily gives up control
 Old versions of Windows & Mac OS
 Badly behaved apps hang the system

 Preemptive multitasking
 HW timer preempts currently executing task, returns control to OS

 All versions of Unix

 Power aware
 Research topic

CSE 466 Tasks and Scheduling 5

Context

 State must be saved / restored to switch between tasks
 Program Counter (PC)
 Register values
 Processor status flags (Status Register)
 Stack Pointer (SP)
 Memory state
 Peripheral configurations
 Etc

CSE 466 Tasks and Scheduling 6

Task states in a time-sharing system

CSE 466 Tasks and Scheduling 7

Ready
Waiting

Running

Blocked/
Waiting

Enter

Exit

Memory resource management
 Address space

 Each process has a range of
addresses it’s allowed to use

 Privilege level
 Supervisory / kernel mode
 User mode

 Interrupt generated when a user
process tries to operate outside its
address space

 “General protection fault” in x86

CSE 466 Tasks and Scheduling 8

Supervisory Mode
Address Space

User Mode
Address Space User

mode
access

Supervisor
Mode access

Task Control Block (TCB)

Task Control Block
Pointer
State
Process ID
Program Counter
Register contents
Memory limits
Open Files
Etc.

CSE 466 Tasks and Scheduling 9

Also: scheduling information, memory management information, I/O status info

Task Control Block (TCB)

CSE 466 Tasks and Scheduling 10

// The task control block
struct TCB
{

void (*taskPtr)(void* taskDataPtr);
void* taskDataPtr;
void* stackPtr;
unsigned short priority;
struct TCB* nextPtr;
struct TCB* prevPtr;

};

taskPtr is a pointer to a function
The function’s param list has one arg, of type void*

stackPtr: each task has its own stack
Priority: what is the priority level of this task?
nextPtr & prevPtr: pointers to other TCBs

Scheduling

CSE 466 Tasks and Scheduling 11

Time (for RTOS)

 Time slice T, Ticks
 Pmin, shortest period of all tasks in system
 T < Pmin, sometimes T << Pmin

CSE 466 Tasks and Scheduling 12

Scheduling goals

 CPU Utilization
UCPU = 1 – idle / period
In mainframe, 100% is best, but 100% not safe for realtime
systems

Goal: 40% low load, 90% high load
 Throughput
 Turnaround time
 Waiting time
 Response time

CSE 466 Tasks and Scheduling 13

Scheduler types
 Infinite loop, aka non-preemptive Round Robin

while(1) {
task1_fn();
task2_fn();
task3_fn();

}
taskN_fn() {

compute a little bit;
return();

}

CSE 466 Tasks and Scheduling 14

Scheduler types
 Synchronized Infinite loop

 Top of loop waits for a HW clock
while(1) {

wait(CLOCK_PULSE);
task1_fn();
task2_fn();
task3_fn();

}

CSE 466 Tasks and Scheduling 15

Scheduler types
 Preemptive round robin

 AKA cyclic executive
 All processes handled without priority
 Starvation free

CSE 466 Tasks and Scheduling 16

Scheduler types
 Preemptive priority based

 Goal in non-RT OS is to allocate resources equitably…no process
should perpetually lack necessary resources

 Attach priorities to each process
 Problem: priority inversion

 A is highest priority process. It is blocked waiting for a result from C
 B is 2nd highest priority. It never blocks
 C is 3rd highest priority
 Now B runs all the time and A never gets to…their priorities are effectively inverted…A

is starved
 Problem: deadlock

 Catch 22 / Chicken - Egg: A is waiting for B, but B is waiting for A
 One person has the pencil but needs the rule, the other has ruler but needs pencil
 You can’t make coffee until you’re alert…but you’re not alert until you’ve had coffee

 Ways to avoid priority inversion
 Make sure every job gets a minimum time slice
 Priority inheritance

 Does not prevent deadlock when there are circular dependencies

CSE 466 Tasks and Scheduling 17

Scheduler types
 Preemptive priority based

 Rate monotonic scheduling (RMS), for RTOS
 Static priorities set based on job cycle duration---shorter job gets scheduled

more often
 Provide deterministic guarantees about response times (show using Rate

