The ARM Architecture

T H E A R CMHITET CTURE F O R T H E DI G I T AL W O R L D

® Introduction to ARM Ltd

Programmers Model
Instruction Set
System Design

Development Tools

39v10 The ARM Architecture 2



ARM Ltd

= Founded in November 1990
= Spun out of Acorn Computers

= Designs the ARM range of RISC processor
cores

= Licenses ARM core designs to semiconductor
partners who fabricate and sell to their
customers.
m  ARM does not fabricate silicon itself

= Also develop technologies to assist with the
design-in of the ARM architecture
= Software tools, boards, debug hardware,
application software, bus architectures,
peripherals etc

39v10 The ARM Architecture 8

ARM Partnership Model

Wikir nirvi®  BARCO SOTA UASHLING CoWare

SILEX
DNP . lcmeﬁn?; SIEMENS NSW — virto c--«n-mh innoveDA. Computex
""""" uciotech 4% COMIT" YOGITECH
STEPIRD: e gy @RI vocows ADS Tektronix: AWindRyver Sophia
fiexyes iz ARCADIA " 9 AXIS systems
Ssinsh @ ~ TOPPAN T 14;:
’ ScooumCHE . 2 Quaown  EIZTEIC  Goobrich do ST v qux
R .’\ﬂg ABE sy ERicsson 2 RA IO Aliant
| RE - OKI \) mororoLA  ADMtek NEC . o
S C'w <3 FARADAY WM-A-"Z £} xzommer TOSHIBA g'e""' Plinsrnid Amil s | SYNopPsys'
@ MCRONAS PHILIPS & 22 v TKOS
— mm@g T iR ks D g=»
parthus ' TTE SANYO noHm o [ :
Synoesys. EnGAIRONIes ‘ ;
= BSNMYSTA i Fartnership

nterniche  Microsoft:

luchnolonnn ina.

Virata SONY. EMB""ZE e t“©

systams

FIRMWARE SYSTEMS -icgere

Essfol ﬂ { (CGineXg “AYUNDAI

i nr L] VAMAHA 0 - #aTriscend. [‘ﬂ”’?ﬁ N
j E2RECSt (Cogency) Mg e PSWfiesy NIERIRUST
RO US Software ArfayComm =g 374 . ERICSSON
Tao Systems sil a1 corporation

T ﬁ* 0SE @ sicnhme " xgzon : 22200 quid audio
Microsoft Java S5c X GBBluetooth symb'an ©
o @ [//’X Tow Symbian  (e-ecc 5;( e ps é.,
AWindRver  Microwane OSun ETNOTEAM o . @D Symmetticom JAVA

.E;f.'." eoxwoses  [GMXL  popu) GHEMICALINDUSTRY GOUD.

39v10 The ARM Architecture 4

A




ARM Powered Products

39v10 The ARM Architecture 5

Intellectual Property

= ARM provides hard and soft views to licencees
= RTL and synthesis flows
= GDSII layout

= Licencees have the right to use hard or soft views of the IP
= soft views include gate level netlists
= hard views are DSMs

m OEMs must use hard views
= to protect ARM IP

39v10 The ARM Architecture 6



Introduction to ARM Ltd

m Programmers Model
Instruction Sets
System Design

Development Tools

39v10 The ARM Architecture 7

ARM Data Sizes and Instruction Sets

= The ARM is a 32-bit architecture.

= When used in relation to the ARM:
= Byte means 8 bits
= Halfword means 16 bits (two bytes)
= Word means 32 bits (four bytes)

m Most ARM’s implement two instruction sets
= 32-bit ARM Instruction Set
= 16-bit Thumb Instruction Set

m Jazelle cores can also execute Java bytecode

39v10 The ARM Architecture 8



The Registers

= ARM has 37 registers all of which are 32-bits long.
1 dedicated program counter

1 dedicated current program status register

5 dedicated saved program status registers

30 general purpose registers

=  The current processor mode governs which of several banks is
accessible. Each mode can access

a particular set of rO-r12 registers

a particular r13 (the stack pointer, sp) and r14 (the link register, Ir)

the program counter, r15 (pc)

the current program status register, cpsr

Privileged modes (except System) can also access
= a particular spsr (saved program status register)

