
MSP430 Interrupts

CSE 466 Interrupts 2

What is an Interrupt?

 Reaction to something in I/O (human, comm link)
 Usually asynchronous to processor activities
 “interrupt handler” or “interrupt service routine” (ISR)

invoked to take care of condition causing interrupt
 Change value of internal variable (count)
 Read a data value (sensor, receive)
 Write a data value (actuator, send)

Main Program
Instruction 1
Instruction 2
Instruction 3
Instruction 4
…..

ISR
Save state
Instruction 1
Instruction 2
Instruction 3
…..
Restore state
Return from Interrupt

Interrupts

 Interrupts preempt normal code execution
 Interrupt code runs in the foreground
 Normal (e.g. main()) code runs in the background

 Interrupts can be enabled and disabled
 Globally
 Individually on a per-peripheral basis
 Non-Maskable Interrupt (NMI)

 The occurrence of each interrupt is unpredictable
 When an interrupt occurs
 Where an interrupt occurs

 Interrupts are associated with a variety of on-chip and
off-chip peripherals.
 Timers, Watchdog, D/A, Accelerometer
 NMI, change-on-pin (Switch)

CSE 466 MSP430 Interrupts 3

Interrupts

 Interrupts commonly used for
 Urgent tasks w/higher priority than main code
 Infrequent tasks to save polling overhead
 Waking the CPU from sleep
 Call to an operating system (software interrupt).

 Event-driven programming
 The flow of the program is determined by events—i.e.,

sensor outputs or user actions (mouse clicks, key
presses) or messages from other programs or threads.

 The application has a main loop with event detection
and event handlers.

CSE 466 MSP430 Interrupts 4

Interrupt Flags

 Each interrupt has a flag that is raised (set) when
the interrupt occurs.

 Each interrupt flag has a corresponding enable bit
– setting this bit allows a hardware module to
request an interrupt.

 Most interrupts are maskable, which means they
can only interrupt if
1) enabled and
2) the general interrupt enable (GIE) bit is set in the

status register (SR).

CSE 466 MSP430 Interrupts 5

Interrupt Vectors

 The CPU must know where to fetch the next
instruction following an interrupt.

 The address of an ISR is defined in an interrupt
vector.

 The MSP430 uses vectored interrupts where
each ISR has its own vector stored in a vector
table located at the end of program memory.

 Note: The vector table is at a fixed location
(defined by the processor data sheet), but the
ISRs can be located anywhere in memory.

CSE 466 MSP430 Interrupts 6

MSP430 Memory

 Unified 64KB continuous memory map
 Same instructions for data and peripherals
 Program and data in Flash or RAM with no

restrictions

CSE 466 MSP430 Interrupts 7

Serving Interrupt Request

CSE 466 MSP430 Interrupts 8

0100 0011 0001 0101

user program
1111 1000 0000 0000

interrupt vector

0001 0011 0000 0000

interrupt service routine

RETI

0xF800

1. Lookup interrupt vector for
ISR starting address.

2. Store information (PC and
SR on Stack)

3. Transfer to service routine.
4. Restore information
5. Return (RETI: get old

PC from stack).

MSP430x2xx Interrupt Vectors

CSE 466 MSP430 Interrupts 9

Higher address
higher priority

MSP430F2274 Address Space

CSE 466 MSP430 Interrupts 10

Byte8-bit Special Function Registers0x000F
0x000016

Byte8-bit Peripherals Modules0x00FF
0x0010240

Word16-bit Peripherals Modules0x01FF
0x0100256

Word/ByteStack
0x05FF

0x0200
1KBSRAM

Word/ByteProgram Code
0xFFBF

0x8000

WordInterrupt Vector Table0xFFFF
0xFFC0

32KBFlash

AccessDescriptionAddressSizeMemory

Processing an Interrupt…

1) Current instruction completed
2) MCLK started if CPU was off
3) Processor pushes program counter on stack
4) Processor pushes status register on stack
5) Interrupt w/highest priority is selected
6) Interrupt request flag cleared if single sourced
7) Status register is cleared

 Disables further maskable interrupts (GIE cleared)
 Terminates low-power mode

8) Processor fetches interrupt vector and stores it in the
program counter

9) User ISR must do the rest!

CSE 466 MSP430 Interrupts 11

Interrupt Stack

CSE 466 MSP430 Interrupts 12

Interrupt Service Routines

 Look superficially like a subroutine.
 However, unlike subroutines

 ISR’s can execute at unpredictable times.
 Must carry out action and thoroughly clean up.
 Must be concerned with shared variables.
 Must return using reti rather than ret.