Monotonic Analysis)

CSE 466 Tasks and Scheduling 18

Where
Ci is compute time
Ti is release period
n is # processes to be scheduled

Roughly, RMS can meet deadlines when CPU < 69% used

End

CSE 466 Tasks and Scheduling 19

Real-Time OSes and their communities
 Linux

 RTLinux
 RTAI
 Xenomai

 Commercial
 LynxOS
 QNX
 VxWorks
 Windows CE
 iRMX for Windows
 OSE

 Embedded systems
 FreeRTOS
 C/OS-II

CSE 466 Tasks and Scheduling 20

 Sensor networks
 TinyOS
 Contiki

 Computational RFID
 Dewdrop
 MementOS

 Robotics [“meta OSes,”
on top of Linux]
 ROS
 Player / Stage
 Carmen

RTLinux

 Hard realtime RTOS microkernal runs entire Linux OS as
a preemptive process

 Real time OS is virtual machine “host OS” …Linux kernal
runs as “guest OS”

 Interrupts for realtime processing handled by realtime
core

 Other interrupts forwarded to Linux, handled at lower
priority than realtime interrupts

 Acquired by WindRiver, sold as Wind River Real-Time
Core for Wind-River Linux

CSE 466 Tasks and Scheduling 21

RTAI & Xenomai (Real time Linux)

 RTAI==Real Time Application Interface
 Provides deterministic response to interrupts
 Kernel patch allows RT system to take over key

interrupts, leaves ordinary Linux to handle others
 No patent restrictions (vs RTLinux)
 Lowest feasible latencies

 Xenomai
 Emphasizes extensibility rather than lowest latency

CSE 466 Tasks and Scheduling 22

C/OS-II
 www.ucos-ii.com
 Kernal only…supports

 Scheduling
 Message passing (mailboxes)
 Synchronization (semaphores)
 Memory management
 Supports 64 priority levels…runs highest priority first
 Does not support: IO devices, Files, networking

 Versions
 mC/GUI
 mC/USB-Bulk
 mC/USB-MSD [for Mass Storage Devices]

CSE 466 Tasks and Scheduling 23

FreeRTOS
 http://www.freertos.org/
 Another realtime kernal
 Many features similar to C/OS-II
 Supports both tasks and co-routines

 A co-routine does not have its own stack
 Smaller memory footprint, more efficient
 Restrictions on how/when to call etc required

 Versions
 OpenRTOS

 Commercial, supported

 SafeRTOS
 Documented for safety critical applications

CSE 466 Tasks and Scheduling 24

Contiki and TinyOS

 See Contiki slides
 More info:
http://www.sics.se/contiki/wiki/index.php/Main_Page

CSE 466 Tasks and Scheduling 25

DewDrop

 Energy-aware runtime (scheduler) for
computational RFID

 Interesting to compare power aware
scheduling to RTOS (“time-aware scheduling”)

CSE 466 Tasks and Scheduling 26

ROS

 Robot Operating System
 Meta-operating system

 See
 ros_overview.pdf
 ros_tutorial.pdf

CSE 466 Tasks and Scheduling 27

CSE 466 Tasks and Scheduling 28

Inter-task communication
 Shared variables
 Global variable
 Shared buffer: producer & consumer

CSE 466 Tasks and Scheduling 29

Task T0 Task T1

Problems: mismatch in filling & emptying rates can lead to over- or underflow
Solution: always check empty / full before reading / writing

Inter-task communication
 Shared variables
 Shared double buffer (ping pong buffer)

CSE 466 Tasks and Scheduling 30

One buffer is being filled while the other is being emptied (also used for
displays / graphics!)

