
Basics of Error Control Codes

Drawing from the book

CSE 466 Error Correcting Codes 1

Information Theory, Inference, and Learning Algorithms
David MacKay
© Cambridge Univ. Press 2003

Downloadable or purchasable:
http://www.inference.phy.cam.ac.uk/mackay/itila/book.html

Channel coding aka Forward Error Correction

 “My communication system is working, but I am getting a lot of errors…what
can I do?”

 CRC is an error DETECTING code…it spots errors with high probability, but
doesn’t tell you how to fix them

 Error CORRECTING codes can actually allow you to repair the errors…if
there aren’t too many

CSE 466 Error Correcting Codes 2

The big picture

 Channel coding is adding redundancy to improve reliability, at a cost in rate
 Error correction

 Source coding is removal of redundancy from information bits to improve rate
 Compression

 This lecture is only about channel coding

CSE 466 Error Correcting Codes 3

David MacKay
Information Theory, Inference, and Learning
Algorithms
© Cambridge Univ. Press 2003

How do error correcting codes work?

 Basic idea: add redundancy (extra bits) to make
communication more robust
 Or, put another way, don’t allow all bit patterns, just a subset…if

you receive an invalid bit sequence, correct to the closest valid bit
sequence

 The extra bits (or disallowed bit patterns) reduce the net
communication rate:
 If “information bits” are denoted i and “error correction bits”

denoted ec, then the new rate, with error correction is i/(i+ec)
 The original rate, with no error correction (ec=0) is 1.0

CSE 466 Error Correcting Codes 4

Noisy communication channels

 EF modem  airgap  EF modem
 modem  phone line  modem
 wifi card  radio waves  wifi card
 Galileo probe  radio waves  Earth
 Parent cell  daughter cell 1

 daughter cell 2
 RAM  disk drive  RAM
 RAM  flash memory RAM
 printer  QR code  phone camera

CSE 466 Error Correcting Codes 5

A model for the noise in the channel
 Binary Symmetric Channel (BSC) with f=0.1
 f: probability of bit flip

CSE 466 Error Correcting Codes 6

David MacKay
Information Theory, Inference, and Learning
Algorithms
© Cambridge Univ. Press 2003

Other important channels: Erasure Channel (models
packet loss in wired or wireless networks)

Example 1: Repetition code, “R3”

CSE 466 Error Correcting Codes 7

Received codeword Decoded as
000 0 (no errors)
001 0
010 0
100 0
111 1 (no errors)
110 1
101 1
011 1

 Each 1 information bit gets encoded to 3 transmitted bits, so the rate
of this code is 1/3

 If you think of the first bit as the message, and bits 2 and 3 as the
error correction bits, then the rate also turns out to be 1/(1+2) = 1/3

 This code can correct 1 bit flip, or 2 bit erasures (erasures not shown)

Problems with R3

CSE 466 Error Correcting Codes 8

Noise set to flip 10% of the bits
Rate is only 1/3
Still 3% errors remaining after error correction…Crummy!

David MacKay
Information Theory, Inference, and Learning
Algorithms
© Cambridge Univ. Press 2003

Example 2: Random code

CSE 466 Error Correcting Codes 9

Original message Codewords transmitted
000 10100110
001 11010001
010 01101011
011 00011101
100 01101000
101 11001010
110 10111010
111 00010111

Each block of 3 info bits mapped to a random 8 bit vector…rate 3/8
code. Could pick any rate, since we just pick the length of the random
code words. Note that we are encoding blocks of bits (length 3) jointly
Problems with this scheme:
(1) the need to distribute and store a large codebook
(2) decoding requires comparing received bit vectors to entire codebook

A visualization of ECCs

CSE 466 Error Correcting Codes 10

Codewords

Volume in which
noise can
(obviously)
be tolerated

An error correcting code selects a subset of the space to use as valid
messages (codewords). Since the number of valid messages is smaller
than the total number of possible messages, we have given up some
communication rate in exchange for robustness. The size of each ball
above gives approximately the amount of redundancy. The larger the ball
(the more redundancy), the smaller the number of valid messages