 ISR must handle interrupt in such a way that the
interrupted code can be resumed without error
 Copies of all registers used in the ISR must be saved

(preferably on the stack)

CSE 466 MSP430 Interrupts 13

Interrupt Service Routines

 Well-written ISRs:
 Should be short and fast
 Should affect the rest of the system as little as

possible
 Require a balance between doing very little – thereby

leaving the background code with lots of processing –
and doing a lot and leaving the background code with
nothing to do

 Applications that use interrupts should:
 Disable interrupts as little as possible
 Respond to interrupts as quickly as possible

CSE 466 MSP430 Interrupts 14

Interrupt Service Routines

 Interrupt-related runtime problems can be
exceptionally hard to debug

 Common interrupt-related errors include:
 Failing to protect global variables
 Forgetting to actually include the ISR - no linker error!
 Not testing or validating thoroughly
 Stack overflow
 Running out of CPU horsepower
 Interrupting critical code
 Trying to outsmart the compiler

CSE 466 MSP430 Interrupts 15

Returning from ISR

 MSP430 requires 6 clock cycles before the ISR
begins executing
 The time between the interrupt request and the start

of the ISR is called latency (plus time to complete
the current instruction, 6 cycles, the worst case)

 An ISR always finishes with the return from
interrupt instruction (reti) requiring 5 cycles
 The SR is popped from the stack

 Re-enables maskable interrupts
 Restores previous low-power mode of operation

 The PC is popped from the stack
 Note: if waking up the processor with an ISR, the new

power mode must be set in the stack saved SR
CSE 466 MSP430 Interrupts 16

CSE 466 MSP430 Interrupts 17

Return From Interrupt

 Single operand instructions:

 Emulated instructions:

Mnemonic Operation Description
PUSH(.B or .W) src SP-2SP, src@SP Push byte/word source on stack
CALL dst SP-2SP, PC+2@SP

dstPC
Subroutine call to destination

RETI TOSSR, SP+2SP
TOSPC, SP+2SP

Return from interrupt

Mnemonic Operation Emulation Description
RET @SPPC

SP+2SP
MOV @SP+,PC Return from subroutine

POP(.B or .W) dst @SPtemp
SP+2SP
tempdst

MOV(.B or .W)
@SP+,dst

Pop byte/word from stack to
destination

Summary

 By coding efficiently you can run multiple peripherals at
high speeds on the MSP430

 Polling is to be avoided – use interrupts to deal with each
peripheral only when attention is required

 Allocate processes to peripherals based on existing (fixed)
interrupt priorities - certain peripherals can tolerate
substantial latency

 Use GIE when it’s shown to be most efficient and the
application can tolerate it – otherwise, control individual IE
bits to minimize system interrupt latency.

 An interrupt-based approach eases the handling of
asynchronous events

CSE 466 MSP430 Interrupts 18

P1 and P2 interrupts

 Only transitions (low to hi or hi to low) cause interrupts
 P1IFG & P2IFG (Port 1 & 2 Interrupt FlaG registers)

 Bit 0: no interrupt pending
 Bit 1: interrupt pending

 P1IES & P2IES (Port 1 & 2 Interrupt Edge Select reg)
 Bit 0: PxIFG is set on low to high transition
 Bit 1: PxIFG is set on high to low transition

 P1IE & P2IE (Port 1 & 2 Interrupt Enable reg)
 Bit 0: interrupt disabled
 Bit 1: interrupt enabled

CSE 466 MSP430 Interrupts 19

Example P1 interrupt msp430x20x3_P1_02.c
#include <msp430x20x3.h>
void main(void)
{
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
P1DIR |= 0x01; // Set P1.0 to output direction
P1IE |= 0x10; // P1.4 interrupt enabled
P1IES |= 0x10; // P1.4 Hi/lo edge
P1IFG &= ~0x10; // P1.4 IFG cleared

_BIS_SR(LPM4_bits + GIE); // Enter LPM4 w/interrupt
}
// Port 1 interrupt service routine
#pragma vector=PORT1_VECTOR
__interrupt void Port_1(void)
{
P1OUT ^= 0x01; // P1.0 = toggle
P1IFG &= ~0x10; // P1.4 IFG cleared

}

CSE 466 MSP430 Interrupts 20

Ex: Timer interrupt: msp430x20x3_ta_03.c
#include <msp430x20x3.h>
void main(void)
{

WDTCTL = WDTPW + WDTHOLD; // Stop WDT
P1DIR |= 0x01; // P1.0 output
TACTL = TASSEL_2 + MC_2 + TAIE; // SMCLK, contmode, interrupt

_BIS_SR(LPM0_bits + GIE); // Enter LPM0 w/ interrupt
}
// Timer_A3 Interrupt Vector (TAIV) handler
#pragma vector=TIMERA1_VECTOR
__interrupt void Timer_A(void)
{
switch(TAIV)
{
case 2: break; // CCR1 not used
case 4: break; // CCR2 not used
case 10: P1OUT ^= 0x01; // overflow

break;
}

}

CSE 466 MSP430 Interrupts 21

Example
we stepped through the following code in class with the debugger

CSE 466 MSP430 Interrupts 22

Msp430x20x3_ta_06.c (modified, part 1)
Demo: Samples 8

#include <msp430x20x3.h>
void main(void)
{
WDTCTL = WDTPW + WDTHOLD;// Stop WDT
P1DIR |= 0x01; // P1.0 output
CCTL1 = CCIE; // CCR1 interrupt enabled
CCR1 = 0xA000;
TACTL = TASSEL_2 + MC_2; // SMCLK, Contmode
_BIS_SR(LPM0_bits + GIE);// Enter LPM0 w/ int.

