MSP430 Interrupts

What is an Interrupt?

Reaction to something in I/O (human, comm link)
Usually asynchronous to processor activities
“Interrupt handler” or “interrupt service routine” (ISR)
Invoked to take care of condition causing interrupt

o Change value of internal variable (count)

o Read a data value (sensor, receive)
o Write a data value (actuator, send)

Main Program

Instruction 1 / ISR

Instruction 2 Save state
Instruction 3 Instruction 1
Instruction 4 Instruction 2

..... Instruction 3

Restore state
Return from Interrupt

CSE 466 Interrupts

Interrupts

Interrupts preempt normal code execution

o Interrupt code runs in the foreground
o Normal (e.g. main()) code runs in the background

Interrupts can be enabled and disabled

o Globally
o Individually on a per-peripheral basis
o Non-Maskable Interrupt (NMI)

The occurrence of each interrupt is unpredictable

o When an interrupt occurs

o Where an interrupt occurs

Interrupts are associated with a variety of on-chip and

off-chip peripherals.
o Timers, Watchdog, D/A, Accelerometer
2 NMI, change-on-pin (Switch)

CSE 466 MSP430 Interrupts

Interrupts

Interrupts commonly used for

o Urgent tasks w/higher priority than main code

o Infrequent tasks to save polling overhead

o Waking the CPU from sleep

o Call to an operating system (software interrupt).

Event-driven programming

o The flow of the program is determined by events—i.e.,
sensor outputs or user actions (mouse clicks, key
presses) or messages from other programs or threads.

o The application has a main loop with event detection
and event handlers.

CSE 466 MSP430 Interrupts

Interrupt Flags

Each interrupt has a flag that is raised (set) when
the interrupt occurs.

Each interrupt flag has a corresponding enable bit

— setting this bit allows a hardware module to
request an interrupt.

Most interrupts are maskable, which means they
can only interrupt if

1) enabled and

2) the general interrupt enable (GIE) bit is set in the
status register (SR).

CSE 466 MSP430 Interrupts

Interrupt Vectors

The CPU must know where to fetch the next
Instruction following an interrupt.

The address of an ISR is defined In an interrupt
vector.

The MSP430 uses vectored interrupts where
each ISR has its own vector stored In a vector
table located at the end of program memory.

Note: The vector table is at a fixed location
(defined by the processor data sheet), but the
ISRs can be located anywhere in memory.

CSE 466 MSP430 Interrupts

MSP430 Memory

nterrunt vectors] "o Unified 64KB continuous memory map
o Same instructions for data and peripherals
FLASH

Main Memory o Program and data in Flash or RAM with no
restrictions

0200h

Peripherals
SFR’s

CSE 466 MSP430 Interrupts

Serving Interrupt Request

Interrupt vector
user program

Lookup interrupt vector for
ISR starting address.
2. Store information (PC and
SR on Stack)
. Transfer to service routine.

3
4. Restore information
interrupt service routine 5. Return (RET' = get old

OxF800 PC from stack).
RETI

CSE 466 MSP430 Interrupts

MSP430x2xx Interrupt Vectors

Table 7. Interrupt Sources

Higher address=>

higher priority

SYSTEM
INTERRUPT SOURCE INTERRUPT FLAG INTERRUPT WORD ADDRESS PRIORITY
Power-up PORIFG
External reset RSTIFG
Watchdog Timer+ WDTIFG Reset OFFFEh 31, highest
Flash key violation KEYV
PC out-of-range'" See @
NMI NMIIFG (non)}-maskable,
Oscilator fault OFIFG_ (non}-maskable, OFFFCh 30
Flash memory access violation ACCVIFGR® (non}maskable
OFFFAh 20
0FFF8h 28
Comparator_A+ (MSP430F20x1) CAIFG* maskable OFFF6h rij
Watchdog Timer+ WODTIFG maskable 0FFF4h 28
Timer_A2 TACCRO CCIFG® maskable OFFF2h 25
Timer_A2 TACCR1 CCIFG.TAIFG2&) maskable OFFFOh 24
OFFEER 23
OFFECh 2
ADC10 (MSP430F20x2) ADCI10IFG™ maskable OFFEAR 21
SD16_A (MSP430F20:3) e SO maskable
MNMFZ}JQUS'MSP 430F20x3) USIIFG, USISTTIFG21&) maskable OFFESh 20
VO Port P2 (two flags) P2FGE 1o P2FG.7E™ maskable OFFEBh 19
IO Port P1 (eight flags) P1IFG.O 1o PIFG.72®) maskable OFFE4h 18
OFFE2h 17
OFFEOh 16
See ® OFFDER to OFFCOh 15 to 0, lowest

