
OS?

Based on

CSE 466 Tasks And Scheduling 1

Embedded Systems: A Contemporary Design Tool
James Peckol

and
EE472 Lecture Notes Pack
Blake Hannaford, James Peckol, Shwetak Patel

Why would anyone want an OS?
 Goal: run multiple programs on the same HW “simultaneously”

 i.e. multi-tasking…it means more than surfing Facebook during lecture

 Problem: how to share resources & avoid interference
 To be shared: processor, memory, GPIOs, PWM, timers, counters, ADCs, etc
 In embedded case, we may need to do the sharing while respecting “real time”

constraints

 OS is responsible for scheduling the various jobs

 Also:
 OS provides abstractions of HW (e.g. device drivers) that make code more

portable & re-usable, as well as enabling sharing
 Code re-use a key goal of ROS (“meta-operating system”)
 Power: maintain state across power loss, power aware scheduling

CSE 466 Tasks and Scheduling 2

Tasks / Processes, Threads
 Task or process

 Unit of code and data… a program running in its own memory space
 Thread

 Smaller than a process
 A single process can contain several threads
 Memory is shared across threads but not across processes

CSE 466 Tasks and Scheduling 3

Ready
Waiting

Running

With just 1 task, it
is either Running or
Ready Waiting

Task 1 Task 2 Task 3

Types of tasks
 Periodic --- Hard real time

 Control: sense, compute, & generate new motor cmd every 10ms
 Multimedia: sample audio, compute filter, generate DAC output every 22.73 uS
 Characterized by

 P, Period
 C, Compute time (may differ from instance to instance, but C<=P)
 D, Deadline (useful if start time of task is variable)

 C < D < P

 Intermittent
 Characterized by

 C and D, but no P

 Background
 Soft realtime or non-realtime
 Characterized by

 C only

 Complex
 Examples

 MS Word, Web server
 Continuous need for CPU
 Requests for IO or user input free CPU

CSE 466 Tasks and Scheduling 4

Scheduling strategies
 Multiprogramming

 Running task continues until a stopping point (e.g. waiting for an IO
event)

 Real-time
 Tasks must be completed before deadline

 Time sharing
 Running task gives up CPU
 Cooperative multitasking

 App voluntarily gives up control
 Old versions of Windows & Mac OS
 Badly behaved apps hang the system

 Preemptive multitasking
 HW timer preempts currently executing task, returns control to OS

 All versions of Unix

 Power aware
 Research topic

CSE 466 Tasks and Scheduling 5

Context

 State must be saved / restored to switch between tasks
 Program Counter (PC)
 Register values
 Processor status flags (Status Register)
 Stack Pointer (SP)
 Memory state
 Peripheral configurations
 Etc

CSE 466 Tasks and Scheduling 6

Task states in a time-sharing system

CSE 466 Tasks and Scheduling 7

Ready
Waiting

Running

Blocked/
Waiting

Enter

Exit

Memory resource management
 Address space

 Each process has a range of
addresses it’s allowed to use

 Privilege level
 Supervisory / kernel mode
 User mode

 Interrupt generated when a user
process tries to operate outside its
address space

 “General protection fault” in x86

CSE 466 Tasks and Scheduling 8

Supervisory Mode
Address Space

User Mode
Address Space User

mode
access

Supervisor
Mode access

Task Control Block (TCB)

Task Control Block
Pointer
State
Process ID
Program Counter
Register contents
Memory limits
Open Files
Etc.

CSE 466 Tasks and Scheduling 9

Also: scheduling information, memory management information, I/O status info

Task Control Block (TCB)

CSE 466 Tasks and Scheduling 10

// The task control block
struct TCB
{

void (*taskPtr)(void* taskDataPtr);
void* taskDataPtr;
void* stackPtr;
unsigned short priority;
struct TCB* nextPtr;
struct TCB* prevPtr;

};

taskPtr is a pointer to a function
The function’s param list has one arg, of type void*

stackPtr: each task has its own stack
Priority: what is the priority level of this task?
nextPtr & prevPtr: pointers to other TCBs

Scheduling

CSE 466 Tasks and Scheduling 11

Time (for RTOS)

 Time slice T, Ticks
 Pmin, shortest period of all tasks in system
 T < Pmin, sometimes T << Pmin

CSE 466 Tasks and Scheduling 12

Scheduling goals

 CPU Utilization
UCPU = 1 – idle / period
In mainframe, 100% is best, but 100% not safe for realtime
systems

