Introduction to SimpliciTI

Low-power RF protocol from Texas Instruments
Outline

- Overview – What is SimpliciTI?
 - Device types and network topologies
 - SimpliciTI software architecture
 - Example: How to configure SimpliciTI devices
 - Insight on packet format and addressing
 - Supported hardware platforms
 - Demonstration: Temp sensor network
What is SimpliciT?I?

SimpliciT is:

− Low Power: a TI proprietary low-power RF network protocol

− Low Cost: uses < 8K FLASH, 1K RAM depending on configuration

− Flexible: simple star w/ extendor and/or p2p communication

− Simple: Utilizes a very basic core API

− Versatile: MSP430+CC110x/2500, CC1110/2510, CC1111/CC2511, CC2430, CC2520

− Low Power: Supports sleeping devices
Application Areas

SimpliciTI supports:

- alarm & security: occupancy sensors, light sensors, carbon monoxide sensors, glass-breakage detectors

- smoke detectors

- remote controls

- AMR: gas meters, water meters, e-meters

- home automation: garage door openers, appliances, environmental devices
Outline

• Overview – What is SimpliciTI?
• Device types and network topologies
• SimpliciTI software architecture
• Example: How to configure SimpliciTI devices
• Insight on packet format and addressing
• Supported hardware platforms
• Demonstration: Temp sensor network
SimpliciTI Network topology
wireless sensing application

- Range can be extended through repeaters.

- The circles represent range of gateway and extended range of repeaters.

Examples message flows
- Peer2Peer message
- Message to Access point
- Message repeated through range extenders
Active RF tags typically enter and exit the network ad-hoc.

Tags must be able to quickly associate to the network while maintaining low power consumption.
SimpliciTI Network topology

Smoke Detector System

- **Optional Access point**
- **Sensor / Extender**
- **Alarm Triggered Device**

Examples message flows

- **Flooded Alarm Message**
Outline

• Overview – What is SimpliciTI?
• Device types and network topologies
• SimpliciTI software architecture
• Example: How to configure SimpliciTI devices
• Insight on packet format and addressing
• Supported hardware platforms
• Demonstration: Temp sensor network
Architectural Overview

- **Layers**
 - MRFI (“minimal RF interface”)
 - NWK
 - nwk applications (modules)
 - customer applications

- **Network Support**
 - init
 - ping
 - link / linklisten
 - nwk mgmt
 - send / receive
 - I/O
Application Programming Interface (API)

• initialization
 • smplStatus_t SMPL_Init(uint8_t (*callback)(linkID_t));

• linking (bi-directional by default)
 • smplStatus_t SMPL_Link(linkID_t *linkID);
 • smplStatus_t SMPL_LinkListen(linkID_t *linkID);

• peer-to-peer messaging
 • smplStatus_t SMPL_Send(lid, *msg, len);
 • smplStatus_t SMPL_Receive(lid, *msg, *len);

• configuration
 • smplStatus_t SMPL_Ioctl(object, action, *val);
Simple Configuration

- operational mode (type)
- power mode (sleep support)
- topology
- addressing / identification
- RAM allocation
 - packet size
 - buffer sizes
 - # supported links (connections)
- security tokens
- messaging (hop ct, repeaters)
- radio (freq, crypto key, modulation, CCA parameters)

/* FROM smpl_config.dat */

// Number of connections supported
-DNUM_CONNECTIONS=4

// Maximum size of application payload
-DMAX_APP_PAYLOAD=20

// size of low level queues for sent and received frames.
-DSIZE_INFRAME_Q=2
-DSIZE_OUTFRAME_Q=2

// default Link token
-DDEFAULT_LINK_TOKEN=0x01020304

// default Join token
-DDEFAULT_JOIN_TOKEN=0x05060708

// this device's address.
-DTHIS_DEVICE_ADDRESS="\{0x79, 0x56, 0x34, 0x12\}"

// device type
-DEND_DEVICE

// for End Devices specify the Rx type.
-DRX_LISTENS
-DRX_POLLS
-DRX_NEVER
-DRX_ALWAYS
Runtime Configuration

- radio frequency
- encryption key
- app access to frame header
- app access to radio controls
- AP nwk mgmt control

<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOCTL_OBJ_FREQ</td>
<td>Get/Set radio frequency</td>
<td>Frequency agility. May be used by APP or NWK.</td>
</tr>
<tr>
<td>IOCTL_OBJ_CRYPTKEY</td>
<td>Set encryption key</td>
<td>Customer may provide external means for user to set a non-default key. Requires reset to take effect.</td>
</tr>
<tr>
<td>IOCTL_OBJ_RAW_IO</td>
<td>Application layer access to the frame header to directly send or receive a frame.</td>
<td>This object is used for example to ping another device where the network address of the target device is supplied directly and not done through the connection table.</td>
</tr>
<tr>
<td>IOCTL_OBJ_RADIO</td>
<td>Application layer access to some radio controls.</td>
<td>Limited access to radio directly. For example, sleeping and awakening the radio and getting signal strength information.</td>
</tr>
<tr>
<td>IOCTL_OBJ_AP_JOIN</td>
<td>Access Point join-allow context</td>
<td>Interface to control whether Access Point will allow devices to join or not.</td>
</tr>
</tbody>
</table>
Outline

• Overview – What is SimpliciTI?
• Device types and network topologies
• SimpliciTI software architecture
• Example: How to configure SimpliciTI devices
• Insight on packet format and addressing
• Supported hardware platforms
• Demonstration: Temp sensor network
Example
How to configure Access Point

