‘9 TEXAS
INSTRUMENTS

SimpliciTl
Application Programming Interface

Document Number: SWRA221

Texas Instruments, Inc.
San Diego, California USA

Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

Version Description Date
1.0 Initial release 08/01/2008
1.1 Update for the 1.1.0 release 01/14/2009
1.2 Updated title page 03/24/2009

[Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API

SWRA221 Version 1.2

1.

TABLE OF CONTENTS

INTRODUCTION

1.1 PURPOSE.......oiiiiiiiie ettt ettt e e ettt e e et e e s sreeestbeeeesssseesansseeesnnseeens

1.2 REFERENCES.......cuttiiiiiteeiiiieeeeieeeesitteeestseeeessseeessssesessseeesssssessssssesesssseeens

1.3 FONT USAGEcttiie ettt tte et e et e e et e e e esa e e e e nenaaesnnseeeas

1.4 ACRONYMS AND DEFINITIONScuvvteeririeeerrireesnreeessereeeessseesssseeesssseeens
API OVERVIEW

2.1 INTERFACE MECHANISMScovvvvtvererererererererererereserereresssssessssssrsssrsrsssrsresees
2.1.1 Direct Execute Function Calls..................cccooeveeevueeeecieneeeiieeeecneaenn,
2.1.2 CallbACK FUNCHION «.......c.veeeeveeieieeeeeee e

2.2 DATA INTERFACES.....ceuttiiteeeiiienteeeieesveesreesseesseessseesnsesssesssesssseessseesns

2.3 COMMON CONSTANTS AND STRUCTURESc.uveeruieeireeieeeireenereensneenseeenens
2.3.1 COMMON DALA TYPES....uveeeviaereeeiieeieeieeereeeieeenteesieeesire e naaeeenas
2.3.2 STATUS oot e e et e e et e e e eaaee e sateeeenaveeeeeanes
2.3.3 SPECTAL LINK IDS.......c.eveeeeeiecreeeiiiesieeeieeeieesieesteesveesaeesveeseveenaneens
INITIALIZATION INTERFACE

3.1 INTRODUCTIONcceiuiiiieeeiiiieeeieeeetteeeetreeeeeraeesssreeesssseeeesssseesassseeesnsseeens
3.1.1 Board INTtiQliZAtION.ccuveeeeeeeeecciieeeeeeeeeeciieeee e
3.1.2 Radio INMIALIZATION ...
3.1.3 StACk INTHIALIZATION ...

32 B P _INIT () oo e e e e e ean
3.2.1 DESCHIPIION ...ttt ettt
3.2.2 PTOTOIYPC vttt
3.2.3 Parameter Details..............coccceueeeeeeeeeeiiiiieieeeeeeiiiieeeee e
3.2.4 REIUIT .o

33 SMPL_INIT () ettt e e eeaee e e eaeeeeeeneeeeenes
3.3.1 DESCHIPIION ..ottt
3.3.2 PrOTOIYPC ettt
3.3.3 Parameter Details...............cccceueeeeeeeeeeciiiieeeeeeeeiiieeeeeeeeeecieeea e
3.3.4 REIUITU .o
CONNECTION INTERFACE

4.1 INTRODUCTIONccttiiiieerieeiieeteeeteeeaeesseeeseessseessseesssesssseessessssesssseennn

4.2 SMPL_LINK() «tttteeititieeeitie et e eeteeeeeetvee e et e eeteeeeeetveeesenveesesaneeeenareeeenns
4.2.1 DESCHIPTION ..ottt et et e et e st e s beesbeesbeessbeenaaeens
4.2.2 PFOTOLYPE ettt ettt st naae s
4.2.3 Parameter Details................ccoueeecueeeecieeeeeiieeeeciee e e e
4.2.4 ROTUFTU ..ot

4.3 SMPL_LINKLISTEN() ...uvttteeiiieeeeteeeeeiveeeeeiteeeeeteeeeetveeeeeaveesesaareeeeaveeeenns
4.3.1 DESCHIPTION ..ottt ettt e e st esbeesbeesbeessbeenaseens
4.3.2 PFOTOLYPE oottt ettt ettt saae s
4.3.3 Parameter Details................ccoueeeeueeeeciueeieeiieeeeiiee e e e
4.3.4 ROTUFTL ..o et
DATA INTERFACE

5.1 INTRODUCTIONcceiuiiiieeeiiieeeieeeetteeesereeeeseraeesssreeessseaessssseesassseeesnsseeens

5.2 SMPL_SENDOPT () 1eeeeevrieeeirieeiirieeeseiieeessseeessseeeesssesesssseessssssesesssseeennes
5.2.1 DESCHIPIION ...ttt ettt
5.2.2 PTOTOIYPC ittt

Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

5.2.3 PArameter DEIQILS..............coocccveeeeee e eeeeeeeeee e e eeecte e e e e e et e e e e e e et etaa e e e e e e e e ettaateeeeeeeenansraeeens 8
5.2.4 REIUTTU ..ottt e e e et e e e e e e e et ab e e e e e e e e et ttaateeeeeeeettaaaeeeeeeeenaarraaeeas 8
5.3 LY 5 DR 231 0 X () ORI 8
5.3.1 DESCHIPIION ...ttt s 9
5.3.2 PrOTOIYPC ... 9
5.3.3 PArameter DEIQILS..............coocceveeeeeeeeeeeiieeeee et e ettt e e e e et e e e e e e ettt aat e e e e e e e etaaateeeeeeeeeanrraeeeas 9
5.3.4 REOTUITL .o, 9
54 SMPL_RECEIVE ().rtttieeuttteeittteesottteeeeteeessereeesssseessasseesssssesssssssesssssssessssssssassssessssssessssssessssssssesssssesesssseesssssees 9
5.4.1 DESCHIPIION ...ttt s 9
5.4.2 PTrOTOIYPC ... 9
5.4.3 POrameter DEIAILS..............coocceveeeeeeieeeeiieeeee e eeeeecieeee e e ettt e e e e et e e e e e e et ttaa e e e e e e e e etaaaaaeeeeeeesaasreeeeas 9
5.4.4 REIUITU ..ottt e e et e e e e e e e et e e e e e e e e e eettaaeaaeeeeeettrateeeeeeeennnrreaeeas 10
DEVICE MANAGEMENT: IOCTL INTERFACE 11
6.1 INTRODUGCTIONcouttimiiiutieiteetteettente et ettt st st et et ea bt ebtesbae s bt e bt e bt eabesaeesbtesbee bt emteeateebteebaenbeenbeenbeenaesaeenae 11
6.2 COMMON CONSTANTS AND STRUCTURESceouteteeiertenitenieenteeteestenttentaesseenseesessaesaeesseesseensesnsesssesseesseenses 11
6.2.1 TOCTL ODJECES ..voveeiieeeiieeeie e e e e siteeette e sete e tte e ate e st e s sbeeaeesnsaeeabeeanseeenseesnsaeenseesnsaesaseesnsaesnseesnseennses 11
6.2.2 TOCTL ACHIONS ... eeeeeee et e e et e e et e e et e e e e aeeeeeaaae e etasaeeaaseeeeeasaeeeaasseeeesseeeeeasaaeeasteeeeensseeeasseas 11
6.3 SIMPL_TOCTL) et e ettt eeettee ettt ettt e ettt e e ettt e e e et e e eetaee e eetbeeeeeataeseeassaeeesssaseessseeeassssseanssaseeasssesenasssesassesennnes 12
6.3.1 DESCHIDTION .ottt ettt et e et e st e et e s ae e s beessbeesabeeesseessbeeesbeessbaeasbaeansaesnsaesnseenssessnsaennseenns 12
6.3.2 PFOTOLYPC ettt ettt ettt et e et e et e st e s abe e s s bt e s sbe e e s beeasbeeasbaeasbeeenbaeenbeesnbeeanbeennbeennreenns 12
6.3.3 PAFAMEIET DEIAILS ...ttt e e e et e e e et e e e et e e e e aaae e e eataeeeeaseeeeeasaeeeearaeeean 12
6.3.4 ROTUFTU ..ottt e et e et e e et e e e e e te e e eeatbee e eetaaaeeaataeeeeaaseeeenasaeeearaaeaan 12
6.4 TOCTL OBJECT/ACTION INTERFACE DESCRIPTIONS.....cc.uteuttrttenttenteetertenitenitenteenteentesasessaesseenseenseensessesmeenues 12
6.4.1 ROAW IO ...t e e e e e et e e e e e e et e e e e e e e etaeeeeeare e e e enaeeeennaeean 12
6.4.2 RAAIO CONITOL ... ettt e ettt e e e e e et e e e e e e e eetaateeeeeeeeaanseaeens 13
6.4.3 ACCESS POINE JOIN CONITOL..........cccccveeeeeiieeeeieeeee e eeeeccaeeee e e eeetite e e e e e et e e e e e e e setaa e e e e e e eeeataaeeaeeeeans 15
6.4.4 Device Address CONIIOL................oooooeeceiueeeeee et e et e e e et e e e e e e et e e e e e e e e eanaaeeeas 15
6.4.5 FreqUency CONITOL...........c...ccccocieiuiiiiiiiiiieieeie ettt ettt ettt e 16
6.4.6 CONNECTION CONITOL ..o et et e e e e e e e e ettt e e e e e e eeeaaaeaeaeeeeentssaaeeeeeeennnees 17
6.4.7 FIirmware VErSIiONcccoooeiiieiiiee e 17
6.4.8 PFOIOCOL VEFSION ...t ettt e e e ettt e e e e ettt e e e e e e e e ataateeeeeeeennaeeeens 18
6.4.9 Non-volatile Memory OBJECE............c.cocieeuieuieiiiiiiiiieieeteee sttt ettt s 18
0.4.10 NEtWOTKk ACCESS TOKCIScuveeeeeeeeeeieieeee e eeeecte e e e e e e e e e e e e e e taa e e e e e e e eettaaaeeeeeeeenanaaeaeeas 19
CALLBACK INTERFACE 21
7.1 INTRODUGCTIONcouttimiiiutieiteetteettente et ettt sttt e bt et ea bt eatesbae s bt e bt e bt eabesaeesbeesbee bt enteeateeateebaesbeenbeenseenaesaeenae 21
7.2 CALLBACK FUNCTION DETALLS ...cutteutteutenttenttenteeteeteetesutesteenteenteestesssessaenseeseensesssesueesseesseensesnsesnsesseenseensees 21
7.2.1 DSCHIPTION .ottt ettt et e et e et e et e et e s beesabeesabeeesbeessbeeasbeesssaensseeasbaesnsaesnseensseesnsesnnseenns 21
7.2.2 PFOTOLYPC ettt ettt ettt ettt e st e et e s abe e s bt e s sbeeeabeessbeeaabeeeabeeanbaeenbaesnbeeanbeeanbeennbeenns 21
7.2.3 PAFAMCIET ACIALLS. ...t e e e et e e e et e e e et e e e ata e e e eataeeeeareeeeeasaeeesaraeeaan 21
7.2.4 ROTUFTU ..o et e et e e et e e et e e e e te e e eeattee e etaeeeeettaeeeeaareeeenaaaeeeaaraaeann 21
EXTENDED API 22
8.1 L 0] 4 § (0] [PPSR 22
8.2 NI, D 01100 G TSROt 22
8.2.1 DSCHIPTION ...ttt ettt ettt et e s e st e s et e st e s ab e e s bt e s ab e e e abeesabeesabeesabeenabeeas 22
8.2.2 PTOTOIYPDC ittt ettt ettt st e s e st e st e s bt e st e st e st e e st e eabe e e 22
8.2.3 PO AICTETS ..ottt e e e e e e e e et e e e e e e et aaaeaeeeeeeeatraeeeeeeeeennsnsseeens 22
8.2.4 ROIUITU ..ottt e e e et e e e e e e et a s e e e e e eeeettaraaeeeeeseeatraeeeeeeeeennanaeaeeas 22
8.3 NI D 1 T TSRS RRRRORRRt 22
8.3.1 DSCHIPTION ...ttt ettt ettt ettt sttt et s bt e st e s et e st esab e e s bt e s abeeeabeesabeesabeesabeenaneeas 22
83.2 PTOTOIYPC ittt ettt et et ettt e s e st e st e st e e bt e st et e e st e eatee e 23
8.3.3 POFAICTETS ..ottt e et e e e e e e e e e e e e e e eaaaeaae e e e seatraaeeeeeeeenannaeaeens 23
8.3.4 REIUITU .ottt e e e et e e e e e e ettt e e e e e e e e e eetaaaeeeeeeeeeatraeeeeeeeeennaraeaeeas 23

Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

8.4 SMPL_COMMISSION() ..evtteeiurieeesureeesisreeessseeeessseeeassssessssseeeesssesssssssessssssesassssessssssesessssessassssesssssseessssseesnsnss 23
84.1 DESCHIPTION ...ttt ettt ettt ettt e st e s et e st e sab e e s bt e sab e e s abeesabeesabeesabeenabeeas 23
84.2 PTOTOIYPC ittt ettt ettt et sttt e s e st e st e st e e st e st e e st e eatee e 23
8.4.3 POFAINEIETS.c.....eeeeeeeeiee ettt e ettt e ettt e e sttt e e et e e e ssaeeesssseaeassseeeeasssaeeenssaaeasssseesansseeeenssaeesansseeann 23
8.4.4)17 USRI 24