(1) Aresetis generated the CPU tries to fetch instructions from within the module register memory address range (Oh to 01FFh) or from

within unused address ranges.
(2) Muitple source flags

{3) (non}maskable: the ndividual interrupt-enable bit can disable an interrupt event, but the general interupt enable cannot.

(4) Interrupt flags

are located in the module.

(5) The interrupt vectors at addresses OFFDE to OFFCOh are not used in this device and can be used for regular program code if

NEcessary.

CSE 466

MSP430 Interrupts

MSP430F2274 Address Space

Memory Size Address Description Access
OXFFFF
OXFECO Interrupt Vector Table Word
Flash 32KB s V. T T - T ==
Program Code Word/Byte
0x8000 1—
OXOSFF Word/Byte
SRAM 1KB Stack
0x0200
Ox01FF : :
256 0X0100 16-bit Peripherals Modules Word
0XO0FF . .
240 0X0010 8-bit Peripherals Modules Byte
0x000F : : : .
16 0x0000 8-bit Special Function Registers Byte

CSE 466 MSP430 Interrupts 10

Processing an Interrupt...

Current instruction completed

MCLK started if CPU was off

Processor pushes program counter on stack
Processor pushes status register on stack
Interrupt w/highest priority is selected
Interrupt request flag cleared if single sourced

Status register Is cleared
= Disables further maskable interrupts (GIE cleared)
= Terminates low-power mode

Processor fetches interrupt vector and stores it in the
program counter

User ISR must do the rest!

CSE 466 MSP430 Interrupts 11

Interrupt Stack

ltem1

tem2 | ¢~SP Prior to Interrupt Service Routine (=ISR)

ISR hardware - automatically

ltem 1 *» Program Counter (= PC) pushed
Item2 Status Register (= SR) pushed
il Interrupt vector moved to PC

sk 1*"SP | GIE, CPUOFF, OSCOFF and SCG1 cleared
» |FG flag cleared on single source flags
ltem1 l - 1
o e-sp reti - automatically
> » SR popped - original
= PC popped

CSE 466 MSP430 Interrupts 12

Interrupt Service Routines

Look superficially like a subroutine.

However, unlike subroutines

o ISR’s can execute at unpredictable times.

o Must carry out action and thoroughly clean up.
o Must be concerned with shared variables.

o Must return using reti rather than ret.

ISR must handle interrupt in such a way that the
Interrupted code can be resumed without error

o Copies of all registers used in the ISR must be saved
(preferably on the stack)

CSE 466 MSP430 Interrupts 13

Interrupt Service Routines

Well-written ISRSs:
o Should be short and fast

o Should affect the rest of the system as little as
possible

2o Require a balance between doing very little — thereby
leaving the background code with lots of processing —
and doing a lot and leaving the background code with
nothing to do

Applications that use interrupts should:

o Disable interrupts as little as possible

o Respond to interrupts as quickly as possible

CSE 466 MSP430 Interrupts 14

Interrupt Service Routines

Interrupt-related runtime problems can be
exceptionally hard to debug

Common interrupt-related errors include:

Failing to protect global variables

Forgetting to actually include the ISR - no linker error!
Not testing or validating thoroughly

Stack overflow

Running out of CPU horsepower

Interrupting critical code

Trying to outsmart the compiler

o 0O 0 0 0 0 O

CSE 466 MSP430 Interrupts 15

Returning from ISR

MSP430 requires 6 clock cycles before the ISR
begins executing

o The time between the interrupt request and the start
of the ISR is called latency (plus time to complete
the current instruction, 6 cycles, the worst case)

An ISR always finishes with the return from
Interrupt instruction (reti) requiring 5 cycles
o The SR is popped from the stack

Re-enables maskable interrupts
Restores previous low-power mode of operation

o The PC is popped from the stack

o Note: if waking up the processor with an ISR, the new
power mode must be set in the stack saved SR