39v10 The ARM Architecture €l

Processor Modes

= The ARM has seven basic operating modes:

= User : unprivileged mode under which most tasks run
= FIQ : entered when a high priority (fast) interrupt is raised
= |RQ : entered when a low priority (normal) interrupt is raised

= Supervisor : entered on reset and when a Software Interrupt
instruction is executed

= Abort : used to handle memory access violations
= Undef : used to handle undefined instructions

= System : privileged mode using the same registers as user mode

39v10 The ARM Architecture 10



The ARM Register Set

Current Visible Registers
Abort Mode

Banked out Registers

User FIQ IRQ SVvC Undef

r8
r9
rl0

rll

rl2

r13 (sp) @ 13 (sp) [E230(sp)|f r13 (sp) | r13 (sp)
rld (lr) rld (1r) jir14 (1r) | r14 (1lr) Jri4 (1r)

S ] - | oee: |

39v10 The ARM Architecture

ARM Register Organization Summary

User FIQ IRQ SvC Undef Abort

r8
r9

10 Thumb state
r11 High registers

rl2
rl3 (sp) rl3 (sp)
rld (1lr) rld (1r)

spsz spsz [_spsr |

Note: System mode uses the User mode register set

39v10 The ARM Architecture

Thumb state
Low registers




31 28 27 24 23 16 15 8 7 6 5 4 0
N ZICIV|Q| |J U n d e £|i n e d IIFlTl , mode
£ s b3 c
= Condition code flags = Interrupt Disable bits.
= N = Negative result from ALU = | =1: Disables the IRQ.
Z = Zero result from ALU = F =1: Disables the FIQ.

|}
= C = ALU operation Carried out
n

V = ALU operation oVerflowed = TBit

= Architecture xT only
m T =0: Processor in ARM state

m Sticky Overflow flag - Q flag = T =1:Processor in Thumb state

= Architecture 5TE/J only
= Indicates if saturation has occurred

= Mode bits

= Jbit = Specify the processor mode

= Architecture 5TEJ only
= J=1:Processor in Jazelle state

39v10 The ARM Architecture

Program Counter (r15)

= When the processor is executing in ARM state:
= All instructions are 32 bits wide
= All instructions must be word aligned
= Therefore the pc value is stored in bits [31:2] with bits [1:0] undefined (as
instruction cannot be halfword or byte aligned).

= When the processor is executing in Thumb state:
= All instructions are 16 bits wide
= All instructions must be halfword aligned
= Therefore the pc value is stored in bits [31:1] with bit [0] undefined (as
instruction cannot be byte aligned).

= When the processor is executing in Jazelle state:
= All instructions are 8 bits wide
= Processor performs a word access to read 4 instructions at once

39v10 The ARM Architecture




Exception Handling

= When an exception occurs, the ARM:
= Copies CPSR into SPSR_<mode>
= Sets appropriate CPSR bits
= Change to ARM state
= Change to exception mode
= Disable interrupts (if appropriate)
= Stores the return address in LR_<mode>
= Sets PC to vector address

®  To return, exception handler needs to:
= Restore CPSR from SPSR_<mode>
= Restore PC from LR_<mode>

This can only be done in ARM state.

39v10 The ARM Architecture

0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

FlQ
IRQ
(Reserved)
Data Abort
Prefetch Abort
Software Interrupt
Undefined Instruction

Reset

Vector Table

Vector table can be at
OxFFFF0000 on ARM720T
and on ARM9/10 family devices

Development of the

ARM Architecture

, Improved
Halfword 1E ARM/Thumb
{3 and signed ) Interworking
halfword /
byte support CLz
MM System Saturated maths

i E mode

<

DSP multiply-
accumulate
instructions

Thumb z ARM1020E
instruction <E
Early ARM | set »

architectures

IARM7TDMI |IARM9TDMI | | ARMOE-S |

| ARM720T " ARM940T | IARM966E-S|

39v10 The ARM Architecture

Jazelle

Java bytecode
execution

| ARM9EJ-S || ARM926EJ-S |

| ARM7EJ-S | | ARM1026EJ-S |

SIMD Instructions
Multi-processing

V6 Memory
architecture (VMSA)