9. EXTENDED SUPPORT 25

9.1 INTRODUCTION ...ttt sttt ettt st ettt et et sh e eb e sae et et e a e b e sa e b saeess et e s e s e st e s besueeneennennennens 25

0.2 NWEK L DELAY () eteetteitteieeieee ettt ettt ettt h ettt st shtesbe et e et e eate s bt e ebeesbe e bt esbesabesbeesbeenbeenbeenteans 25
9.2.1 D@SCHIDTION .ottt ettt e et e st e et e et e s beesabeeeabeeesbeessbeessbeesssaeansaeansaesssaesnseensseesnsesnnseenns 25
9.2.2 PFOTOLYPE (UACTO) vttt ettt e ettt e st e st e s abe e s beessbeessbaesaseesnbaeenseesnseesssessnseennseenns 25
9.2.3 ParAmeEter AESCHIPTIONcccuuvevueeeeiiieeieeeiieeeeeecieeeeiteetteetee s ttestee s beesbeessbeessbeesnsaesssessnseessseesnsaensseens 25
9.2.4 RETUFT ..ottt et ettt at e bbbttt e b e bt bbbt e 25

0.3 NWEK_REPLY_DELAY () ceuttettittiteritenttett ettt ettt ettt sttt ettt et sat e sbte bt et et saaesatesbeesbeenbeenaeens 25
9.3.1 D@SCHIDTION ..ottt ettt et e et e st e et e et e s bt e sabeesa bt e ssbeessbeessbeesssaeanseessbaeanseesnseensseesnsasnnseenns 25
9.3.2 PFOTOLYPE (MUACTO) vttt ettt ettt e et e st e s abe e s beessbeessbaessseessbaeanseesnseesssessnsaennseenns 25
9.3.3 PaTAmMETEr AESCHIPTIONoocuveeeeeeeiieeeeeeciee et ecit e eite et e e tee st estee s beesbeessbeessbeesnbaesnsaesnseensseesnsasnsseens 25
9.3.4 RETUFT ..ottt et ettt et h e bbbt ettt ae et et 25
9.3.5 EXAMPLE Of MACTO USAZE....c..eeeeeeeeiiieiieecieeeiieeiteeeiteeiteeteesttestee s beesbeessbeesabeessbaessseessseesssessnseensseens 25

iv Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

1. Introduction

1.1 Purpose
This document describes the application programming interface for SimpliciTI software. The API provides an
interface to the services of the SimpliciTI protocol stack.
1.2 References
1. SimpliciTl Specification Version 1.1.0.
2. SimpliciTl Developers Notes

1.3 Font usage

There are a few special usage fonts:

Font Usage

Fixed pitch Used for file names, code snippets, symbols, and code examples.

Underlined blue normal text Document cross reference hyperlink

1.4 Acronyms and Definitions

API Application Programming Interface.
BSP Board Support Package

CCA Clear Channel Assessment

GPIO General Purpose Input Output

ISR Interrupt Service Routine

LED Light Emitting Diode

LQI Link Quality Indication.

LRU Least Recently Used

MAC Medium Access Control.

PHY Physical layer.

RSSI Received Signal Strength Indicator

1 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

2. API Overview

2.1 Interface Mechanisms
The following interface mechanisms are used in the SimpliciTI API.
2.1.1 Direct Execute Function Calls

These API functions directly execute code that performs an operation. The function executes in the context of the
caller. These functions may have critical sections.

2.1.2 Callback Function

There is one optional callback opportunity in SimpliciTI. The function must be defined and implemented by the
application and is registered during initialization. The callback function implementation should avoid CPU intensive
operations as it runs in the ISR context. This function is described in detail in Section 7.

2.2 Data Interfaces

These interfaces support sending and receiving data between the SimpliciTI stack and the application and ultimately
support the peer-to-peer messaging.

2.3 Common Constants and Structures

2.3.1 Common Data Types

The following are defined:

typedef signed char int8_t;
typedef signed short intlé_t;
typedef signed long int32_¢t;

typedef unsigned char uint8_t;
typedef unsigned short uintlé_t;
typedef unsigned long uint32_t;
typedef unsigned char 1inkID_t;
typedef enum smplStatus smplStatus_t;

In addition a further set of types and structures are used for the 1oct1 interface. These are described in Section 6.

2.3.2 Status

The following status values are used in various API functions. They are of type smplStatus_t. The relevant
return codes will be specified individually for each API symbol in the following sections.

NAME DESCRIPTION

SMPL_SUCCESS Operation successful.

SMPL_TIMEOUT A synchronous invocation timed out.

SMPL_BAD_PARAM Bad parameter value in call.

SMPL_NOMEM No memory available. Object depends on APIL
SMPL_NO_FRAME No frame available in input frame queue.
SMPL_NO_LINK No reply received to Link frame sent.

SMPL_NO_JOIN No reply received to Join frame sent.
SMPL_NO_CHANNEL Channel scan did not result in response on at least 1 channel.

2 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

SMPL_NO_PEER_UNLINK Peer could not delete connection. Returned in reply message to unlink request.
(Not officially supported yet.)

SMPL_TX_CCA_FAIL Frame transmit failed because of CCA failure.

SMPL_NO_PAYLOAD Frame received but with no application payload.

SMPL_NO_AP_ADDRESS Should have previously gleaned an Access Point address but we have none.

2.3.3 Special Link IDs

SimpliciTI supports special Link IDs that are available to the application by default. The following values indicate
the special Link IDs.

DESCRIPTION

SMPL_LINKID_USER_UUD Unconnected User Datagram Link ID. This is a special, connectionless Link
ID supported by default on all user applications.

3 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

3. Initialization Interface

3.1 Introduction

SimpliciTI initialization involves three stages of initialization: board, radio, and stack. Board initialization (BSP) is
deliberately separated from the radio and stack initialization. The radio and stack initialization occur as a result of
the SimpliciTI initialization call. The board initialization is a separate invocation not considered part of the
SimpliciTI API but it is noted here for completeness.

The BSP initialization is partitioned out because customers may already have a BSP for their target devices. Making
the BSP initialization explicit in the SimpliciTI distribution makes it easier to port to another target.

3.1.1 Board Initialization

SimpliciTI supports a minimal board-specific BSP. The BSP scope includes GPIO pin configuration for LEDs,
switches, and a counter/timer used for protocol chores. It also includes SPI initialization for the dual-chip RF
solutions.