Goal: 40% low load, 90% high load
 Throughput
 Turnaround time
 Waiting time
 Response time

CSE 466 Tasks and Scheduling 13

Scheduler types
 Infinite loop, aka non-preemptive Round Robin

while(1) {
task1_fn();
task2_fn();
task3_fn();

}
taskN_fn() {

compute a little bit;
return();

}

CSE 466 Tasks and Scheduling 14

Scheduler types
 Synchronized Infinite loop

 Top of loop waits for a HW clock
while(1) {

wait(CLOCK_PULSE);
task1_fn();
task2_fn();
task3_fn();

}

CSE 466 Tasks and Scheduling 15

Scheduler types
 Preemptive round robin

 AKA cyclic executive
 All processes handled without priority
 Starvation free

CSE 466 Tasks and Scheduling 16

Scheduler types
 Preemptive priority based

 Goal in non-RT OS is to allocate resources equitably…no process
should perpetually lack necessary resources

 Attach priorities to each process
 Problem: priority inversion

 A is highest priority process. It is blocked waiting for a result from C
 B is 2nd highest priority. It never blocks
 C is 3rd highest priority
 Now B runs all the time and A never gets to…their priorities are effectively inverted…A

is starved
 Problem: deadlock

 Catch 22 / Chicken - Egg: A is waiting for B, but B is waiting for A
 One person has the pencil but needs the rule, the other has ruler but needs pencil
 You can’t make coffee until you’re alert…but you’re not alert until you’ve had coffee

 Ways to avoid priority inversion
 Make sure every job gets a minimum time slice
 Priority inheritance

 Does not prevent deadlock when there are circular dependencies

CSE 466 Tasks and Scheduling 17

Scheduler types
 Preemptive priority based

 Rate monotonic scheduling (RMS), for RTOS
 Static priorities set based on job cycle duration---shorter job gets scheduled

more often
 Provide deterministic guarantees about response times (show using Rate

Monotonic Analysis)

CSE 466 Tasks and Scheduling 18

Where
Ci is compute time
Ti is release period
n is # processes to be scheduled

Roughly, RMS can meet deadlines when CPU < 69% used

End

CSE 466 Tasks and Scheduling 19

Real-Time OSes and their communities
 Linux

 RTLinux
 RTAI
 Xenomai

 Commercial
 LynxOS
 QNX
 VxWorks
 Windows CE
 iRMX for Windows
 OSE

 Embedded systems
 FreeRTOS
 C/OS-II

CSE 466 Tasks and Scheduling 20

 Sensor networks
 TinyOS
 Contiki

 Computational RFID
 Dewdrop
 MementOS

 Robotics [“meta OSes,”
on top of Linux]
 ROS
 Player / Stage
 Carmen

RTLinux

 Hard realtime RTOS microkernal runs entire Linux OS as
a preemptive process

 Real time OS is virtual machine “host OS” …Linux kernal
runs as “guest OS”

 Interrupts for realtime processing handled by realtime
core

 Other interrupts forwarded to Linux, handled at lower
priority than realtime interrupts

 Acquired by WindRiver, sold as Wind River Real-Time
Core for Wind-River Linux

CSE 466 Tasks and Scheduling 21

RTAI & Xenomai (Real time Linux)

 RTAI==Real Time Application Interface
 Provides deterministic response to interrupts
 Kernel patch allows RT system to take over key

interrupts, leaves ordinary Linux to handle others
 No patent restrictions (vs RTLinux)
 Lowest feasible latencies

 Xenomai
 Emphasizes extensibility rather than lowest latency

CSE 466 Tasks and Scheduling 22

C/OS-II
 www.ucos-ii.com
 Kernal only…supports

 Scheduling
 Message passing (mailboxes)
 Synchronization (semaphores)
 Memory management
 Supports 64 priority levels…runs highest priority first
 Does not support: IO devices, Files, networking

 Versions
 mC/GUI
 mC/USB-Bulk
 mC/USB-MSD [for Mass Storage Devices]

CSE 466 Tasks and Scheduling 23

FreeRTOS
 http://www.freertos.org/
 Another realtime kernal
 Many features similar to C/OS-II
 Supports both tasks and co-routines

 A co-routine does not have its own stack
 Smaller memory footprint, more efficient
 Restrictions on how/when to call etc required

 Versions
 OpenRTOS

 Commercial, supported

 SafeRTOS
 Documented for safety critical applications

CSE 466 Tasks and Scheduling 24

Contiki and TinyOS

 See Contiki slides
 More info:
http://www.sics.se/contiki/wiki/index.php/Main_Page