Unaligned data
ARM1136EJ-S

support




Introduction to ARM Ltd

Programmers Model

m Instruction Sets
System Design

Development Tools

39v10 The ARM Architecture

ARM conditional Execution and Flags

=  ARM instructions can be made to execute conditionally by postfixing
them with the appropriate condition code field.
= This improves code density and performance by reducing the number of

forward branch instructions.
CMP r3,#0 CMP r3,#0
BEQ skip ADDNE r0O,rl,r2

ADD r0,rl,r2 I
skip

= By default, data processing instructions do not affect the condition code
flags but the flags can be optionally set by using “S”. CMP does not

need “S”.
loop
SUBS rl,rl,#1 (_l decrement r1 and set flags |
BNE loop ‘ if Z flag clear then branch |

39v10 The ARM Architecture




Condition Codes

= The possible condition codes are listed below:
= Note AL is the default and does not need to be specified

Suffix Description Flags tested
EQ Equal Z=1
NE Not equal Z=0
CS/HS | Unsigned higher or same C=1
CC/LO | Unsigned lower C=0
MI Minus N=1
PL Positive or Zero N=0
VS Overflow V=1
vC No overflow V=0
HI Unsigned higher C=1&2Z=0
LS Unsigned lower or same C=0 or Z=1
GE Greater or equal N=V
LT Less than N!=V
GT Greater than Z=0 & N=V
LE Less than or equal Z=1 or N=IV
AL Always

39v10 The ARM Architecture 19

Examples of conditional

execution

m Use a sequence of several conditional instructions
if (a==0) func(l);

= Set the flags, th

= Use conditional

39v10 The ARM Architecture

CMP r0,#0
MOVEQ r0,#1
BLEQ func

en use various condition codes

if (a==0) x=0;
if (a>0) =x=1;

CcMP r0,#0
MOVEQ rl,#0
MOVGT rl, #1

compare instructions

if (a==4 || a==10) x=0;
CMP r0,#4
CMPNE r0,#10
MOVEQ rl,#0




Branch instructions

= Branch: B{<cond>} label
= Branch with Link : BL{<cond>} subroutine label
31 28 27 25 24 23 0
L L L L L L L L L O L I
Cond |1 0 1|L| Offset
. — L—— Link bit 0 = Branch
1 = Branch with link
Condition field

= The processor core shifts the offset field left by 2 positions, sign-extends
it and adds it to the PC
= + 32 Mbyte range
= How to perform longer branches?

39v10 The ARM Architecture 21

Data processing Instructions

m Consist of :

= Arithmetic: ADD ADC SUB SBC RSB RSC
= Logical: AND ORR EOR BIC

= Comparisons: CMP CMN TST TEQ

= Data movement: MOV MVN

= These instructions only work on registers, NOT memory.
= Syntax:

<Operation>{<cond>}{S} Rd, Rn, Operand2

= Comparisons set flags only - they do not specify Rd
= Data movement does not specify Rn

= Second operand is sent to the ALU via barrel shifter.

39v10 The ARM Architecture 22



The Barrel Shifter

LSL : Logical Left Shift ASR: Arithmetic Right Shift
o7} esnaton | o - {Pestnaton
Multiplication by a power of 2 Division by a power of 2,

preserving the sign bit

LSR : Logical Shift Right ROR: Rotate Right
—[Desinaton |
Division by a power of 2 Bit rotate with wrap around

from LSB to MSB

RRX: Rotate Right Extended

" [Desinaton ]

Single bit rotate with wrap around
from CF to MSB

39v10 The ARM Architecture 23

Using the Barrel Shifter:

The Second Operand

Operand Operand < Register, optionally with shift operation
1 2 ” = Shift value can be either be:
B = 5 bit unsigned integer
= Specified in bottom byte of another
register.