CSE 466 MSP430 Interrupts 16

Return From Interrupt

Single operand instructions:

Mnemonic Operation Description

PUSH(Bor W) src SP-2—SP, src>@SP Push byte/word source on stack

CALL dst SP-2—SP, PC+2—->@SP Subroutine call to destination
dst—PC

RETI TOS—-SR, SP+2—-SP Return from interrupt

TOS—HPC, SP+2-5SP

Emulated instructions:

Mnemonic Operation Emulation Description

RET @SP—-PC MOV @SP+,PC Return from subroutine
SP+2—>SP

POP(Bor W) dst @SP->temp MOV(.B or.W) Pop byte/word from stack to
SP+2—>SP @SP+,dst destination
temp—dst

CSE 466 MSP430 Interrupts 17

Summary

By coding efficiently you can run multiple peripherals at
high speeds on the MSP430

Polling is to be avoided — use interrupts to deal with each
peripheral only when attention is required

Allocate processes to peripherals based on existing (fixed)
Interrupt priorities - certain peripherals can tolerate
substantial latency

Use GIE when it's shown to be most efficient and the
application can tolerate it — otherwise, control individual I1E
bits to minimize system interrupt latency.

An interrupt-based approach eases the handling of
asynchronous events

CSE 466 MSP430 Interrupts 18

P1 and P2 interrupts

Only transitions (low to hi or hi to low) cause interrupts

P1IFG & P2IFG (Port 1 & 2 Interrupt FlaG registers)
o Bit 0: no interrupt pending

o Bit 1: interrupt pending

P1IES & P2IES (Port 1 & 2 Interrupt Edge Select req)

o Bit 0: PxIFG is set on low to high transition
o Bit 1: PxIFG is set on high to low transition

P1IE & P2IE (Port 1 & 2 Interrupt Enable req)

o Bit O: interrupt disabled
o Bit 1: interrupt enabled

CSE 466 MSP430 Interrupts

19

—

Example P1 interrupt msp430x20x3_P1_02.c

#include <msp430x20x3.h>
void main(void)

{
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
P1DIR |= 0Ox01; // Set P1.0 to output direction
P1IE |= 0x10; // P1.4 interrupt enabled
P1IES |= 0x10; // P1.4 Hi/lo edge
P1IFG &= ~0x10; // P1.4 1FG cleared
_BIS_SR(LPM4 bits + GIE); // Enter LPM4 w/interrupt

+

// Port 1 interrupt service routine

#pragma vector=PORT1 VECTOR

__Interrupt void Port_1(void)

{
P1OUT ~= 0x01; // P1.0 = toggle
PLIFG &= ~0x10; // P1.4 IFG cleared

}

CSE 466 MSP430 Interrupts

20

—

Ex: Timer interrupt: msp430x20x3_ta_03.c

#include <msp430x20x3.h>
void main(void)

{
WDTCTL = WDTPW + WDTHOLD; // Stop WDT
P1DIR |= Ox01; // P1.0 output
TACTL = TASSEL 2 + MC_2 + TAIE; // SMCLK, contmode, interrupt
_BIS_SR(LPMO_bits + GIE); // Enter LPMO w/ interrupt
+

// Timer_ A3 Interrupt Vector (TAIV) handler
#pragma vector=TIMERA1l VECTOR
__Interrupt void Timer_ A(void)

{

switch(TALIV)

{
case 2: break; // CCR1 not used
case 4: break; // CCR2 not used
case 10: P10OUT "= 0Ox01; // overflow

break;
s
s

CSE 466 MSP430 Interrupts 21

Example
we stepped through the following code in class with the debugger

CSE 466 MSP430 Interrupts

22

Msp430x20x3_ta_06.c (moditied, part 1)

Demo: Samples 8

#include <msp430x20x3.h>
void main(void)

{
WDTCTL = WDTPW + WDTHOLD;// Stop WDT
P1DIR |= Ox01; // P1.0 output
CCTL1 = CCIE; // CCR1 interrupt enabled
CCR1 = 0OxAO000;
TACTL = TASSEL 2 + MC_2; // SMCLK, Contmode
_BIS_SR(LPMO _bits + GIE);// Enter LPMO w/ i1Int.