CSE 466 Tasks and Scheduling 25

DewDrop

 Energy-aware runtime (scheduler) for
computational RFID

 Interesting to compare power aware
scheduling to RTOS (“time-aware scheduling”)

CSE 466 Tasks and Scheduling 26

ROS

 Robot Operating System
 Meta-operating system

 See
 ros_overview.pdf
 ros_tutorial.pdf

CSE 466 Tasks and Scheduling 27

CSE 466 Tasks and Scheduling 28

Inter-task communication
 Shared variables
 Global variable
 Shared buffer: producer & consumer

CSE 466 Tasks and Scheduling 29

Task T0 Task T1

Problems: mismatch in filling & emptying rates can lead to over- or underflow
Solution: always check empty / full before reading / writing

Inter-task communication
 Shared variables
 Shared double buffer (ping pong buffer)

CSE 466 Tasks and Scheduling 30

One buffer is being filled while the other is being emptied (also used for
displays / graphics!)

Can generalize to n buffers…may be useful when producer generates data
in fast short bursts

Task T0 Task T1

Inter-task communication
 Shared variables
 Ring buffer

 An implementation of a queue, used
to let 2 processes communicate

 FIFO (First In First Out)
 Need to avoid under/overflow

CSE 466 Tasks and Scheduling 31

Task T0

Task T1

head

tail

D0
D1

D2

D3

xx

xx

xx
xx

D0 – D3: valid data
xx: junk

Inter-task communication
 Shared variables
 Mailbox

CSE 466 Tasks and Scheduling 32

A flag indicates that data has been posted…reading clears flag
Variants: can implement as

a queue of length 1,
extensible queue (length n)
priority queue

A way to share a critical resources
Pend differs from poll since during pend, CPU can do other things

Task T0 Task T1

post pend

Interface
post(mailbox, data) // post to mailbox
pend(mailbox, data) // pend on mailbox

Inter-task communication
 Messaging / communication
 Generalize mailbox from “agreed-upon memory

address accessed by defined interface” to more
abstract address (which could be on another
processor)

  Inter-Process Communication (IPC)
 send & receive instead of post & pend

CSE 466 Tasks and Scheduling 33

Inter-task communication
 Messaging / communication
 Direct

 send (T1, message) // send message to Task T1
 receive (T0, message) // receive message from Task T0

 Indirect
 send(M0, message) // send message to mailbox M0
 receive(M0, message) // receive message from mailbox M0

 Multiple tasks may be able to read from / write to a mailbox

CSE 466 Tasks and Scheduling 34

Inter-task communication
 Messaging / communication

 Messaging systems can be buffered in 3 different ways
 Link has 0 capacity  rendezvous or Idle RQ protocol

 RQ: “Repeat reQuest”
 TX waits for RX to accept message [ACK, NACK, timeout]
 AKA “stop and wait” or “synchronous”

 Link has bounded capacity…queue length of n
 Link has unbounded capacity  continuous RQ protocol

 TX never has to wait
 TX can send next packet before receiving ACK from previous packets
 AKA “asynchronous”

 NB: Idle RQ and Continuous RQ are examples of “backward error correction”
(BEC) protocols, which manage re-transmission when errors are detected.
Contrast with Forward Error Correction (FEC), which we discussed earlier with
error correcting codes [Hamming, LDPC, Raptor, etc]

CSE 466 Tasks and Scheduling 35

Task cooperation, synchronization, sharing

 Concurrent access to common data can result
in data inconsistency, unexpected behavior,
system failure

 Need to manage interactions of multiple tasks
with common resources

CSE 466 Tasks and Scheduling 36

Task cooperation, synchronization, sharing

 Bridge example
 Critical section of roadway…can’t be occupied by

both cars at once
 Need to manage access to shared resource to

avoid collisions

CSE 466 Tasks and Scheduling 37

Car 0 Car 1

bridge

Task cooperation, synchronization, sharing

 Example: N item buffer

CSE 466 Tasks and Scheduling 38

Task T0 Task T1

Shared buffer w/ n item capacity
Producer
Task T0

idle write inc cnt
not full Terminate

Consumer
Task T1

idle read dec cnt
not empty Terminate

Task cooperation, synchronization, sharing

 Example: N item buffer

CSE 466 Tasks and Scheduling 39

Task T0 Task T1

Shared buffer w/ n item capacity
Task T0 --- Producer
while (1)
if not full
add item
increment count

else
wait for space

end while

Task T1 --- Consumer
while (1)
if not empty
get item
decrement count

else
wait for item

end while

The variable count is a critical shared resource…its value can depend on
how the two processes interleave at the lowest level…see next slide