Barrel = Used for multiplication by constant
Shifter g

" Immediate value
= 8 bit number, with a range of 0-255.
= Rotated right through even number of
positions
= Allows increased range of 32-bit
constants to be loaded directly into
l registers

Result

39v10 The ARM Architecture 24



Immediate constants (1)

= No ARM instruction can contain a 32 bit immediate constant
= All ARM instructions are fixed as 32 bits long

m The data processing instruction format has 12 bits available for operand2

1 87 0
‘ 1r°t1 ‘ | Frquq_? | ‘ Quick Quiz:
X2 T 0xe3a004ff9
ROR MOV r0, #2727

= 4 bit rotate value (0-15) is multiplied by two to give range 0-30 in steps of 2

= Rule to remember is “8-bits shifted by an even number of bit positions”.

39v10 The ARM Architecture 25

Immediate constants (2)

= Examples:
31

[ror#0 | |o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o_0 [ range 0-0x000000ff step 0x00000001 |
[PPRERER o]o]c]o[o]o[o]o]o]a]o[o]0]o[o]o]o[0]0[o]0]o]o] 0] [range 0-0xff000000 step 0x01000000 |
[ror #30] [0]o]o[o]0[o[0]0[o]0]0]a]0[o]0]o]o]0[o]o]o[o IR c]o] [range 0-0x000003fc step 0x00000004 |

m The assembler converts immediate values to the rotate form:
m MOV r0,#4096 ; uses 0x40 ror 26
m ADD rl,r2,#0xFF0000 ; uses OxFF ror 16

m  The bitwise complements can also be formed using MVN:
m MOV rO, #0xFFFFFFFF ; assembles to MVN rO,#0

= Values that cannot be generated in this way will cause an error.

39v10 The ARM Architecture 26



Loading 32 bit constants

= To allow larger constants to be loaded, the assembler offers a pseudo-
instruction:

m LDR rd, =const

m This will either:
= Produce a MOV or MVN instruction to generate the value (if possible).

or
= Generate a LDR instruction with a PC-relative address to read the constant
from a literal pool (Constant data area embedded in the code).
= For example
m LDR r0,=0xFF => MOV r0, #0xFF
m LDR r0,=0x55555555 => LDR r0, [PC,#Imml2]

This is the recommended way of loading constants into a register

39v10 The ARM Architecture 27

Multiply

= Syntax:
= MUL{<cond>}{S} Rd, Rm, Rs Rd =Rm *Rs
= MLA{<cond>}S} Rd,Rm,Rs,Rn Rd = (Rm *Rs) + Rn
= [U|S]MULL{<cond>}{S} RdLo, RdHi, Rm, Rs RdHi,RdLo := Rm*Rs
= [U|S]MLAL{<cond>}S} RdLo, RdHi, Rm, Rs RdHi,RdLo := (Rm*Rs)+RdHi,RdLo

= Cycle time
= Basic MUL instruction
= 2-5 cycles on ARM7TDMI
= 1-3 cycles on StrongARM/XScale
= 2 cycles on ARM9E/ARM102xE
= +1 cycle for ARM9TDMI (over ARM7TDMI)
= +1 cycle for accumulate (not on 9E though result delay is one cycle longer)
= +1 cycle for “long”

= Above are “general rules” - refer to the TRM for the core you are using
for the exact details

39v10 The ARM Architecture 28



Single register data transfer

LDR STR Word

LDRB STRB  Byte

LDRH STRH  Halfword

LDRSB Signed byte load
LDRSH Signed halfword load

= Memory system must support all access sizes

= Syntax:
= LDR{<cond>}{<size>} Rd, <address>
= STR{<cond>}<size>} Rd, <address>

e.g. LDREQB

39v10 The ARM Architecture 29

Address accessed

m Address accessed by LDR/STR is specified by a base register plus an
offset

= For word and unsigned byte accesses, offset can be
= An unsigned 12-bit immediate value (ie 0 - 4095 bytes).
LDR r0, [rl, #8]
= A register, optionally shifted by an immediate value
LDR r0, [rl,r2]
LDR r0, [rl,r2,LSL#2]

m This can be either added or subtracted from the base register:
LDR r0, [rl,#-8]
LDR r0, [rl,-r2]
LDR r0,[rl,-r2, LSL#2]