The name of the game

 In ECCs is to find mathematical schemes that
allow time- and space-efficient encoding and
decoding, while providing high communication
rates and low bit error rates, despite the
presence of noise

CSE 466 Error Correcting Codes 11

Types of ECC
 Algebraic

 Hamming Codes
 Reed-Solomon [CD, DVD, hard disk drives, QR codes]
 BCH

 Sparse graph codes
 Turbo [CDMA2000 1x]
 Repeat accumulate
 LDPC (Low Density Parity Check)

 [WiMax, 802.11n, 10GBase 10 802.3an]

 Fountain / Tornado / LT / Raptor (for erasure)
 [3GPP mobile cellular broadcast, DVB-H for IP multicast]

CSE 466 Error Correcting Codes 12

Other ECC terminology

 Block vs. convolutional
 Linear
 Systematic / non-Systematic
 Systematic means original information bits are

transmitted unmodified.
 Repetition code is systematic
 Random code is not (though you could make a

systematic version of a random code…append random
check bits that don’t depend on the data…would not be
as good as parity bits that do depend on the data)

CSE 466 Error Correcting Codes 13

Example 3: (7,4) Hamming Code (Encoding)

CSE 466 Error Correcting Codes 14

Don’t encode 1 bit at a time, as in the repetition code
Encode blocks of 4 source bits to blocks of 7 transmitted

s1s2s3s4  t1t2t3t4t5t6t7
Where t1 - t4 are chosen s.t.

s1s2s3s4  s1s2s3s4 t5t6t7
Set parity check bits t5 – t7 using

t5=s1+s2+s3 mod 2  1+0+0 = 1
t6=s2+s3+s4 mod 2  0+0+0 = 0
t7=s1+s3+s4 mod 2  1+0+0 = 1

Parity check bits are a linear function information bits…a linear code

b--example:
10001000101

Rate 4/7 code

David MacKay
Information Theory, Inference, and Learning
Algorithms
© Cambridge Univ. Press 2003

Example 3: (7,4) Hamming Code (Encoding)

The 16 codewords of the (7,4) Hamming code:

Any pair of codewords differs in at least 3 bits!

CSE 466 Error Correcting Codes 15

David MacKay
Information Theory, Inference, and Learning
Algorithms
© Cambridge Univ. Press 2003

Example 3: (7,4) Hamming Code (Encoding)

Since it is a linear code, we can write the encoding
operation as a matrix multiply (using mod 2 arithmetic):

t=GTs where

CSE 466 Error Correcting Codes 16

G is called the
Generator Matrix
of the code.

David MacKay
Information Theory, Inference, and Learning
Algorithms
© Cambridge Univ. Press 2003

Example 3: (7,4) Hamming Code (Decoding)

CSE 466 Error Correcting Codes 17

If received vector r = t+n (transmitted plus noise), then write r in circles:

Dashed lineparity
check violated
* bit flipped

Compute parity for each circle (dashviolated parity check)
Pattern of parity checks is called the “syndrome”
Error bit is the unique one inside all the dashed circles

Transmitted
example

David MacKay
Information Theory, Inference, and Learning
Algorithms
© Cambridge Univ. Press 2003

Example 3: (7,4) Hamming Code (Decoding)

CSE 466 Error Correcting Codes 18

Each of the 3 circles is either dotted (syndrome=1)
or solid (syndrome = 0)
 23=8 possibilities

David MacKay
Information Theory, Inference, and Learning
Algorithms
© Cambridge Univ. Press 2003

What happens if there are 2 errors?

CSE 466 Error Correcting Codes 19

*s denote actual errors
Circled value is incorrectly inferred single-bit error
Optimal decoder actually adds another error in this case…so
we started with 2 errors and end with 3

David MacKay
Information Theory, Inference, and Learning
Algorithms
© Cambridge Univ. Press 2003

Larger (7,4) Hamming example

CSE 466 Error Correcting Codes 20

7% errors remain
after error correction

David MacKay
Information Theory, Inference, and Learning
Algorithms
© Cambridge Univ. Press 2003

Comparing codes

CSE 466 Error Correcting Codes 21

Binary symmetric channel with f = 0.1
Error probability pb vs communication rate R for repetition codes,
(7,4) Hamming code, BCH codes up to length 1023

David MacKay
Information Theory, Inference, and Learning
Algorithms
© Cambridge Univ. Press 2003

What is the best a code can do?