Task cooperation, synchronization, sharing

 Example of problem
count++ implementation:

register1 = count
register1 = register1 + 1
count = register 1

count-- implementation:
register2 = count
register2 = register2 - 1
count = register2

Let count = 5 initially. One possible concurrent execution of count++ and count-- is
register1 = count {register1 = 5}
register1 = register1 + 1 {register1 = 6}
register2 = count {register2 = 5}
register2 = register2 - 1 {register2 = 4}
count = register1 {count = 6}
count = register2 {count = 4}
count = 4 after count++ and count--, even though we started with count = 5
Question: what other values can count be from doing this incorrectly?

Problem is caused by inter-leaving of read & write operations on the same variable
CSE 466 Tasks and Scheduling 40

“Race condition” --- result is determined by
“which input gets to the output first”

Any SW or HW situation in which result
depends critically on timing

Task cooperation, synchronization, sharing

 Example of non-problem
count++ implementation:

register1 = count
register1 = register1 + 1
count = register 1

count-- implementation:
register2 = count
register2 = register2 - 1
count = register2

Let count = 5 initially. One possible concurrent execution of count++ and count-- is
register1 = count {register1 = 5}
register1 = register1 + 1 {register1 = 6}
count = register1 {count = 6}
register2 = count {register2 = 6}
register2 = register2 - 1 {register2 = 5}
count = register2 {count = 5}
count = 5, the correct value

This worked correctly because the operations modifying count were not interleaved
CSE 466 Tasks and Scheduling 41

Task cooperation, synchronization, sharing

 How to prevent problems due to concurrent access to
shared resources?
 Ensure that access to shared resource is mutually

exclusive…only one process can access at time!
 Mutual exclusion synchronization [locks]
 Condition synchronization

 Structure of a critical section

CSE 466 Tasks and Scheduling 42

while(1)
non-critical code
entry section
critical section
exit section
non-critical code

end while

Task cooperation, synchronization, sharing

 Requirements to solve critical section problem
 Ensure mutual exclusion in critical region
 Prevent deadlock
 Ensure progress through critical section
 Ensure bounded waiting

 Upper limit on the number of times a lower priority task can be blocked by a
higher priority task

 Definition: an atomic operation is guaranteed to terminate without
being interrupted…all sub-steps comprising an atomic operation
succeed or fail together

CSE 466 Tasks and Scheduling 43

Task cooperation, synchronization, sharing

 Mechanisms for implementing mutual exclusion
 Flags, embedded in an atomic operation

await (condition) { // await is “atomic wait”
statements

} variable

Other tasks must be able to execute during await, otherwise
deadlock can occur

Use T0Flag to mean Task 0 has lock; T1Flag means Task 1 has
lock

await (!T1Flag) {T0Flag=True;}
await (!T0Flag) {T1Flag=True;}

CSE 466 Tasks and Scheduling 44

Task cooperation, synchronization, sharing
 Mechanisms for implementing mutual exclusion

 Flags
count++ implementation:

register1 = count
register1 = register1 + 1
count = register 1

count-- implementation:
register2 = count
register2 = register2 - 1
count = register2

CSE 466 Tasks and Scheduling 45

Task T0 --- Producer
while (1)

if not full
add item
await(!T1Flag){T0Flag=true;}
count++

T0Flag = false;
else

wait for space
end while

Task T1 --- Consumer
while (1)

if not empty
get item
await (!T0Flag) {T1Flag=false;}
count—

T1Flag = false;
else

wait for item
end while

Task cooperation, synchronization, sharing
 Mechanisms for implementing mutual exclusion

 Token passing: one token gets passed among tasks…only the
task holding the token can access the resource

 Problems:
 Task holds on to token forever
 Task with token crashes
 Token lost or corrupted
 Task terminates without releasing token
 How to add new tasks?