= For halfword and signed halfword / byte, offset can be:
= An unsigned 8 bit immediate value (ie 0-255 bytes).
= A register (unshifted).

m Choice of pre-indexed or post-indexed addressing

39v10 The ARM Architecture 30



ARM Pre or Post Indexed Addressing?

m  Pre-indexed: STR r0, [rl,#12]

Offset Source
n —> 0x20c Register
for STR

"
Base
| 0x200 | —I— 0:200

Register

Auto-update form: STR r0, [rl, #12]!

m Post-indexed: STR r0, [rl], #12

Updated "1 Offset
Base -
oo T -—NEEE oo o .
ource
Original 1 T /m Register
Base 0x200 for STR
Registerm m

39v10 The ARM Architecture &

LDM / STM operation

= Syntax:
<LDM | STM>{<cond>}<addressing_mode> Rb{!}, <register list>

= 4 addressing modes:

LDMIA / STMIA increment after
LDMIB/ STMIB increment before
LDMDA / STMDA decrement after
LDMDB / STMDB decrement before

IA IB DA DB

LDMxx rl0, {rO,rl,r4d}
STMxx rl0, {r0O,rl,r4d}

Increasing
Base Register (Rb) Address

39v10 The ARM Architecture 32



Software Interrupt (SWI)

31 28 27 24 23 0
T 1 T T LI A O I B I D O D I |
Cond (1 11 1 SWI number (ignored by processor) |

I_|4;Condition Field

= Causes an exception trap to the SWI hardware vector

= The SWI handler can examine the SWI number to decide what operation
has been requested.

= By using the SWI mechanism, an operating system can implement a set
of privileged operations which applications running in user mode can
request.

= Syntax:
m SWI{<cond>} <SWI number>

39v10 The ARM Architecture 88

PSR Transfer Instructions

31 28 27 24 23 16 15 8 7 6 5 4 0

J
N| Zlcllel |

U n d e £/i n e d I|F|T||“=°d|e|

3 s b3 c

= MRS and MSR allow contents of CPSR / SPSR to be transferred to / from
a general purpose register.

= Syntax:
m MRS{<cond>} Rd,<psr> ; Rd = <psr>
= MSR{<cond>} <psr[_fields]>,Rm ; <psr[_fields]> = Rm

where
= <psr> = CPSR or SPSR
m [_fields] = any combination of ‘fsxc’

® Also an immediate form
= MSR{<cond>} <psr_fields>,#Immediate

= In User Mode, all bits can be read but only the condition flags (_f) can be
written.

39v10 The ARM Architecture 34



ARM ARM Branches and Subroutines

= B <label>
= PC relative. £32 Mbyte range.

= BL <subroutine>
= Stores return address in LR
= Returning implemented by restoring the PC from LR
= For non-leaf functions, LR will have to be stacked

funcl func2

STMFD sp!,
{regs,1lr}

BL funcl BL func2

LDMFD sp!, -
{regs,pc} MOV pc, lr

39v10 The ARM Architecture

ARM Thumb

= Thumb is a 16-bit instruction set
= Optimised for code density from C code (~65% of ARM code size)
= Improved performance from narrow memory
= Subset of the functionality of the ARM instruction set

m  Core has additional execution state - Thumb
= Switch between ARM and Thumb using BX instruction

ADDS r2,r2,#1

32-bit ARM Instruction For most instructions generated by compiler:

= Conditional execution is not used

m  Source and destination registers identical
= Only Low registers used

=  Constants are of limited size

ADD r2,#1 ® Inline barrel shifter not used

16-bit Thumb Instruction

39v10 The ARM Architecture

36




Introduction

Programmers Model
Instruction Sets
m  System Design

Development Tools

39v10 The ARM Architecture

ARM

16 bit RAM

8 bit ROM

39v10 The ARM Architecture

niRQ

nFlQ

Peripherals

| |

Example ARM-based System

/0




TIC
External Bus Interface
ROM External
Bus
Interface

External
RAM

Interrupt
Controller

AHB or ASB APB
System Bus Peripheral Bus
= AMBA s ACT
= Advanced Microcontroller Bus = AMBA Compliance Testbench
Architecture
s ADK = PrimeCell