+

Servicing a timer interrupt; toggling pin in ISR

CSE 466 MSP430 Interrupts

23

Msp430x20x3_ta_06.c (moditied, part 2)

Demo: Samples 8

// Timer_ A3 Interrupt Vector (TAIV) handler
#pragma vector=TIMERA1 VECTOR

___Interrupt void Timer_A(void)

{
switch(TAIV)
{
case 2: // CCR1
{
P1OUT ~= 0x01; // Toggle P1.0
CCR1 += OxA000; // Add Offset to CCR1 == 0OxA000
s
break;
case 4: break; // CCR2 not used
case 10: break; // overflow not used
}

}

CSE 466 MSP430 Interrupts

Pulse Width Modulation (PWM)

Pulse width modulation (PWM) is used to control analog
circuits with a processor's digital outputs

PWM is a technique of digitally encoding analog signal
levels

o The duty cycle of a square wave is modulated to encode a specific
analog signal level

o The PWM signal is still digital because, at any given instant of time,
the full DC supply is either fully on or fully off

The voltage or current source is supplied to the analog
load by means of a repeating series of on and off pulses

Given a sufficient bandwidth, any analog value can be
encoded with PWM.

CSE 466 MSP430 Interrupts 25

PWM Machines

CSE 466 MSP430 Interrupts 26

PWM — Frequency/Duty Cycle

CSE 466 . MSP430 Interrupts
Time

27

Multiple Clocks

No crystal on eZ430 tools
Use VLO for ACLK

Multiple Oscillator Clock System | (mov.w#LFXT1S_2,&BCSCTL3)

Very Low-Power
Oscillator (VLO) ACLK 32 kHz

32.768 kHz

Low-Power Peripherals

fCrvstal

Control
MCLK 100 kHz - 25 MHz

Digitally H”””” ”””””
Controlled -

Oscillator CPU and Peripherals

CSE 466 MSP430 Interrupts 28

Processor Clock Speeds

Often, the most important factor for reducing power
consumption is slowing the clock down

o Faster clock = Higher performance, more power
o Slower clock = Lower performance, less power

Using assembly code:

MSP430 Clock - Set DCO to 8 MHz:
mov.b #CALBC1 8MHZ,&BCSCTL1 ; Setrange
mov.b #CALDCO_ 8MHZ,&DCOCTL ; Set DCO step + modulation

Using C code.:

// MSP430 Clock - Set DCO to 8 MHz:
BCSCTL1 = CALBC1_8MH/Z; // Set range 8MHz
DCOCTL = CALDCO_8MHZ; // Set DCO step + modulation

CSE 466 MSP430 Interrupts 29

Processor Clock Speeds

Another method to reduce power consumption Is
to turn off some (or all) of the system clocks

o Active Mode (AM): CPU, all clocks, and enabled
modules are active (=300 pA)

o LPMO: CPU and MCLK are disabled, SMCLK and ACLK
remain active (=85 pA)

o LPM3: CPU, MCLK, SMCLK, and DCO are disabled;
only ACLK remains active (=1 pA)

o LPM4: CPU and all clocks disabled, RAM is retained
(zo.l LLA)

A device Is said to be sleeping when in low-power

mode; waking refers to returning to active mode

CSE 466 MSP430 Interrupts 30

MSP430 Clock Modes

o T EE o

All
clocks off

0.1uA

' ACLK on
35uA

“LPM4”
RAM/SFRs retained

“LPMO”

“LPM3”
RTC function
LCD driver
RAM/SFRs retained

Activity Profile

- —

Only uses 1pA during low clock
Less clocks means less power!
CSE 466 MSP430 Interrupts 31

‘ Clocks Oft Power Savings

OSC | CPU
Reserved V [SCG1|SCGO off | OFF GIE| N Z C

R2/SR

[SMCLK and LActive Mode 0 O 0 0 ~ 250uA

ACLK Active -
7 LPMO o [1]i ~ 35ua

1{i ~ 0.8ua

1. ~ 0.1ua
Tm)Modes]

bis.w #CPUOFF, SR ; LPMO
& {atatasied ettt B i B R A D D (R R U R B R L B B B R R O 0 e R S T R D c_‘i. RO R S R R fopaia R R i R N R R R 33

bR

Only ACLK
Active

[No Clocks!