3.1.2 Radio Initialization

Radio registers are populated and the radio is placed in the powered, idle state. Most of the radio registers are based
on exported code from SmartRF Studio. The default channel is set with the first entry in the channel table.

3.1.3 Stack Initialization

All data structures and network applications are initialized. In addition the stack issues a Join request on behalf of the
device. The Join request will fail in topologies in which there is no Access Point. This is expected in this topology
and is not an error condition.

In topologies in which an Access Point is expected to be present Join failure is an error condition and the application
should continue to retry or take other action.

3.2 BSP_Init ()
3.2.1 Description

Not strictly part of the SimpliciTI API this call initializes the specific target hardware. It should be invoked before
the SMPL_Init () call.

3.2.2 Prototype
void BSP_Init (void)
3.2.3 Parameter Details
None.
3.2.4 Return

None.

3.3 SMPL_Init ()
3.3.1 Description

This function initializes the radio and the SimpliciTI protocol stack. It must be called once when the software
system is started and before any other function in the SimpliciTI API is called.

3.3.2 Prototype
smplStatus_t SMPL__ _Init(uint8_t (*callback) (1inkID_t))

3.3.3 Parameter Details

4 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

PARAMETER DESCRIPTION

callback Pointer to function that takes a linkID_t argument and returns a uint8_t.

A non-null argument causes the supplied function to be registered as the callback function for the device. Since the
initialization is called only once the callback serves all logical End Devices on the platform.

The function is invoked in the frame-receive ISR thread so it runs in the interrupt context. Details of the callback are
discussed in Section 7.

It is valid for this parameter to be null if no callback is supplied.
3.3.4 Return

Status of request as follows:

STATUS DESCRIPTION

SMPL_SUCCESS Initialization successful.

SMPL_NO_JOIN No Join reply. Access Point possibly not yet up. Not an error if no Access Point
in topology

SMPL_NO_CHANNEL Only if Frequency Agility enabled. Channel scan failed. Access Point possibly
not yet up.

5 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

4. Connection Interface

4.1 Introduction

This interface provides the mechanism to establish a connection between two peers.

4.2 SMPL_Link()
4.2.1 Description

This call sends a broadcast link frame and waits for a reply. Upon receiving a reply a connection is established
between the two peers and a Link ID is assigned to be used by the application as a handle to the connection.

This call will wait for a reply but will return if it does not receive one within a timeout period so it is not a strictly
blocking call. The amount of time it waits is scaled based on frame length and data rate and is automatically
determined during initialization.

This call can be invoked multiple times to establish multiple logical connections. The peers may be on the same or
different devices than previous connections.

4.2.2 Prototype
smplStatus_t SMPL_Link (1inkID_t *1id)

4.2.3 Parameter Details

PARAMETER DESCRIPTION

lid The parameter is a pointer to a Link ID. If the call succeeds the value pointed to will be
valid. It is then to be used in subsequent APIs to refer to the specific peer.

4.2.4 Return

Status of request as follows:

STATUS DESCRIPTION

SMPL_SUCCESS Link successful.

SMPL_NO_LINK No Link reply received during wait window.

SMPL_NOMEM No room to allocate local Rx port, no more room in Connection Table, or no
room in output frame queue.

SMPL_TX_ CCA_FAIL Could not send Link frame.

4.3 SMPL_LinkListen()
4.3.1 Description
This call will listen for a broadcast Link frame. Upon receiving one it will send a reply directly to the sender.

This call is a modified blocking call. It will block “for a while” as described by the following constant set in the
nwk_api . c source file:

CONSTANT DESCRIPTION

LINKLISTEN_MILLISECONDS_2_WAIT Number of milliseconds this thread should block to listen for a
Link frame. The default is 5000 (5 seconds)

6 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

The application can implement a recovery strategy if the listen times out. This includes establishing another listen
window. Note that there is a race condition in that if the listen call is invoked upon a timeout it is possible that a link
frame arrives during the short time the listener is not listening.

4.3.2 Prototype
smplStatus_t SMPL_LinkListen(linkID_T *1id)

4.3.3 Parameter Details

PARAMETER DESCRIPTION

lid The parameter is a pointer to a Link ID. If the call succeeds the value pointed to will be
valid. It is then to be used in subsequent APIs to refer to the specific peer.

4.3.4 Return

Status of request as follows:

STATUS DESCRIPTION

SMPL_SUCCESS Link successful.
SMPL_TIMEOUT No link frame received during listen interval. Link ID not valid.

7 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

5. Data Interface

5.1 Introduction

This API provides interfaces to send and receive data between peers.

5.2 SMPL_SendOpt ()
5.2.1 Description

This function sends application data to a peer with the capability of specifying transmit options. The network code
takes care of properly conditioning the radio for the transaction. Upon completion of this call the radio will be in the
same state it was before the call was made. The application is under no obligation to condition the radio.

By default the transmit attempt always enforces CCA.

5.2.2 Prototype
smplStatus_t SMPL_SendOpt (linkID_t 1id, uint8_t *msg, uint8_t len. txOpt_t opts)

5.2.3 Parameter Details

PARAMETER DESCRIPTION

lid Link ID of peer to which to send the message.

msg Pointer to message buffer.

len Length of message. This can be 0. It is legal to send a frame with no application payload.
opts Bit map of valid options selected for the transmit

The ‘1id’ parameter must be one established previously by a successful Link transaction. The exception is the
Unconnected User Datagram Link ID (see Section 2.3.3). This Link ID is always valid. Since this Link ID is not
connection-based a message using this Link ID is effectively a datagram sent to all applications.

Valid transmit options are:

Option (macro) Description

SMPL_TXOPTION_NONE No options selected.

SMPL_TXOPTION_ACKREQ | Request acknowledgement from peer. Synchronous call.

5.2.4 Return

Status of request as follows:

STATUS DESCRIPTION

SMPL_SUCCESS Transmission successful.

SMPL_BAD_PARAM No valid Connection Table entry for Link ID; data in Connection Table entry
bad; no message or message too long.

SMPL_NOMEM No room in output frame queue.

SMPL_TX_ CCA_FAIL CCA failure. Message not sent.

SMPL_NO_ACK No acknowledgment received.

5.3 SMPL_Send ()

8 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

5.3.1 Description

This function sends application data to a peer. This API provides legacy support for SimpliciTI releases that predate
the addition of the transmit options. This API is equivalent to calling SMPL_SendOpt () with
SMPL_TXOPTION_NONE specified.

The network code takes care of properly conditioning the radio for the transaction. Upon completion of this call the
radio will be in the same state it was before the call was made. The application is under no obligation to condition
the radio.