}

CSE 466 MSP430 Interrupts 23

Servicing a timer interrupt; toggling pin in ISR

Msp430x20x3_ta_06.c (modified, part 2)
Demo: Samples 8
// Timer_A3 Interrupt Vector (TAIV) handler
#pragma vector=TIMERA1_VECTOR
__interrupt void Timer_A(void)
{
switch(TAIV)
{
case 2: // CCR1
{
P1OUT ^= 0x01; // Toggle P1.0
CCR1 += 0xA000; // Add Offset to CCR1 == 0xA000
}

break;
case 4: break; // CCR2 not used
case 10: break; // overflow not used

}
}
CSE 466 MSP430 Interrupts 24

Pulse Width Modulation (PWM)

 Pulse width modulation (PWM) is used to control analog
circuits with a processor's digital outputs

 PWM is a technique of digitally encoding analog signal
levels
 The duty cycle of a square wave is modulated to encode a specific

analog signal level
 The PWM signal is still digital because, at any given instant of time,

the full DC supply is either fully on or fully off

 The voltage or current source is supplied to the analog
load by means of a repeating series of on and off pulses

 Given a sufficient bandwidth, any analog value can be
encoded with PWM.

CSE 466 MSP430 Interrupts 25

PWM Machines

CSE 466 MSP430 Interrupts 26

PWM – Frequency/Duty Cycle

CSE 466 MSP430 Interrupts 27

 Frequency

 Duty Cycle

Time

Multiple Clocks

CSE 466 MSP430 Interrupts 28

No crystal on eZ430 tools
Use VLO for ACLK

(mov.w #LFXT1S_2,&BCSCTL3)

Processor Clock Speeds

 Often, the most important factor for reducing power
consumption is slowing the clock down
 Faster clock = Higher performance, more power
 Slower clock = Lower performance, less power

 Using assembly code:

 Using C code:

CSE 466 MSP430 Interrupts 29

; MSP430 Clock - Set DCO to 8 MHz:
mov.b #CALBC1_8MHZ,&BCSCTL1 ; Set range
mov.b #CALDCO_8MHZ,&DCOCTL ; Set DCO step + modulation

// MSP430 Clock - Set DCO to 8 MHz:
BCSCTL1 = CALBC1_8MHZ; // Set range 8MHz
DCOCTL = CALDCO_8MHZ; // Set DCO step + modulation

Processor Clock Speeds

 Another method to reduce power consumption is
to turn off some (or all) of the system clocks
 Active Mode (AM): CPU, all clocks, and enabled

modules are active (300 A)
 LPM0: CPU and MCLK are disabled, SMCLK and ACLK

remain active (85 A)
 LPM3: CPU, MCLK, SMCLK, and DCO are disabled;

only ACLK remains active (1 A)
 LPM4: CPU and all clocks disabled, RAM is retained

(0.1 A)
 A device is said to be sleeping when in low-power

mode; waking refers to returning to active mode
CSE 466 MSP430 Interrupts 30

MSP430 Clock Modes

CSE 466 MSP430 Interrupts 31

Only uses 1A during low clock
Less clocks means less power!

Clocks Off Power Savings

CSE 466 MSP430 Interrupts 32

Sleep ModesNo Clocks!

Only ACLK
Active

SMCLK and
ACLK Active

Lower Power Savings

 Finally, powering your system with lower voltages
means lower power consumption as well

CSE 466 MSP430 Interrupts 33

Principles of Low-Power Apps

 Maximize the time in LPM3 mode
 Use interrupts to wake the processor
 Switch on peripherals only when needed
 Use low-power integrated peripherals

 Timer_A and Timer_B for PWM
 Calculated branches instead of flag polling
 Fast table look-ups instead of calculations
 Avoid frequent subroutine and function calls
 Longer software routines should use single-cycle

CPU registers
CSE 466 MSP430 Interrupts 34

Setting Low-Power Modes

 Setting low-power mode puts the microcontroller
“to sleep” – so usually, interrupts would need to be
enabled as well.