 Possible solutions?
 Add a system task which manages token, and has watchdog timer
 Getting complicated though

CSE 466 Tasks and Scheduling 46

Task Ti

State A State B
Access buffer [have token]

Task cooperation, synchronization, sharing
 Mechanisms for implementing mutual exclusion

 Interrupt management
 In a single processor system, disable interrupts in critical section
 Similar problems to token passing: badly behaved code can screw up
 Similar solutions: use a watchdog timer (with higher priority interrupt level, one

that does not get disabled by critical section)

CSE 466 Tasks and Scheduling 47

Task cooperation, synchronization, sharing
 Mechanisms for implementing mutual exclusion

 Semaphores
 Used to indicate availability of critical variable
 Simplest example: boolean S with two atomic access operations

 wait: P(S) P from Dutch proberen, to test
 wait tests semaphore value, and if false, sets to true
 wait has two parts, test and set, which must occur together

atomically
 signal: V(S) V from Dutch verhogen, to increment

 sets value to false

CSE 466 Tasks and Scheduling 48

Task cooperation, synchronization, sharing
 Mechanisms for implementing mutual exclusion

 Semaphores

CSE 466 Tasks and Scheduling 49

// implementation of semaphore
// notes: - wait must happen atomically!
// - s should be initialized to false
wait(s) {
while (s); // do nothing while another process has s set
s = TRUE; // now WE set s to be true to warn other processes

}

signal(s) {
s = FALSE; // Turn off warning for other processes

}

Task cooperation, synchronization, sharing
 Mechanisms for implementing mutual exclusion

 Semaphores

CSE 466 Tasks and Scheduling 50

// use of semaphores

Task T0 {
…
wait(s)
critical section
signal(s)
…

}

Task T1 {
…
wait(s)
critical section
signal(s)
…

}

Task cooperation, synchronization, sharing
 Mechanism for synchronization

 Semaphores
 Can also be used to enforce ordered execution of asynchronous tasks
 Want f(x) to be called before g(y)
 Use semaphore sync to do this

CSE 466 Tasks and Scheduling 51

// semaphores for synchronization
sync = true // initialization

Task T0 {
…
f(x)
signal(sync)
…

}

Task T1 {
…
…
wait(sync) // wait
g(y)
…

}

Lock on critical section is called a spin lock, because T1 “spins” waiting for
sync signal. Other activity can occur on the system while T1 is waiting, but T1
is not accomplishing anything while waiting

Task cooperation, synchronization, sharing
 Mechanisms for implementing mutual exclusion

 Semaphores
 Can be non-binary: counting semaphores
 Useful for managing a pool of identical resources
 P and V, wait and signal, down and up, and other names used for

semaphore access functions
 vs Mutex [mutual exclusion]: same as binary semaphore, but

 Mutex often has a notion of an “owner process” who must release mutex;
semaphore usually has no owner

CSE 466 Tasks and Scheduling 52

CSE 466 Tasks and Scheduling 53

Example messaging system: ROS

 See ROS slides

CSE 466 Tasks and Scheduling 54

ROS & multithreading in roscpp

 roscpp is the C++ implementation of ROS
 roscpp provides a client library / API for C++ programmers
 roscpp is the high performance option
 vs rospy, python client library / API

 roscpp does not specify a threading model for apps

CSE 466 Tasks and Scheduling 55

Single threaded spinning: spin()

1 ros::init(argc, argv, "my_node");
2 ros::NodeHandle nh;
3 ros::Subscriber sub = nh.subscribe(...);
4 ...
5 ros::spin();

 All user callbacks will be called from within ros::spin()
 ros::spin()does not return until node shuts down…instead,

message handling events get processed

CSE 466 Tasks and Scheduling 56

Single threaded spinning: spinonce()

1 ros::Rate r(10); // 10 hz
2 while (should_continue)
3 {
4 ... do some work, publish some messages, etc. ...
5 ros::spinOnce();
6 r.sleep();
7 }
8

 Call ros::spinonce() periodically
 ros::spinonce()calls all callbacks that are currently waiting to be

processed
 Note: spin() and spinonce() are intended for single threaded apps

CSE 466 Tasks and Scheduling 57

Multi-threaded spinning: MultiThreadedSpinner()

1 ros::MultiThreadedSpinner spinner(4); // Use 4 threads
2 spinner.spin(); // spin() will not return until node
has been shutdown
3

 Blocking spinner, similar to spin()
 You specify a number of threads
 Defaults to one thread per CPU core

CSE 466 Tasks and Scheduling 58

similar

Multi-threaded spinning: AsyncSpinner()

1 ros::AsyncSpinner spinner(4); // Use 4 threads
2 spinner.start();
3 ros::waitForShutdown();
4

 This example is equivalent to previous blocking example
 Call to start() is non-blocking---execution returns right away
 In a real use, you’d put useful code after the start(), instead of

immediately doing waitForShutdown()

CSE 466 Tasks and Scheduling 59

CSE 466 Tasks and Scheduling 60