 How much noise can be tolerated?
 What SNR do we need to communicate

reliably?
 At what rate can we communicate with a

channel with a given SNR?
 What error rate should we expect?

CSE 466 Error Correcting Codes 22

What is the best a code can do?

 Binary symmetric channel with f =0.1

CSE 466 Error Correcting Codes 23

2

2 2 2

/ (1 ())
where log (1) log (1)

b

b b b b

R C H p
H p p p p

 
    

David MacKay
Information Theory, Inference, and Learning
Algorithms
© Cambridge Univ. Press 2003

Better codes

CSE 466 Communication 24

Example 3: (7,4) Hamming Code (Encoding)

CSE 466 Error Correcting Codes 25

Don’t encode 1 bit at a time, as in the repetition code
Encode blocks of 4 source bits to blocks of 7 transmitted

s1s2s3s4  t1t2t3t4t5t6t7
Where t1 - t4 are chosen s.t.

s1s2s3s4  s1s2s3s4 t5t6t7
Set parity check bits t5 – t7 using

t5=s1+s2+s3 mod 2  1+0+0 = 1
t6=s2+s3+s4 mod 2  0+0+0 = 0
t7=s1+s3+s4 mod 2  1+0+0 = 1

Parity check bits are a linear function information bits…a linear code

b--example:
10001000101

Rate 4/7 code

David MacKay
Information Theory, Inference, and Learning
Algorithms
© Cambridge Univ. Press 2003

Example 3: (7,4) Hamming Code (Encoding)

Since it is a linear code, we can write the encoding
operation as a matrix multiply (using mod 2 arithmetic):

t=GTs where

CSE 466 Error Correcting Codes 26

G is called the
Generator Matrix
of the code.

David MacKay
Information Theory, Inference, and Learning
Algorithms
© Cambridge Univ. Press 2003

Matrix formulation

CSE 466 Communication 27

 

4

3

Define s.t.

 If

 then syndrome

All codewords satisfy
0
0
0

0 0 0 0
Proof: 0 0 0 0 mod 2

0 0 0 0

T

T

T

 
  
 

 



 
   
  

 
   
  

P
I

G
P

H P I z Hr

t G s

Ht

HG

1
1

1
1

1 1 1
1 1 1

1 1 1

T

 
 
 
 
   
 
 
 
  

G

1 1 1 1
1 1 1 1

1 1 1 1

 
   
  

H

G: Generator matrix…for encoding
H: Parity check matrix…for decoding

Graphical representation of (7,4) Hamming code

 Bipartite graph --- two groups of nodes…all edges
go from group 1 (circles) to group 2 (squares)

 Circles: bits
 Squares: parity check computations

CSE 466 Communication 28

Information bit

Parity check computation

Parity check bit

Low Density Parity Check Codes
 Invented in Gallagher’s MIT MS Thesis 1960
 Computationally intractable at the time
 Re-invented by David MacKay & Radford Neal in the

1990s

CSE 466 Communication 29

David MacKay
Information Theory, Inference, and Learning
Algorithms
© Cambridge Univ. Press 2003

Same (small) number of 1s in each row (4) and
column (3)

Each row of H corresponds to a check (square)
Each col of H is a bit (circle)

As in the Hamming code example before,
encode using t=GTs
Decode involves checking parity by multiplying
H r, where r is a column vector of received bits

Decoding
 Ideal decoders would give good performance, but

optimally decoding parity check codes is an NP-complete
problem

 In practice, the sum-product algorithm, aka iterative
probabilistic decoding, aka belief propagation do very well

 Decoding occurs by message passing on the
graph…same basic idea as graphical models
 Same algorithms were discovered simultaneously in the 90s in AI /