By default the transmit attempt always enforces CCA.

5.3.2 Prototype
smplStatus_t SMPL_Send(linkID_t 1lid, uint8_t *msg, uint8_t len)

5.3.3 Parameter Details

PARAMETER DESCRIPTION
lid Link ID of peer to which to send the message.
msg Pointer to message buffer.
len Length of message. This can be 0. It is legal to send a frame with no application
payload.

The ‘1id’ parameter must be one established previously by a successful Link transaction. The exception is the
Unconnected User Datagram Link ID (see Section 2.3.3). This Link ID is always valid. Since this Link ID is not
connection-based a message using this Link ID is effectively a datagram sent to all applications.

5.3.4 Return

Status of request as follows:

STATUS DESCRIPTION

SMPL_SUCCESS Transmission successful.

SMPL_BAD_PARAM No valid Connection Table entry for Link ID; data in Connection Table entry
bad; no message or message too long.

SMPL_NOMEM No room in output frame queue.

SMPL_TX_CCA_FAIL CCA failure. Message not sent.

5.4 SMPL_Receive ()
5.4.1 Description
This function checks the input frame queue for any frames received from a specific peer.

Unless the device is a polling device this call does not activate the radio or change the radio’s state to receive. It only
checks to see if a frame has already been received on the specified connection.

If the device is a polling device as specified in the device configuration file (see Section 9.2 in the Developers Notes)
the network layer will take care of the radio state to enable the device to send the polling request and receive the
reply. In this case conditioning the radio is not the responsibility of the application.

If more than one frame is available for the specified peer they are returned in first-in-first-out order. Thus it takes
multiple calls to retrieve multiple frames.

5.4.2 Prototype
smplStatus_t SMPL_Receive(linkID_t 1id, uint8_t *msg, uint8_t *len)

5.4.3 Parameter Details

9 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

PARAMETER DESCRIPTION

lid Check for messages from the peer specified by this Link ID.
msg Pointer to message buffer to populate with received message.
len Pointer to location in which to save length of received message.

The ‘1id’ parameter must be one established previously by a successful Link transaction. The exception is the
Unconnected User Datagram Link ID (see Section 2.3.3). This Link ID is always valid. The application must ensure
that the message buffer is large enough to receive the message. To avoid a buffer overrun the best strategy is to
supply a buffer that is as large as the maximum application payload specified in the network configuration file
(MAX_APP_PAYLOAD) used during the project build.

5.4.4 Return

Status of request as follows:

STATUS DESCRIPTION

SMPL_SUCCESS Frame for the Link ID found. Contents of 'msg‘ and ’1en ° are valid.

SMPL_BAD_PARAM No valid Connection Table entry for Link ID; data in Connection Table entry
bad.

SMPL_NO_FRAME No frame available.

SMPL_NO_PAYLOAD Frame received with no payload. Not necessarily an error and could be deduced
by application because the returned length will be 0.

SMPL_TIMEOUT Polling Device: No reply from Access Point.

SMPL_NO_AP_ADDRESS Polling Device: Access Point address not known.

SMPL_TX_CCA_FAIL Polling Device: Could not send data request to Access Point

SMPL_NOMEM Polling Device: No memory in output frame queue

SMPL_NO_CHANNEL Polling Device: Frequency Agility enabled and could not find channel.

10 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

6. Device Management: IOCTL Interface

6.1 Introduction

The ioct1! interface is the means by which applications can get access to more refined control over the device.
There is a general form for the interface that specifies an object, and action, and any parameters associated with the
object and action.

The scope of this interface is large enough so that each form of control will be described in its own section below
after the general interface format is described. Because the interface is so general it is easily extensible by customers.

6.2 Common constants and structures

The 1oct1 objects and actions are presented below. The parameter information supplied with the call varies widely
depending on the object. The detailed parameter structure descriptions will be presented in the sections following the
interface description when each individual interface is described.

6.2.1 IOCTL objects

The following objects are defined. Each will be discussed in a separate section following the general API

description.

enum ioctlObject

{
IOCTL_OBJ_FREQ,
IOCTL_OBJ_CRYPTKEY,
IOCTL_OBJ_RAW_IO,
IOCTL_OBJ_RADIO,
IOCTL_OBJ_AP_JOIN,
IOCTL_OBJ_ADDR,
IOCTL_OBJ_CONNOBJ,
IOCTL_OBJ_FWVER,
IOCTL_OBJ_PROTOVER,
IOCTL_OBJ_NVOBJ,
IOCTL_OBJ_TOKEN

bi

typedef enum ioctlObject ioctlObject_t;

6.2.2 IOCTL actions

The following actions are defined. They will be discussed as they are relevant in the sections following the general
API description.

enum ioctlAction

{
IOCTL_ACT_SET,
IOCTL_ACT_GET,
IOCTL_ACT_READ,
IOCTL_ACT_WRITE,
IOCTL_ACT_RADIO_SLEEP,
IOCTL_ACT_RADIO_AWAKE,
IOCTL_ACT_RADIO_SIGINFO,
IOCTL_ACT_RADIO_RSSTI,
IOCTL_ACT_RADIO_RXON,
IOCTL_ACT_RADIO_RXIDLE,
IOCTL_ACT_RADIO_SETPWR,
IOCTL_ACT_ON,
IOCTL_ACT_OFF,
IOCTL_ACT_SCAN,
IOCTL_ACT_DELETE

bi

typedef enum ioctlAction ioctlAction_t;

I The “ioctl’ terminology is meant to convey the classic notion of application control of non-user space entities at or near the
hardware level. The interface does not follow the classic form of system ioct1 calls.

11 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

6.3 SMPL loctl()
6.3.1 Description
This is the single format taken by all 1oct1 calls.

6.3.2 Prototype
smplStatus_t SMPL_Toctl (ioctlObject_t obj, ioctlAction_t act, void *val)

6.3.3 Parameter Details

PARAMETER DESCRIPTION

obj Object of the action requested.

act Action requested for the specified object.

val Pointer to parameter information. May be input or output depending on action. May also
be null if object/action combination requires no parametric information.

All instances of ‘val’ in calls should be by reference, i.e., a true pointer. Do not cast the value of ‘val’ to void
*. The internal code dereferences the argument as if it were a pointer to the object. This can be inconvenient for a
simple argument but has the advantage that the interface is completely consistent.

6.3.4 Return
STATUS DESCRIPTION
SMPL_SUCCESS Operation successful.
SMPL_BAD_PARAM ioctl object or ioct1l action illegal.

Additional return values depend on object specified. These values will be described in the following sections.