 Enter LPM3 and enable interrupts using assembly
code:

 Enter LPM3 and enable interrupts using C code:

CSE 466 MSP430 Interrupts 35

; enable interrupts / enter low-power mode 3
bis.b #LPM3+GIE,SR ; LPM3 w/interrupts

// enable interrupts / enter low-power mode 3
__bis_SR_register(LPM3_bits + GIE);

Timers

 System timing is fundamental for real-time
applications

 The MSP430F2274 has 2 timers, namely
Timer_A and Timer_B

 The timers may be triggered by internal or
external clocks

 Timer_A and Timer_B also include multiple
independent capture/compare blocks that are
used for applications such as timed events and
Pulse Width Modulation (PWM)

CSE 466 MSP430 Interrupts 36

Timers

 The main applications of timers are to:
 generate events of fixed time-period
 allow periodic wakeup from sleep of the device
 count transitional signal edges
 replace delay loops allowing the CPU to sleep

between operations, consuming less power
 maintain synchronization clocks

CSE 466 MSP430 Interrupts 37

TxCTL Control Register

CSE 466 MSP430 Interrupts 38

Bit Description
9-8 TxSSELx Timer_x clock source: 0 0 TxCLK

0 1 ACLK
1 0 SMCLK
1 1 INCLK

7-6 IDx Clock signal divider: 0 0 / 1
0 1 / 2
1 0 / 4
1 1 / 8

5-4 MCx Clock timer operating mode: 0 0 Stop mode
0 1 Up mode
1 0 Continuous mode
1 1 Up/down mode

2 TxCLR Timer_x clear when TxCLR = 1
1 TxIE Timer_x interrupt enable when TxIE = 1
0 TxIFG Timer_x interrupt pending when TxIFG = 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(Used by Timer_B) TxSSELx IDx MCx - TxCLR TxIE TxIFG

4 Modes of Operation

 Timer reset by writing a 0 to TxR
 Clock timer operating modes:

MCx Mode Description
0 0 Stop The timer is halted.
0 1 Up The timer repeatedly counts from 0x0000 to

the value in the TxCCR0 register.
1 0 Continuous The timer repeatedly counts from 0x0000 to

0xFFFF.
1 1 Up/down The timer repeatedly counts from 0x0000 to

the value in the TxCCR0 register and
back down to zero.

CSE 466 MSP430 Interrupts 39

Timer Modes

 Up Mode

 Continuous
Mode

 Up/Down
Mode

CSE 466 MSP430 Interrupts 40

TACTL

CSE 466 MSP430 Interrupts 41

TAR & TACCRx

CSE 466 MSP430 Interrupts 42

TACCTLx

CSE 466 MSP430 Interrupts 43

OUTMOD

CSE 466 MSP430 Interrupts 44

Configuring PWM

CSE 466 MSP430 Interrupts 45

PWM can be configured to appear on TA1 pins
PxSEL.x that chooses which pin TA1 connects to

TAIV

CSE 466 MSP430 Interrupts 46

Msp430x20x3_ta_16.c
PWM without the processor!

#include <msp430x20x3.h>

void main(void)
{

WDTCTL = WDTPW + WDTHOLD; // Stop WDT
P1DIR |= 0x0C; // P1.2 and P1.3 output
P1SEL |= 0x0C; // P1.2 and P1.3 TA1/2 options
CCR0 = 512-1; // PWM Period
CCTL1 = OUTMOD_7; // CCR1 reset/set
CCR1 = 384; // CCR1 PWM duty cycle
TACTL = TASSEL_2 + MC_1; // SMCLK, up mode

_BIS_SR(CPUOFF); // Enter LPM0
}

CSE 466 MSP430 Interrupts 47

End of lecture

CSE 466 MSP430 Interrupts 48

Bonus example

CSE 466 MSP430 Interrupts 49

CSE 466 MSP430 Interrupts 50

// MSP430F20x3 Demo - SD16A, Sample A1+ Continuously, Set P1.0 if > 0.3V
#include <msp430x20x3.h>

void main(void)
{
WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
P1DIR |= 0x01; // Set P1.0 to output direction
SD16CTL = SD16REFON + SD16SSEL_1; // 1.2V ref, SMCLK
SD16INCTL0 = SD16INCH_1; // A1+/-
SD16CCTL0 = SD16UNI + SD16IE; // 256OSR, unipolar, interrupt enable
SD16AE = SD16AE2; // P1.1 A1+, A1- = VSS
SD16CCTL0 |= SD16SC; // Set bit to start conversion

_BIS_SR(LPM0_bits + GIE);
}

#pragma vector = SD16_VECTOR
__interrupt void SD16ISR(void)
{
if (SD16MEM0 < 0x7FFF) // SD16MEM0 > 0.3V?, clears IFG
P1OUT &= ~0x01;

else
P1OUT |= 0x01;

}