Machine Learning / Coding
 Decoding is an inference problem: infer likeliest source message

given received message, which is the corrupted-encoded-source-
message

CSE 466 Communication 30

Pause to recall two decoding perspectives

CSE 466 Communication 31

 Encode: t = GTs
 Transmission: r = t+n
 Decoding: find s given r
 Codeword decoding

 Iterate to find x close to r s.t. H x = 0 … then hopefully x = t, and
n = r - x

 Syndrome decoding
 Compute syndrome z = H r
 Iterate to find n s.t. Hn = z

 We actually want H (t+n) = z, but H(t+n) = Ht + Hn = 0 + Hn = z
 In other words, Hn=z  H(t+n)=z [because knowing n and r t]

Why are we covering this?
 It’s interesting subject matter that I like!

 This course often includes a couple of grab bag topics

 It’s important recent research that is transforming the landscape of
communicating with embedded (and other) devices…the benefit of studying
at a research university is being exposed to the latest research

 Iterative decoding / belief propagation / sum-product algorithm techniques
are also useful in many other contexts (e.g. machine learning, inference), so
it’s good to be exposed to them

 CS needs more of this kind of content
 Q: But aren’t these algorithms impossible to implement on the embedded

micros we’re focusing on?
 A1: Encoding is easy…all you need is enough memory. Asymmetric architectures

(tiny wireless embedded device talking to giant cloud server) are becoming
increasingly important. LDPC codes are a good fit for architectures like this.
 Figuring out how to do LDPC encoding on REALLY tiny processors, with tiny amounts of memory, is an

interesting research question! Let me know if you’re interested.

 A2: In a few years you won’t be able to buy a micro so small it won’t have the
horsepower to do LDPC _decoding_

 A3: You could actually implement LDPC decoding using a network of small
embedded devices

CSE 466 Communication 32

Binary Erasure Channel (BEC) example

See other deck

CSE 466 Communication 33

How to decode
 Propagate probabilities for each bit to be set around the graph (cf

belief propagation in AI)
 The difficulty is the cycles in the graph…So…pretend there are no cycles

and iterate
 In horizontal step (from point of view of parity check matrix H) find r,

prob of observed parity check value arising from hypothesized bit
settings

 In vertical step, find q, prob of bit settings, assuming hypothesized
parity check values

CSE 466 Communication 34

Syndrome

Noise

How to decode

rmn: parity check probabilities

CSE 466 Communication 35

m indexes checks
n indexes bits

0

m1

1

n1 n2

n3

n4

n5

n6n7

0 1

0

0

0 0

0

m2m3

1

Received data: x = [0 1 0 0 0 0 0]
z computed from rcv data: [1 1 0]
All bit hypotheses for neighbors of m=1 check
& node 2 excluded: “-”
hypotheses
1234 (bit number) [list of hypotheses

summed over in r0 calc]
0-00 bit 2 = 0  P(z1=1|x2=0) = 0
0-01 bit 2 = 0  P(z1=1|x2=0) = 1
0-10 bit 2 = 0  P(z1=1|x2=0) = 1
0-11 bit 2 = 0  P(z1=1|x2=0) = 0
1-00 bit 2 = 0  P(z1=1|x2=0) = 1
1-01 bit 2 = 0  P(z1=1|x2=0) = 0
1-10 bit 2 = 0  P(z1=1|x2=0) = 0
1-11 bit 2 = 0  P(z1=1|x2=0) = 0

r12

r12 is the message from check 1 to variable 2. The message tells variable 2
what check 1 thinks variable 2’s value should be.

z1

How to decode

qmn: variable probabilities

CSE 466 Communication 36

m indexes checks
n indexes bits

0

m1

1

n1 n2

n3

n4

n5

n6n7

0 1

0

0

0 0

0

m2m3

1

Received data: x = [0 1 0 0 0 0 0]
z computed from rcv data: [1 1 0]

q12

q12 is the message from variable 2 to check 1. The message tells check 1
what variable 2 thinks check 1’s value should be.