CSE 466 MSP430 Interrupts 32

Lower Power Savings

= Finally, powering your system with lower voltages
means lower power consumption as well

300
315 -

270 -
225 -
180
135 |
90 -
45

O i

lcc/1A at 1 MHz

AM LPMO LPM2 LPMS3 LPM4
Operating Modes

CSE 466 MSP430 Interrupts 33

Principles ot Low-Power Apps

Maximize the time in LPM3 mode
Use interrupts to wake the processor
Switch on peripherals only when needed

Use low-power integrated peripherals
o Timer_A and Timer_B for PWM

Calculated branches instead of flag polling
Fast table look-ups instead of calculations
Avoid frequent subroutine and function calls

Longer software routines should use single-cycle
CPU registers

CSE 466 MSP430 Interrupts 34

Setting L.ow-Power Modes

Setting low-power mode puts the microcontroller

“to sleep” — so usually, interrupts would need to be
enabled as well.

Enter LPM3 and enable interrupts using assembly
code:

enable interrupts / enter low-power mode 3
bis.o #LPM3+GIE,SR ; LPM3 w/interrupts

Enter LPM3 and enable interrupts using C code:

// enable interrupts / enter low-power mode 3
___bis_SR_register(LPM3_bits + GIE);

CSE 466 MSP430 Interrupts 35

Timers

System timing is fundamental for real-time
applications

The MSP430F2274 has 2 timers, namely
Timer_A and Timer_B

The timers may be triggered by internal or
external clocks

Timer_A and Timer_B also include multiple
Independent capture/compare blocks that are
used for applications such as timed events and
Pulse Width Modulation (PWM)

CSE 466 MSP430 Interrupts 36

Timers

The main applications of timers are to:

0 generate events of fixed time-period

o allow periodic wakeup from sleep of the device
0 count transitional signal edges

o replace delay loops allowing the CPU to sleep
between operations, consuming less power

0 maintain synchronization clocks

CSE 466 MSP430 Interrupts 37

TxCTL Control Register

15 14 13 12 11 10 9 8 6 2 1 0
(Used by Timer_B) TXSSELX IDx MCx TXCLR | TXIE | TxIFG
Bit Description
9-8 TxSSELXx Timer_x clock source: 00 = TxCLK
01= ACLK
10 = SMCLK
11 = INCLK
7-6 IDx Clock signal divider: 00=/1
01l=/2
10=/4
11=1/8
5-4 MCx Clock timer operating mode: 0 0 = Stop mode
0 1= Up mode
1 0 = Continuous mode
11 = Up/down mode
2 TxCLR Timer_x clear when TXCLR =1
1 TXIE Timer_x interrupt enable when TxIE =1
0 TXIFG Timer_x interrupt pending when TxIFG =1
CSE 466 MSP430 Interrupts 38

4 Modes of Operation

Timer reset by writing a 0 to TxR
Clock timer operating modes:

MCx | Mode Description
00 |Stop The timer is halted.
01 |(Up The timer repeatedly counts from 0x0000 to
the value in the TXCCRO register.
10 |Continuous |The timer repeatedly counts from 0x0000 to
OxFFFF.
11 |Up/down The timer repeatedly counts from 0x0000 to

the value in the TXCCRO register and
back down to zero.