Can generalize to n buffers…may be useful when producer generates data
in fast short bursts

Task T0 Task T1

Inter-task communication
 Shared variables
 Ring buffer

 An implementation of a queue, used
to let 2 processes communicate

 FIFO (First In First Out)
 Need to avoid under/overflow

CSE 466 Tasks and Scheduling 31

Task T0

Task T1

head

tail

D0
D1

D2

D3

xx

xx

xx
xx

D0 – D3: valid data
xx: junk

Inter-task communication
 Shared variables
 Mailbox

CSE 466 Tasks and Scheduling 32

A flag indicates that data has been posted…reading clears flag
Variants: can implement as

a queue of length 1,
extensible queue (length n)
priority queue

A way to share a critical resources
Pend differs from poll since during pend, CPU can do other things

Task T0 Task T1

post pend

Interface
post(mailbox, data) // post to mailbox
pend(mailbox, data) // pend on mailbox

Inter-task communication
 Messaging / communication
 Generalize mailbox from “agreed-upon memory

address accessed by defined interface” to more
abstract address (which could be on another
processor)

 Inter-Process Communication (IPC)
 send & receive instead of post & pend

CSE 466 Tasks and Scheduling 33

Inter-task communication
 Messaging / communication
 Direct

 send (T1, message) // send message to Task T1
 receive (T0, message) // receive message from Task T0

 Indirect
 send(M0, message) // send message to mailbox M0
 receive(M0, message) // receive message from mailbox M0

 Multiple tasks may be able to read from / write to a mailbox

CSE 466 Tasks and Scheduling 34

Inter-task communication
 Messaging / communication

 Messaging systems can be buffered in 3 different ways
 Link has 0 capacity rendezvous or Idle RQ protocol

 RQ: “Repeat reQuest”
 TX waits for RX to accept message [ACK, NACK, timeout]
 AKA “stop and wait” or “synchronous”

 Link has bounded capacity…queue length of n
 Link has unbounded capacity continuous RQ protocol

 TX never has to wait
 TX can send next packet before receiving ACK from previous packets
 AKA “asynchronous”

 NB: Idle RQ and Continuous RQ are examples of “backward error correction”
(BEC) protocols, which manage re-transmission when errors are detected.
Contrast with Forward Error Correction (FEC), which we discussed earlier with
error correcting codes [Hamming, LDPC, Raptor, etc]

CSE 466 Tasks and Scheduling 35

Task cooperation, synchronization, sharing

 Concurrent access to common data can result
in data inconsistency, unexpected behavior,
system failure

 Need to manage interactions of multiple tasks
with common resources

CSE 466 Tasks and Scheduling 36

Task cooperation, synchronization, sharing

 Bridge example
 Critical section of roadway…can’t be occupied by

both cars at once
 Need to manage access to shared resource to

avoid collisions

CSE 466 Tasks and Scheduling 37

Car 0 Car 1

bridge

Task cooperation, synchronization, sharing

 Example: N item buffer

CSE 466 Tasks and Scheduling 38

Task T0 Task T1

Shared buffer w/ n item capacity
Producer
Task T0

idle write inc cnt
not full Terminate

Consumer
Task T1

idle read dec cnt
not empty Terminate

Task cooperation, synchronization, sharing

 Example: N item buffer

CSE 466 Tasks and Scheduling 39

Task T0 Task T1

Shared buffer w/ n item capacity
Task T0 --- Producer
while (1)
if not full
add item
increment count

else
wait for space

end while

Task T1 --- Consumer
while (1)
if not empty
get item
decrement count

else
wait for item

end while

The variable count is a critical shared resource…its value can depend on
how the two processes interleave at the lowest level…see next slide

Task cooperation, synchronization, sharing

 Example of problem
count++ implementation:

register1 = count
register1 = register1 + 1
count = register 1

count-- implementation:
register2 = count
register2 = register2 - 1
count = register2

Let count = 5 initially. One possible concurrent execution of count++ and count-- is
register1 = count {register1 = 5}
register1 = register1 + 1 {register1 = 6}
register2 = count {register2 = 5}
register2 = register2 - 1 {register2 = 4}
count = register1 {count = 6}
count = register2 {count = 4}
count = 4 after count++ and count--, even though we started with count = 5
Question: what other values can count be from doing this incorrectly?