- star hub in the network (1 / net)
- always-on (acts as range extender)
- store and fwd for sleeping devices
- linking and token (link and join) mgmt
- AP can implement end device functionality (link listen, receive)

```c
// Initialize the HW/Radio
BSP_Init(); // initialize the BSP (API subject to change)
SMPL_Init(0);

// Handle Linking
SMPL_LinkListen(&linkID1);

// Receive Messages
While (1) {
   while((SMPL_SUCCESS == SMPL_Receive(linkID1, msg, &len) {
         // do something
   }
}
```
Example
How to configure Range Extender

- always-on device
- repeats received frames (with limitations)
- limited to 4 / net (although flexible in design)

// Initialize the HW/Radio
BSP_Init();
SMPL_Init(0);

// No Linking or application level functionality
while(1);
Example
How to configure End Device

• poll for data
 – polling is Port specific
 – no data results
 in blank (empty)
 response
• API e.g. Sequence
 – Init (and Join)
 – Link (assumes listen)
 – Sample Temp
 – Send
• option to sleep

```c
void main()
{
  linkID_t linkID;
  uint32_t temp;

  // Initialize the board’s HW
  BSP_Init();
  SMPL_Init(0);
  // link.
  SMPL_Link(&linkID);

  while (TRUE)
  {
    // sleep until timer. read temp sensor
    MCU_Sleep();
    HW_ReadTempSensor(&temp);
    if (temp > TOO_HIGH)
    {
      SMPL_Send(linkID, “Hot!”, 4);
    }
    if (temp < TOO_LOW)
    {
      SMPL_Send(linkID, “Cold!”, 5);
    }
  }
}
```
Outline

• Overview – What is SimpliciTI?
• Device types and network topologies
• SimpliciTI software architecture
• Example: How to configure SimpliciTI devices

• Insight on packet format and addressing
• Supported hardware platforms
• Demonstration: Temp sensor network
Packet Format

<table>
<thead>
<tr>
<th>PREAMBLE</th>
<th>SYNC</th>
<th>LENGTH</th>
<th>MISC</th>
<th>DSTADDR</th>
<th>SRCADDR</th>
<th>PORT</th>
<th>DEVICE INFO</th>
<th>TRACTID</th>
<th>App Payload</th>
<th>FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD*</td>
<td>RD*</td>
<td>1</td>
<td>RD*</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>n</td>
<td>RD*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network header</th>
<th>App payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRFI header</td>
<td>MRFI payload</td>
</tr>
<tr>
<td>MRFI frame</td>
<td></td>
</tr>
</tbody>
</table>

SimpliciTI frame

RD: Radio-dependent populated by MRFI or handled by the radio itself

- preamble: hw sync
- sync: hw sync
- length: bytes non-phy
- dstaddr
- srcaddr
- port: app port number
- dev info: capabilities
- tractid: transaction nonce or seq num
- app pyld: $0 \leq n \leq 52$ byte/113 byte (radio dependent)
- crc: must be valid
Addressing and Communication

- net address = hw addr (4 byte) + app port
 - statically assigned hw addr
 - no address resolution mechanism
- byte 1: 0x00, 0xFF – reserved for broadcast
- communication topologies:
 - direct peer-2-peer
 - store and fwd p2p through AP
 - direct p2p through RE
 - store and fwd p2p through RE and AP
Additional Details

• CCS development environment
• minimal hw abstraction
• no driver support (UART, SPI, LCD, Timers)
• no heap utilization
• no runtime (nwk) context storage
• single thread (app), no tasks or scheduling
• nwk api is synchronous (does not return until operation is complete)
• retries and acks must be managed by app
Outline

• Overview – What is SimpliciTI?
• Device types and network topologies
• SimpliciTI software architecture
• Example: How to configure SimpliciTI devices
• Insight on packet format and addressing
 • Supported hardware platforms
• Demonstration: Temp sensor network
Hardware Support

- MSP-EXP430FG4618 Experimenters Board
 - (MSP430FG4618) w/ Socket Interface for CC110x / CC2500

- eZ430RF-2500
 - MSP430F2274 + CC2500

- CC2510-CC2511DK and CC1110 CC1111DK

- DSSS (MSP430 +CC2420, CC2430)

- CC2520
Outline

• Overview – What is SimpliciTI?
• Device types and network topologies
• SimpliciTI software architecture
• Example: How to configure SimpliciTI devices
• Insight on packet format and addressing
• Supported hardware platforms

• Demonstration: Temp sensor network
Example
Hardware configuration

USB 2.0

Access Point:
CC2511 USB Dongle

End Device:
eZ430 RF Target Board

End Device:
CC2510EM
Development Tools
Packet sniffer

- two end devices are reading their internal temperature sensor
- 1/sec they report their value to the access point
- the access point feeds the data to a terminal window on the PC via a virtual COM port
- all RF traffic can be monitored with the TI SimpliciTI packet sniffer
Current Consumption
How to estimate and measure?

- Guideline to SimpliciTI current consumption as presented in application note:

- Wireless Sensor Monitor Using the eZ430-RF2500.

Available examples

<table>
<thead>
<tr>
<th>Where</th>
<th>What</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SimpliciTI distribution</td>
<td>SimpliciTI examples:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 2 ED with bi-di</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- AP as data hub</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Cascading ED</td>
<td>ED distributed with eZ430-RF2500.</td>
</tr>
<tr>
<td></td>
<td>- Simple polling with AP</td>
<td>Comes with app.note.</td>
</tr>
</tbody>
</table>

| eZ430-RF2500 | - [Temp.Sens network with PC gui](#) | |

www.ti.com/simpliciti