6.4 IOCTL object/action interface descriptions
6.4.1 Raw /O
6.4.1.1 Support structure definitions

The following structures support this object:
typedef struct
{
uint8_t addr [NET_ADDR_SIZE];
} addr_t;

typedef struct

{
addr_t *addr;
uint8_t *msg;
uint8_t len;
uint8_t port;

} ioctlRawSend_t;

typedef struct

{
addr_t *addr;
uint8_t *msg;
uint8_t 1len;
uint8_t port;
uint8_t hopCount;

} ioctlRawReceive_t;

6.4.1.2 Interface details

12 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

This object permits sending to and receiving from arbitrary destination address/port combinations. Normally
applications must have established peer connection using the linking scheme. This object permits unconditional
communication. This support is used extensively by the NWK layer itself.

Note that this interface requires the caller to supply a complete Application address (device address and port

number) not a Link ID as would be done from the application.
Object Actions (void *)val object Comment

IOCTL_ACT_READ ioctlRawReceive_t | When executed returns the
payload for the oldest frame on
the specified port. It is similar to
a SMPL_Receive () call except
IOCTL_OBJ_RAW_ IO that additional information is
available from the received
frame.

IOCTL ACT WRITE ioctlRawSend_t Sends the enclosed payload to

the specified address/port
combination.

6.4.1.3 Return
6.4.1.3.1 IOCTIL_ACT WRITE

Status of request as follows:

STATUS DESCRIPTION

SMPL_SUCCESS Transmission successful.
SMPL_NOMEM No room in output frame queue.
SMPL_TX_CCA_FAIL CCA failure.

6.4.1.3.2 IOCTL_ACT_READ

Status of request as follows:

STATUS DESCRIPTION

SMPL_SUCCESS Frame for the Port found. Contents of ‘msg* and 1en ‘ are valid.
SMPL_NO_FRAME No frame available.

6.4.2 Radio Control

Some simple radio control features are currently available. At this time this interface does not support direct access
to the radio configuration registers.

6.4.2.1 Support structure definitions
typedef int8_t rssi_t;

typedef struct
{
rssi_t rssij;
uint8_t 1lqgi;
} rxMetrics_t;

typedef struct

{
1linkID_t 1lid; /* input: port for which signal info desired */
rxMetrics_t sigInfo;

} ioctlRadioSiginfo_t;

13 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

enum ioctlLevel
{
IOCTL_LEVEL_O,
IOCTL_LEVEL_1,
IOCTL_LEVEL_2
}i

typedef enum ioctlLevel ioctlLevel_t;

6.4.2.2 Interface details

Object Actions (void *)val object Comment

IOCTL_ACT_RADIO_SLEEP NULL Done before putting
the MCU to sleep.
Does a disciplined
state change to the
radio. Saves any radio

registers necessary.

IOCTL_ACT_RADIO_AWAKE NULL Done after MCU
wakes up. Restores any
radio registers

necessary.

IOCTL_ACT_RADIO_SIGINFO | ioctlRadioSiginfo_t | Get the signal strength
information for the last
frame received on the

specified port.

IOCTL_OBJ_RADIO

IOCTL_ACT_RADIO_RSSI rssi_t Get current RSSI value

TIOCTL_ACT_RADIO_RXON NULL Place radio in receive
state

TIOCTL_ACT_RADIO_RXIDLE NULL Place radio in idle state

to conserve power

IOCTL_ACT_RADIO_SETPWR*

ioctllevel_t

Set output power level.

* Enabled with EXTENDED_APT build time macro definition.
6.4.2.3 Return
6.4.2.3.1 Null object

STATUS
SMPL_SUCCESS

DESCRIPTION

This call always succeeds.

6.4.2.3.2 ioctlRadioSiginfo_t Object

Status of request as follows:

STATUS DESCRIPTION

SMPL_SUCCESS Receive metric information valid.
SMPL_BAD_PARAM

No valid connection information for Link ID specified in parameter structure.

14 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

6.4.2.3.3 rssi_t object

Status of request as follows:

STATUS DESCRIPTION
SMPL_SUCCESS RSSI value valid. This call always succeeds.

6.4.2.3.4 ioctlLevel_t object

Status of request as follows:

STATUS DESCRIPTION

SMPL_SUCCESS Specified power level valid and set.
SMPL_BAD_PARAM Invalid power level specified.

6.4.3 Access Point Join Control

To add some control over the ability of a device to gain access to the SimpliciTI network the protocol uses tokens to
both join a network and to create peers by linking. Additional control is provided by allowing an Access Point to
exclude the processing of Join frames unless the context is set to permit such processing. The idea is that if the
device cannot join then it cannot obtain the proper link token for that network so it will not be able to link with any
other devices.

6.4.3.1 Interface Details

Actions (void *)val object Comment

IOCTL_ACT_ON NULL Permit processing of

IOCTL_OBJ_AP_JOIN Join frames.

IOCTL_ACT_OFF NULL Ignore Join frames.

6.4.3.2 Return

STATUS DESCRIPTION
SMPL_SUCCESS This call always succeeds.

6.4.4 Device Address Control

This interface permits the application to override the build-time device address setting. If the application generates a
device address at run time this interface is used to set that address. The setting of the address must occur before the
call to SMPL_Init (). Otherwise the build-time address will prevail. Once the address is set under either condition
(pre-initialization ioct1 call or through SMPL_Init ()) the address cannot be changed.

6.4.4.1 Supporting structure definition
typedef struct

{
uint8_t addr [NET_ADDR_SIZE];
} addr_t;

6.4.4.2 Interface details

15 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

Actions (void *)val object Comment
IOCTL_ACT_SET | addr_t Sets address to value pointed to.
IOCTL_OBJ_ADDR IOCTL_ACT GET | addr_t Returns address in address pointed to.
6.4.4.3 Return
STATUS DESCRIPTION
SMPL_SUCCESS This call always succeeds.

6.4.5 Frequency Control

The current logical channel can be set and retrieved with this interface. A scan can also be requested. All of these
interfaces are used by NWK in support of Frequency Agility.

6.4.5.1 Supporting structure definitions
typedef struct

{
uint8_t logicalChan;
} fregEntry_t;

typedef struct
{

uint8_t numChan;
fregEntry_t *freqg;
} ioctlScanChan_t;

6.4.5.2 Interface details

Object Actions (void *)val object Comment

IOCTL_ACT_SET freqgEntry t Sets logical channel to value pointed to.
IOCTL_ACT_GET freqgEntry t Returns logical channel in address
pointed to.
IOCTL_OBJ_FREQ IOCTL_ACT_SCAN ioctlScanChan_t | Scans for replies on all logical channels.