Problem is caused by inter-leaving of read & write operations on the same variable
CSE 466 Tasks and Scheduling 40

“Race condition” --- result is determined by
“which input gets to the output first”

Any SW or HW situation in which result
depends critically on timing

Task cooperation, synchronization, sharing

 Example of non-problem
count++ implementation:

register1 = count
register1 = register1 + 1
count = register 1

count-- implementation:
register2 = count
register2 = register2 - 1
count = register2

Let count = 5 initially. One possible concurrent execution of count++ and count-- is
register1 = count {register1 = 5}
register1 = register1 + 1 {register1 = 6}
count = register1 {count = 6}
register2 = count {register2 = 6}
register2 = register2 - 1 {register2 = 5}
count = register2 {count = 5}
count = 5, the correct value

This worked correctly because the operations modifying count were not interleaved
CSE 466 Tasks and Scheduling 41

Task cooperation, synchronization, sharing

 How to prevent problems due to concurrent access to
shared resources?
 Ensure that access to shared resource is mutually

exclusive…only one process can access at time!
 Mutual exclusion synchronization [locks]
 Condition synchronization

 Structure of a critical section

CSE 466 Tasks and Scheduling 42

while(1)
non-critical code
entry section
critical section
exit section
non-critical code

end while

Task cooperation, synchronization, sharing

 Requirements to solve critical section problem
 Ensure mutual exclusion in critical region
 Prevent deadlock
 Ensure progress through critical section
 Ensure bounded waiting

 Upper limit on the number of times a lower priority task can be blocked by a
higher priority task

 Definition: an atomic operation is guaranteed to terminate without
being interrupted…all sub-steps comprising an atomic operation
succeed or fail together

CSE 466 Tasks and Scheduling 43

Task cooperation, synchronization, sharing

 Mechanisms for implementing mutual exclusion
 Flags, embedded in an atomic operation

await (condition) { // await is “atomic wait”
statements

} variable

Other tasks must be able to execute during await, otherwise
deadlock can occur

Use T0Flag to mean Task 0 has lock; T1Flag means Task 1 has
lock

await (!T1Flag) {T0Flag=True;}
await (!T0Flag) {T1Flag=True;}

CSE 466 Tasks and Scheduling 44

Task cooperation, synchronization, sharing
 Mechanisms for implementing mutual exclusion

 Flags
count++ implementation:

register1 = count
register1 = register1 + 1
count = register 1

count-- implementation:
register2 = count
register2 = register2 - 1
count = register2

CSE 466 Tasks and Scheduling 45

Task T0 --- Producer
while (1)

if not full
add item
await(!T1Flag){T0Flag=true;}
count++

T0Flag = false;
else

wait for space
end while

Task T1 --- Consumer
while (1)

if not empty
get item
await (!T0Flag) {T1Flag=false;}
count—

T1Flag = false;
else

wait for item
end while

Task cooperation, synchronization, sharing
 Mechanisms for implementing mutual exclusion

 Token passing: one token gets passed among tasks…only the
task holding the token can access the resource

 Problems:
 Task holds on to token forever
 Task with token crashes
 Token lost or corrupted
 Task terminates without releasing token
 How to add new tasks?

 Possible solutions?
 Add a system task which manages token, and has watchdog timer
 Getting complicated though

CSE 466 Tasks and Scheduling 46

Task Ti

State A State B
Access buffer [have token]

Task cooperation, synchronization, sharing
 Mechanisms for implementing mutual exclusion

 Interrupt management
 In a single processor system, disable interrupts in critical section
 Similar problems to token passing: badly behaved code can screw up
 Similar solutions: use a watchdog timer (with higher priority interrupt level, one

that does not get disabled by critical section)

CSE 466 Tasks and Scheduling 47

Task cooperation, synchronization, sharing
 Mechanisms for implementing mutual exclusion

 Semaphores
 Used to indicate availability of critical variable
 Simplest example: boolean S with two atomic access operations

 wait: P(S) P from Dutch proberen, to test
 wait tests semaphore value, and if false, sets to true
 wait has two parts, test and set, which must occur together

atomically
 signal: V(S) V from Dutch verhogen, to increment

 sets value to false

CSE 466 Tasks and Scheduling 48

Task cooperation, synchronization, sharing
 Mechanisms for implementing mutual exclusion