CSE 466

MSP430 Interrupts 39

Timer Modes

= Up Mode

= Continuous
Mode

= Up/Down
Mode

CSE 466

OFFFFh
TACCRO

Oh

OFFFFh

Oh

OFFFFh
TACCRO

Oh

40

TACTL
I

12.3.1 TACTL, Timer_A Control Register

15 14 13 12 1 10 9 8
Unused | TASSELx
rw-(0) w-(0) rw-(0) rw-(0) w-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
IDx [MCx | Unusea | TACLR | TAE | TAIFG
rw-(0) w-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
Unused Bits 15-10 Unused
TASSELx Bits 9-8 Timer_A clock source select
00 TACLK
01 ACLK
10 SMCLK
1 INCLK (INCLK is device-specific and is often assigned to the inverted TBCLK) (see the
device-specific data sheet)
IDx Bits 7-6 Input divider. These bits select the divider for the input clock.
00 n
01 7]
10 4
1" 18
MCx Bits 54 Mode control. Setting MCx = 00h when Timer_A is not in use conserves power.
00 Stop mode: the timer is halted.
01 Up mode: the timer counts up to TACCRO.
10 Continuous mode: the timer counts up to OFFFFh.
1 Up/down mode: the timer counts up to TACCRO then down to 0000h.
Unused Bit 3 Unused
TACLR Bit 2 Timer_A clear. Setting this bit resets TAR, the clock divider, and the count direction. The TACLR bit is
automatically reset and is always read as zero.
TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled
TAIFG Bit0 Timer_A interrupt flag
0 No interrupt pending
1 Interrupt pending

CSE 466

MSP430 Interrupts 41

TAR & TACCRx

12.3.2 TAR, Timer_A Register

15 14 13 12 1 10 9 8
| TARX
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
| TARx
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
TARX Bits 15-0 Timer_A register. The TAR register is the count of Timer_A.
12.3.3 TACCRx, Timer_A Capture/Compare Register x
15 14 13 12 1 10 9 8
| TACCRx
rw-(0) rw-(0) rw-{0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
7 6 5 4 3 2 1 0
| TACCRXx
rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0) rw-(0)
TACCRx Bits 15-0 Timer_A capture/compare register.
$:r£pare mode: TACCRx holds the data for the comparison to the timer value in the Timer_A Register,
Capture mode: The Timer_A Register, TAR, is copied into the TACCRX register when a capture is
performed.
CSE 466 MSP430 Interrupts 42

12.3.4 TACCTLx, Capture/Compare Control Register

14

13 12 11

TACCTLx

CMx | CCISx [scs | scci | Unused | CAP |
ra-(0) re-{0) rw-{0) w-(0) w-(0) r LY ra-{0)
7 5 5 4 3 2 1 0

| OUTMODX | cce | ca | our | cov | ccrFe |
rw-{0) ru-{0) rw-{0) rw-(0) r ra-(0) rw-(0) rw-{0)
CMx Br 1514 Capture mode
00 No capture
o1 Capture on rising edge
10 Capture on faling edge
11 Capture on both rising and falling eages
ceisx BR13-12 Capiureicompare input select. These bits select the TACCRX Input signal. See the device-speciic data
sheet for specific signal coNNECIons.
00 CCiA
o1 cons
10 GND
1 Vee
sCs BR11 Synchronize capture source. This bRt Is uSed 1o synchronize the capture Input signal with the timer ciock.
0 ASYNChronous capiure
1 Synchronous capiure
sccl BR 10 ized caplureicompare input. The selected CCI Input signal is latched with the EQUX signal and can
De read via this dit
Unused Brg Unused. Read only. Always read as 0.
cap BLE Capture mode
0 Compare mode
1 Capture moge
OUTMODX BES7-5 Output mode. Modes 2, 3, 6, and 7 are not useful for TACCRO, because EQUX = EQUO.
000 OUT bt value
001 Set
010 Togglke/reset
on Setreset
100 Toggee
101 Reset
110 Toggieiset
111 Reset'set
CCIE Brs Capiure/compare interrupt enable. This bit enabies the Interrupt request of the comespondng CCIFG flag.
0 Intermupt dsabied
1 Interupt enadled
ccl Br3 Capureicompare nput. The selected Input signal can be read by this biL.
ouT BR2 Output. For output mode 0, Mis Dit directly controis the state of the output.
0 Output low
1 Output high
cov BR1 Capture overfiow. This bit ndcates a capture overfiow occumed. COV must De reset with software.
0 No capture overfiow occurred
1 Capture overnow occurmed
CCIFG BRO Capiureicompare interrupt flag
(] No IntefTupt pending
1 Interupt panding