Channel numbers on which replies were
received are returned in the
fregEntry_t array pointed to.

6.4.5.3 Return

6.4.5.3.1 IOCTIL_ACT SET

STATUS DESCRIPTION

SMPL_SUCCESS Operation successful.
SMPL_BAD_ PARAM Requested logical channel number is out of range.

6.4.5.3.2 IOCTL_ACT_GET

STATUS DESCRIPTION
SMPL_SUCCESS This call always succeeds.

6.4.5.3.3 IOCTIL_ACT SCAN

16 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

STATUS DESCRIPTION

SMPL_SUCCESS This call always succeeds. However, the channel count in the returned
parameter structure can be 0 which means that no channels were found.
Caller should be sure to check the ‘numChan’ channel count element

6.4.6 Connection Control

Currently the following interface removes the connection entry for the specified Link ID. It does not tear down the
connection by alerting the peer that the local connection is destroyed.

6.4.6.1 Interface details

Actions (void *)val object Comment
IOCTL_OBJ_CONNOBJ IOCTL_ACT DELETE 1linkID_t Deletes local connection from the
connection table that is specified by
the link ID pointer.

The Link ID SMPL_LINKID_USER_UUD is not a valid object for this call.
6.4.6.2 Return

STATUS DESCRIPTION

SMPL_SUCCESS Operation successful.
SMPL_BAD_PARAM Link ID is SMPL_LINKID_USER_UUD or no connection information for
specified Link ID

6.4.7 Firmware Version

6.4.7.1 Supporting definitions
#define SMPL_FWVERSION_SIZE 4

6.4.7.2 Interface details

The firmware version that is running can be retrieved. It is a read-only (Get) object.

Actions (void *)val object Comment

IOCTL_OBJ_FWVER IOCTL_ACT_GET uint8_t Retrieves the current firmware
version as a byte array.

The firmware version is an array of size SMPL_FWVERSION_SIZE that has the following format:

Byte Contents
0 Major release number
1 Minor release number
2 Maintenance release number
3 Special release number

17 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

The values in each byte are binary.

6.4.7.3 Return

STATUS DESCRIPTION
SMPL_SUCCESS This call always succeeds.

6.4.8 Protocol Version

The protocol version can be used to determine interoperability context or to deny access. It is used during both the
Join and Link negotiation. Currently the Join or Link is denied if the versions do not match. Backward compatibility
could be implemented under some conditions.

6.4.8.1 Interface details

The current protocol version is read-only.

Actions (void *)val object Comment

IOCTL_OBJ_PROTOVER | IOCTL_ACT_GET uint8_t Protocol version.

6.4.8.2 Return

STATUS DESCRIPTION
SMPL_SUCCESS This call always succeeds.

6.4.9 Non-volatile Memory Object

This object provides direct access to the current connection object. This object contains the context required to
establish, maintain, and restore all peer connections. Other information is also kept such as store-and-forward client
information if the device is an Access Point. An application can protect against reset conditions by saving and
restoring this context appropriately.

The interface provides access to the object by providing an object version value, a length, and a pointer to the object.
It is intended that the caller treat the object as a monolithic object and simply save or restore it as a single entity. The
version and length information is supplied to help both with local handling and sanity checks when restoring the
object.

This interface provides a GET action only. Application must do its own sanity checks. When saving a context the
length and version elements in the 1oct 1 object should be saved in addition to the monolithic NV object. When
restoring a context the application should do a GET and then be sure that the object version and length elements
match those that were previously saved.

This feature is enabled with EXTENDED APT build time macro definition.

6.4.9.1 Supporting structure definitions
typedef struct
{
uint8_t objVersion;
uintle_t objLen;
uint8_t **objPtr;
} ioctlNVObj_t;

6.4.9.2 Interface details

18 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

Actions (void *)val object Comment

IOCTL_OBJ_ NVOBJ IOCTL_ACT GET | ioctlNVObij_t Returns the version and]ength and a
pointer to the connection context.

If the ‘objPtr’ element is null only the NV object version and length objects are populated.

Note that this interface provides (dangerous) direct access to the connection context area in memory. Care should be
taken by applications the not disturb this memory or manipulate the contents directly.

6.4.9.3 Return

STATUS DESCRIPTION

SMPL_SUCCESS
SMPL_BAD_PARAM An action other than TOCTL_ACT_GET was specified.

6.4.10 Network Access Tokens
An interface is provided to get and set the two network access control tokens, the Join token and the Link token.
This feature is enabled with EXTENDED_APTI build time macro definition

6.4.10.1 Supporting definitions

enum tokenType
{
TT_LINK, /* Token Type is Link */
TT_JOIN /* Token Type 1is Join */
}i

typedef enum tokenType tokenType_t;

/* If either token ever changes type a union will make things easier. */
typedef union
{
uint32_t linkToken;
uint32_t joinToken;
} token_t;

typedef struct

{
tokenType_t tokenType;
token_t token;

} ioctlToken_t;

6.4.10.2 Interface details

Actions (void *)val object Comment
IOCTL_ACT_GET | ioctlToken_t Get the value of the specified token
IOCTL_OBJ_TOKEN into the ‘token’ object
IOCTL_ACT_SET | ioctlToken_t Set the value of the specified token
from the ‘token’ object.

6.4.10.3 Return

STATUS DESCRIPTION

SMPL_SUCCESS

SMPL_BAD_PARAM A token other than TT_LINK or TT_JOIN or an action other than
IOCTL_ACT_GET was specified.

19 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API

SWRA221 Version 1.2

20

Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

7. Callback Interface

7.1 Introduction

A single callback may be registered during initialization by providing a function pointer as an argument to the
initialization call (See Section 3.3). The function must be supplied by the application programmer.

7.2 Callback function details
7.2.1 Description

The callback (if registered) is invoked in the receive ISR thread when the frame received contains a valid application
destination address.

7.2.2 Prototype
uint8_t sCallBack (linkID_ t 1id)

7.2.3 Parameter details

PARAMETER DESCRIPTION

lid The Link ID of the connection bound to a received frame.

The parameter in the callback when invoked will be populated with the Link ID of the received frame. This is the
way the callback can tell which peer has sent a frame and possibly requires service. The special Link ID
SMPL_LINKID_USER_UUD is a valid parameter value in this context.

A call to SMPI,_Receive () using the supplied Link ID is guaranteed to succeed?. This is the only means by which
the frame can be retrieved.

7.2.4 Return
The callback must either O or non-zero. This value is the responsibility of the application programmer.

If the function returns O the received frame is left in the input frame queue for later retrieval in the user thread. This
is the recommended procedure. The callback can simply set a flag or otherwise store the information about the
waiting frame. The actual reference to SMPL_Receive () should be done in the user thread.