 Semaphores

CSE 466 Tasks and Scheduling 49

// implementation of semaphore
// notes: - wait must happen atomically!
// - s should be initialized to false
wait(s) {
while (s); // do nothing while another process has s set
s = TRUE; // now WE set s to be true to warn other processes

}

signal(s) {
s = FALSE; // Turn off warning for other processes

}

Task cooperation, synchronization, sharing
 Mechanisms for implementing mutual exclusion

 Semaphores

CSE 466 Tasks and Scheduling 50

// use of semaphores

Task T0 {
…
wait(s)
critical section
signal(s)
…

}

Task T1 {
…
wait(s)
critical section
signal(s)
…

}

Task cooperation, synchronization, sharing
 Mechanism for synchronization

 Semaphores
 Can also be used to enforce ordered execution of asynchronous tasks
 Want f(x) to be called before g(y)
 Use semaphore sync to do this

CSE 466 Tasks and Scheduling 51

// semaphores for synchronization
sync = true // initialization

Task T0 {
…
f(x)
signal(sync)
…

}

Task T1 {
…
…
wait(sync) // wait
g(y)
…

}

Lock on critical section is called a spin lock, because T1 “spins” waiting for
sync signal. Other activity can occur on the system while T1 is waiting, but T1
is not accomplishing anything while waiting

Task cooperation, synchronization, sharing
 Mechanisms for implementing mutual exclusion

 Semaphores
 Can be non-binary: counting semaphores
 Useful for managing a pool of identical resources
 P and V, wait and signal, down and up, and other names used for

semaphore access functions
 vs Mutex [mutual exclusion]: same as binary semaphore, but

 Mutex often has a notion of an “owner process” who must release mutex;
semaphore usually has no owner

CSE 466 Tasks and Scheduling 52

CSE 466 Tasks and Scheduling 53

Example messaging system: ROS

 See ROS slides

CSE 466 Tasks and Scheduling 54

ROS & multithreading in roscpp

 roscpp is the C++ implementation of ROS
 roscpp provides a client library / API for C++ programmers
 roscpp is the high performance option
 vs rospy, python client library / API

 roscpp does not specify a threading model for apps

CSE 466 Tasks and Scheduling 55

Single threaded spinning: spin()

1 ros::init(argc, argv, "my_node");
2 ros::NodeHandle nh;
3 ros::Subscriber sub = nh.subscribe(...);
4 ...
5 ros::spin();

 All user callbacks will be called from within ros::spin()
 ros::spin()does not return until node shuts down…instead,

message handling events get processed

CSE 466 Tasks and Scheduling 56

Single threaded spinning: spinonce()

1 ros::Rate r(10); // 10 hz
2 while (should_continue)
3 {
4 ... do some work, publish some messages, etc. ...
5 ros::spinOnce();
6 r.sleep();
7 }
8

 Call ros::spinonce() periodically
 ros::spinonce()calls all callbacks that are currently waiting to be

processed
 Note: spin() and spinonce() are intended for single threaded apps

CSE 466 Tasks and Scheduling 57

Multi-threaded spinning: MultiThreadedSpinner()

1 ros::MultiThreadedSpinner spinner(4); // Use 4 threads
2 spinner.spin(); // spin() will not return until node
has been shutdown
3

 Blocking spinner, similar to spin()
 You specify a number of threads
 Defaults to one thread per CPU core

CSE 466 Tasks and Scheduling 58

similar

Multi-threaded spinning: AsyncSpinner()

1 ros::AsyncSpinner spinner(4); // Use 4 threads
2 spinner.start();
3 ros::waitForShutdown();
4

 This example is equivalent to previous blocking example
 Call to start() is non-blocking---execution returns right away
 In a real use, you’d put useful code after the start(), instead of

immediately doing waitForShutdown()

CSE 466 Tasks and Scheduling 59

CSE 466 Tasks and Scheduling 60