How to decode
rmn: parity check probabilities

CSE 466 Communication 37

Hypothesized bit settings

m indexes checks
n indexes bits

Value of observed
syndrome (this is data!)

Approx. probability
of the hypothesized
bit settings

r0(i,jp) = r0(i,jp) + PzGivenX0*qpp

where
qp = 1.0; %"q product"...a product should start at 1!
for b = 0:rweight-1; % For each bit, i.e. each variable node we're connected to

jp = ind(b+1); % jp gets actual index of current bit b (+1: Matlab starts at 1)
qp = qp*((1-hyp(b+1))*q0(i,jp) + hyp(b+1)*q1(i,jp));
% hyp(b+1) indicates whether bit we're looking at is a 0 or 1...
% depending on the value of hyp, we’ll need to get our prob from either q0 or q1

end
and where
PzGivenX0 = 1-mod(bitsum0+z(i),2); % This is either 0 or 1
PzGivenX1 = 1-mod(bitsum1+z(i),2); % This should also = 1-PzGivenX0

1 or 0, depending on whether observed syndrome zm is
consistent with hypothesis to the right of |

How to decode

rmn: parity check probabilities, for each edge

CSE 466 Communication 38

Hypothesized bit settings

m indexes checks
n indexes bits
N(m) means all the bits connected to check m
n’ in N(m) \ n means every bit associated with

check m, EXCEPT for bit n

Value of observed
syndrome (this is data!)

Approx. probability
of the hypothesized
bit settings

How to decode

qmn: bit probabilities, for each edge

CSE 466 Communication 39

m indexes checks
n indexes bits
M(n) means all the checks connected to bit n
m’ in M(n) \ m means every check associated

with bit n, EXCEPT for check m

Iterative decoding of LDPC codes

CSE 466 Communication 40

Noise level:
7.5%

Error-free after
13 iterations

Shannon limit for a
rate ½ code: ~11%

http://www.inference.phy.cam.ac.uk/mackay/codes/gifs/
David MacKay
Information Theory, Inference, and Learning
Algorithms
© Cambridge Univ. Press 2003

K=10000 info bits
N=20000 transmit bits

BER < 1/30000
BER < 3.3 x10-5

Performance of LDPC codes

CSE 466 Communication 41

Fountain codes

 AKA Raptor codes, LT codes, etc
 LDPC codes for the erasure channel

 Packet loss…useful for broadcast channels

 Instead of regular LDPC (same number of 1s in each row,
or same number of edges between checks and
variables), irregular LDPC: a few check nodes with many
edges, most check nodes with just a few edges

 Irregular LDPC seems to only work well for erasure
channel…error floor problem

CSE 466 Communication 42

Convolutional codes
 Can use LFSR as encoder!

CSE 466 Communication 43

Rate 1/3 non-recursive, non-systematic convolutional encoder, constraint
length 3

Convolutional codes
 Can use LFSR as encoder!

CSE 466 Communication 44

Rate 1/2 recursive, systematic convolutional encoder, constraint length 4

Decoding convolutional codes
 Trellis diagram for first code
 Solid lines: 0 is input
 Dashed lines: 1 is input
 Decoding: use Viterbi algorithm for max likelihood estimate, feasible

for small codes

CSE 466 Communication 45

CSE 466 Communication 46

How much information is it possible to send
using a noisy analog channel?

CSE 466 Error Correcting Codes 47

 2 2 2log log 1 log 1S N SC W W W SNR
N N
          

   

If channel has bandwidth W (measured in cycles per second), signal power S,
and noise N, then the channel capacity C, in bits per second, is given by

Hand-wavy proof:

2 2log log
WS N S NW

N N
       

   
This is the base 2 log of the number of reliably
distinguishable states
With bandwidth W, in one second of time, there are about W
orthogonal sinusoids.
For each of these, there are about (S+N) / N distinguishable
amplitude levels.
Why not just log SNR? Consider S=0 case. This formula
[log 1+SNR] gives 0 bits, which seems right, vs –Infinity bits

S=6

N=1

One freq
bin, SNR=6