= Complete AMBA Design Kit = ARM'’s AMBA compliant peripherals

39v10 The ARM Architecture 84

FriendlyArm micro2440-35

39v10 The ARM Architecture



FriendlyArm micro2440

Touch
UART2 UART3 GPIO  Panel Camera Interface
I 180mm |
Power : ' Coae] i
5V Power In
Microphone ADC Test
Audio Out ———®
: 12C-EEPROM SD-Card
) CON1:& O3(TTL) -
"-Ld'ul W
UART1 z S CON2:#8 [12(TTL) g
CON3:& O1(TTL) 3
- ¢ E USB Host 1
USB Device ——+& 3T H USB HUB
: USB Host 3
USB Host 4
7"LCD
USB Host 2 LCD Interface
CON9
tLi g =4
Ethernet RJ-45 —:o% - : = Reset
> e
Boot Mode &) A
NOR NAND -
CON5 RTC Bat. PWM Buzzer User Buttons

39v10 The ARM Architecture

Specification: SDK-Board

= Dimension: 180 x 130 mm

= EEPROM: 1024 Byte (12C)

= Ext. Memory: SD-Card socket

= Serial Ports: 3x DB9 connector (RS232)

= USB: 4x USB-A Host, 1x USB-B Device

Audio Output: 3.5 mm stereo jack

Audio Input: 3.5mm jack (mono) + Condenser microphone
Ethernet: RJ-45 10/100M (DM9000)

RTC: Real Time Clock with battery

Beeper: PWM buzzer

Camera: 20 pin Camera interface (2.0 mm)

LCD: 41 pin connector for FriendlyARM Displays (3.5" and 7") and VGA Board
Touch Panel: 4 pin

User Inputs: 6x push buttons and 1x A/D pot
= Expansion headers (2.0 mm)
= Power: 5V connector, power switch and LED
= Power Supply: regulated 5V

39v10 The ARM Architecture 42



Stamp Module

« +5V
* GND

NAND FLASH - NOR FLASH
128/64M M

[T W E—— ol

. SORAN
® $3C2440A

£ - |V "
[MJTAG.1 1P oo G
J2bit

wwzg

39v10 The ARM Architecture

Specification: Stamp Module

= Dimension: 63 x 52 mm

= CPU: 400 MHz Samsung S3C2440A ARM920T (max freq. 533 MHz)

= RAM: 64 MB SDRAM, 32 bit Bus

= Flash: 64 MB /128 MB / 256 MB / 1GB NAND Flash and 2 MB NOR Flash with BIOS

= LCD Interface
= STN Displays:
= Monochrome, 4 gray levels, 16 gray levels, 256 colors, 4096 colors
= Max: 1024x768
= TFT Displays:
= Monochrome, 4 gray levels, 16 gray levels, 256 colors, 64k colors, true color
= Max: 1024x768

= Touch Panel: 4 wire resistive
= User Outputs: 4x LEDs

= Expansion headers (2.0 mm)

= Debug: 10 pin JTAG (2.0 mm)

= OS Support
= Windows CE 5 and 6
= Linux 2.6
= Android

39v10 The ARM Architecture 44



= FriendlyArm Processor

® Samsung S3C2440A
ARM920T

w@ T

Data
Data
MMy

CACHE PaTag |LCEABL
(16K8) RAM
T A1)
EEf (o=
A | =D ntempt con.
[l
B @ Power
Management
e (K i E=
NAND Ctn s !
D Fasn et | = Memory CONT.

‘:'i Cl”g_;ﬂm’ éi —
o =

Bridge & DMA (4Ch)

=1
e
==
==

wem o>

¢:° 0~ 3, 4(Intemal) ‘

o (= 1= |= B
39v10 The ARM Architecture L 45