If it returns non-zero the frame resource is released for reuse immediately. This implies that the callback has
extracted all valid information it requires.

2 The success is guaranteed unless the frame is deleted due to the LRU policy for managing the input frame queue. This can
happen if the referenced frame is not retrieved in a timely manner.

21 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

8. Extended API

8.1 Introduction

If the macro EXTENED_APT is defined over the entire project build? additional API symbols are enabled. These are
described in the Sections that follow. The symbols are not enabled by default to save code space. If the macro is
defined all the symbols are included.

8.2 SMPL_Unlink()

8.2.1 Description

This API is used to tear down a connection in a disciplined manner. Disabling the connection consist of two actions.
First, the local connection is unconditionally disabled. After this call any further references to the relevant Link ID
will result in a return of SMPL_BAD_PARAM.

Second, a message is sent to the peer to inform the peer that the connection is being terminated. The calling thread
will wait for a reply. If a reply is received it contains the result of the connection termination attempt on the peer. If a
reply is not received the return from the call so indicates.

There is no guarantee that the message sent to the peer will be received. If the peer does not get the connection
termination frame it must have some independent means to determine that the connection has been terminated

8.2.2 Prototype
smplStatus_t SMPL_Unlink (1linkID_t 1id)

8.2.3 Parameters

PARAMETER DESCRIPTION
lid The Link ID of the connection to be disabled.

8.2.4 Return

Status of request as follows:

STATUS DESCRIPTION

SMPL_SUCCESS Unlink successful on both peers.

SMPL_BAD_PARAM Link ID not found.

SMPL_TIMEOUT No response from peer.

SMPL_NO_PEER_UNLINK Peer did not have a Connection Table entry for specified connection.

8.3 SMPL_Ping()
8.3.1 Description

3 This is done within the IAR IDE by defining the macro in the smpl_nwk_config.dat project file.

22 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

This API implements the NWK Ping application on behalf of the User application. It pings the device associated
with the peer specified. Note that it does not ping the peer itself but rather the device on which the peer is hosted. It
is roughly equivalent to the ICMP application in the TCP/IP suite.

It is provided as a convenience for the User applications. It can be used to see if the hosting device is there. Since it
does not talk to the peer itself it does not verify that the peer is there, but only that the device hosting the peer is
there.

This API has the convenient side effect. If Frequency Agility is enabled it will scan the channels in the channel table
if a reply is not received on the current channel. So, an application can discover a changed channel for free instead of
implementing its own scan channel logic.

8.3.2 Prototype
smplStatus SMPL_Ping(linkID_t 1id)

8.3.3 Parameters

PARAMETER DESCRIPTION
lid The Link ID of the peer whose device should be pinged.
8.3.4 Return
STATUS DESCRIPTION
SMPL_SUCCESS Ping succeeded.
SMPL_TIMEOUT No response from peer.

8.4 SMPL_Commission()
8.4.1 Description

This API is used to statically create a connection table entry. It requires detailed knowledge of the objects in the
connection table. If both peers are (correctly) populated using this API a connection can be established without an
explicit over-air linking transaction.

When used to create static connections User must know in advance the SimpliciTI address of the device for each
peer. In addition, both local and remote port assignments must be made. The local port number on one device must
correspond to the remote port assignment on the other device. They may have the same value but should be unique
for each peer on a specific device.

The User port address space is partitioned into static and dynamic portions. The size of the static portion, the portion
from which ports using this API must be drawn, is defined by the macro PORT_USER_STATIC_NUM found in the
file . \Components\nwk.h. The default value is 1. The static port address space starts at 0x3E and builds down.

Range checks are made on the port assignments but other sanity checks, such as duplicate assignments, are not made.

8.4.2 Prototype

smplStatus_t SMPL_Commission(addr_t *peerAddr, uint8_t locPort, uint8_t rmtPort, linkID_t *1id)

8.4.3 Parameters

PARAMETER DESCRIPTION

peerAddr Pointer to address of peer.
locPort Local static port assignment
rmtPort Remote static port assignment.

23 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

lid Pointer to Link ID object. Value assigned by NWK.
8.4.4 Return
STATUS DESCRIPTION
SMPL_SUCCESS Connection successfully created.
SMPL_BAD_PARAM Bad Link ID pointer (value null) or ports out of range.
SMPL_NOMEM No room in connection table.

24 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

9. Extended support

9.1 Introduction

In addition to the SimpliciTI API there are various support macros and functions available for use by applications.
These are for convenience. As application examples were developed support in the form of certain “helper” utilities
seemed sensible.

These are described in the following sections. The macros are defined in the file nwk_types.h.

9.2 NWK_DELAY()
9.2.1 Description

This macro will implement a synchronous delay specified in milliseconds. It is not accurate so should not be used for
time-sensitive applications.

It is used in the application examples for crude switch de-bouncing and delays between LED toggles to indicate
application state.

9.2.2 Prototype (macro)
NWK_DELAY (uintl6_t msDelay)

9.2.3 Parameter description

PARAMETER DESCRIPTION

msDelay Number of milliseconds to delay.

9.2.4 Return
N/A.

9.3 NWK_REPLY_DELAY()
9.3.1 Description

An application can invoke this macro after sending a message to a peer from which it expects an immediate reply.
The delay will terminate as soon as the next application frame is received (presumably the expected reply) or when a
maximum time has expired. The maximum delay time is computed during initialization of the stack and is scaled by
the data rate and the maximum application payload size. It requires no user intervention.

A sample message exchange session using this macro is shown below.

9.3.2 Prototype (macro)
NWK_REPLY_DELAY ()

9.3.3 Parameter description
N/A

9.3.4 Return

N/A

9.3.5 Example of macro usage

This code is incomplete in the sense that variable declarations and result code checks are not shown. However, the
symbol references are all conformal.

25 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

SimpliciTl API SWRA221 Version 1.2

/* Time to send a message to peer whose Link ID is 'linkID' */
{

/* wake up radio */

SMPL_Toctl (IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_AWAKE, O0);

/* Send message */
SMPL_Send(1linkID, &sendMsg, sizeof (sendMsg));

/* Radio must be in Rx state to get reply. Then back to
* IDLE to conserve power.
*/
SMPL_Toctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_RXON, O0);
NWK_REPLY DELAY () ;
SMPL_TIoctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_RXIDLE, 0);

/* Get received reply */
SMPL_Receive (1inkID, &rcvMsg, &rcvMsglen);

/* radio off */
SMPL_TIoctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_SLEEP, 0);

26 Copyright © 2008-2009 Texas Instruments, Inc. All rights reserved.