CSE 466

MSP430 Interrupts

43

 OUTMOD

Table 12-2. Output Modes

OUTMODx Mode Description
000 Output The output signal OUTx is defined by the OUTx bit. The OUTx signal updates immediately
- when OUTx is updated.
001 Set The output is set when the timer counts to the TACCRX value. It remains set until a reset of
the timer, or until another output mode is selected and affects the output.
The output is toggled when the timer counts to the TACCRXx value. It is reset when the timer
010 Toggle/Reset counts to the TACCRO value.
011 Set/Reset The output is set when the timer counts to the TACCRXx value. It is reset when the timer
counts to the TACCRO value.
The output is toggled when the timer counts to the TACCRXx value. The output period is
100 Toggle s :
double the timer period.
101 o— The output is reset when the timer counts to the TACCRXx value. It remains reset until another
output mode is selected and affects the output.
The output is toggled when the timer counts to the TACCRX value. It is set when the timer
Ll Taogkioel counts to the TACCRO value.
11 Reset/Set The output is reset when the timer counts to the TACCRXx value. It is set when the timer
S counts to the TACCRO value.
CSE 466 MSP430 Interrupts 44

Configuring PWM

PW or N PACKAGE
(TOP VIEW)
Vee 1O 14 Vss
P1.0/TACLK/ACLK/CAO 2 13 XIN/P2.6/TA1
P1.1/TAQ/CA1 3 12 XOUT/P2.7
P1.2/TA1/CA2 - 11 TEST/SBWTCK
P1.3/CAOUT/CA3 [1] 5 10 RST/NMUSBWTDIO
P1.4/SMCLK/CA4/TCK LL] 6 9 P1.7/CAOUT/CA7/TDO/TDI
P1.9TAQO/CAS/TMS 7 8 P1.6/TA1/CAG/TDI/TCLK

PWM can be configured to appear on TA1 pins
PXSEL.x that chooses which pin TA1 connects to

CSE 466 MSP430 Interrupts

TAI

v

12.3.5 TAIV, Timer_A Interrupt Vector Register

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0
r0 r0 0 0 r0 r0 0 r0
7 6 5 4 3 2 1 0
| 0 | 0 | 0 | 0 | TAIVX 0
ro 0 0 0 r-(0) r-(0) r-(0) r0
TAIVX Bits 15-0 Timer_A interrupt vector value
TAIV Interrupt
Contents Interrupt Source Interrupt Flag Priority
00h No interrupt pending -
02h Capture/compare 1 TACCR1 CCIFG Highest
04h Capture/compare 2(% TACCR2 CCIFG
06h Reserved -
08h Reserved -
0Ah Timer overflow TAIFG
0Ch Reserved -
OEh Reserved - Lowest
(" Not implemented in MSP430x20xx devices
CSE 466 MSP430 Interrupts 46

Msp430x20x3_ta_106.c

PWM without the processor!
#include <msp430x20x3.h>

void main(void)

{

WDTCTL = WDTPW + WDTHOLD;
P1DIR |= OxOC;

P1SEL |= OxOC;

CCRO = 512-1;

CCTL1 = OUTMOD_7;

CCR1 = 384;

TACTL = TASSEL_2 + MC_1;

_BIS_SR(CPUOFF);
s

CSE 466 MSP430 Interrupts

//
//
//
//
//
//
//

//

Stop WDT

P1.2 and P1.3 output

P1.2 and P1.3 TA1/2 options
PWM Period

CCR1 reset/set

CCR1 PWM duty cycle

SMCLK, up mode

Enter LPMO

47

End of lecture

CSE 466

MSP430 Interrupts

48

Bonus example

CSE 466

MSP430 Interrupts

49

/l MSP430F20x3 Demo - SD16A, Sample A1+ Continuously, Set P1.0 if > 0.3V
#include <msp430x20x3.h>

void main(void)

{
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
P1DIR |= 0x01; /] Set P1.0 to output direction
SD16CTL = SD16REFON + SD16SSEL 1; /1 1.2V ref, SMCLK
SD16INCTLO = SD16INCH_1; /l Al+/-
SD16CCTLO = SD16UNI + SD16IE; // 25608SR, unipolar, interrupt enable
SD16AE = SD16AE2; // P1.1 A1+, Al- = VSS
SD16CCTLO |= SD16SC; /1 Set bit to start conversion

_BIS_SR(LPMO_bits + GIE);
}

#pragma vector = SD16 VECTOR
__interrupt void SD16ISR(void)
{
if (SD16MEMO < Ox7FFF) // SD16MEMO > 0.3V?, clears IFG
P10OUT &= ~0x01;
else
P1OUT |= 0x01,;

}

CSE 466 MSP430 Interrupts 50

