
Basics of Control 
Based on slides by Benjamin Kuipers

 How can an information system (like 
a micro-CONTROLLER, a fly-ball 
governor, or your brain) control the 
physical world?

 Examples:
 Thermostat
 You, walking down the street without 

falling over
 A robot trying to keep a joint at a 

particular angle
 A blimp trying to maintain a particular 

heading despite air movement in the 
room

 A robot finger trying to maintain a 
particular distance from an object
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Controlling a Simple System

 Consider a simple system:  

 Scalar variables x and u, not vectors x and u.
 Assume effect of motor command u:  

 The setpoint xset is the desired value.
 The controller responds to error:  e = x  xset

 The goal is to set u to reach e = 0.
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The intuition behind control

 Use action u to push back toward error e = 0

 What does pushing back do?
 Position vs velocity versus acceleration control

 How much should we push back?
 What does the magnitude of u depend on?



Velocity or acceleration control?

 Velocity:  

 Acceleration:  
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Laws of Motion in Physics

 Newton’s Law:  F=ma  or  a=F/m.

 But Aristotle said:
 Velocity, not acceleration, is proportional to the 

force on a body.
 True in a friction-dominated setting
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The Bang-Bang Controller
 Push back, against the direction of the error

 Error:  

 To prevent chatter around 

 Household thermostat.  Simple but effective.
 PWM!

e  x  xset
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i.e., use small hysteresis    , instead of
0 as threshold





Bang-Bang Control

CSE 466 Control 8

Here, error is 

e=xhuman – xrobot
in some region close to 
the robot



Proportional Control
 Push back, proportional to the error.

 Set ub so that 
 For a linear system, exponential 

convergence.

 The controller gain k determines how 
quickly the system responds to error.

u  ke  ub

( , ) 0set bx F x u 

x(t) Ce t  xset

ub: bias action



Proportional control (discrete time)
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Velocity Control

 You want the robot to move at velocity vset.

 You command velocity vcmd.
 You observe velocity vobs.

 Define a first-order controller:

 k is the controller gain.

( )cmd obs setv k v v  



Velocity control
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Steady-State Offset

 Suppose we have continuing disturbances:

 The P-controller cannot stabilize at e = 0.
 Why not?
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Steady-State Offset

 Suppose we have continuing disturbances:

 The P-controller cannot stabilize at e = 0.
 If ub is defined so F(xset,ub) = 0
 then F(xset,ub) + d  0, so the system is 

unstable
 Must adapt ub to different disturbances d.
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Nonlinear P-control

 Generalize proportional control to

 Nonlinear control laws have advantages
 f has vertical asymptote:  bounded error e
 f has horizontal asymptote:  bounded effort u
 Possible to converge in finite time.
 Nonlinearity allows more kinds of composition.

( ) bu f e u  



Derivative Control

 Damping friction is a force opposing motion, 
proportional to velocity.

 Try to prevent overshoot by damping 
controller response.

 Estimating a derivative from measurements is 
fragile, and amplifies noise.

P Du k e k e   



Adaptive Control

 Sometimes one controller isn’t enough.
 We need controllers at different time scales.

 This can eliminate steady-state offset.
 Why?

u  kPe  ub
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Adaptive Control

 Sometimes one controller isn’t enough.
 We need controllers at different time scales.

 This can eliminate steady-state offset.
 Because the slower controller adapts ub.

u  kPe  ub

whereb I I Pu k e k k  



Integral Control

 The adaptive controller

 Therefore

 The Proportional-Integral (PI) Controller.

b Iu k e 

0

( )
t

b I bu t k edt u  

0

( ) ( )
t

P I bu t k e t k edt u   

Integrate both sides wrt time



Proportional – Integral (PI) control
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The PID Controller

 A weighted combination of Proportional, 
Integral, and Derivative terms.

 The PID controller is the workhorse of the 
control industry.  Tuning is non-trivial.
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PID controller
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Tuning

PID properties to consider
 Rise time
 Overshoot
 Settling time
 Steady-state error
 Stability

Many PID tuning methods 
exist
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Integral and Derivative terms

 Question from class: the integral of the red trace on the left is non-zero.  Yet the 
controller is converging to the setpoint.  Is there a decay mechanisms for the I term?

 A: not necessarily.  In this example system, a non-zero bias command may be 
necessary to keep the system at its setpoint.  Think of an application like gravity 
compensation: to keep the joint still, you may have to apply a constant force to 
counteract gravity.  The integral term can find that bias point.
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Integral gain term Derivative gain term



Habituation
 Integral control adapts the bias term ub.
 Habituation adapts the setpoint xset.
 It prevents situations where too much control 

action would be dangerous.
 Both adaptations reduce steady-state error.

u  kPe  ub

whereset h h Px k e k k  



Types of Controllers
 Feedback control
 Sense error, determine control response.

 Feedforward control
 Sense disturbance, predict resulting error, respond 

to predicted error before it happens.
 Model-predictive control
 Plan trajectory to reach goal.  
 Take first step.  
 Repeat.
 Combines benefits of planning & control
 See Emo Todorov’s ping pong ball juggling robot



End
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