
 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 

 

 

 

 

 

 

 

 

Application Note: 

SimpliciTI Frequency Agility 
 

 

 

 

 

 

 

 

 

 

 

Author: Larry Friedman 

 

Texas Instruments, Inc. 

San Diego, California USA 

 



i Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 

Version Description Date 

0.90 Prerelease draft 12/19/2007 

0.91 Prerelease draft update: add sequence diagrams 12/31/2007 

1.00 General release 02/01/2008 

1.10 Changed document title, updated title page, modified formatting 03/24/2009 

 



ii Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 

Table of Contents 
1. Introduction........................................................................................................................................ 1 
2. References.......................................................................................................................................... 1 
3. Feature Description............................................................................................................................ 1 

3.1. Channel table.................................................................................................................................. 1 
3.2. Network topology........................................................................................................................... 2 
3.3. Channel Migration.......................................................................................................................... 2 

4. Device behavior ................................................................................................................................. 2 
4.1. Access Point ................................................................................................................................... 2 

4.1.1. Startup ..................................................................................................................................... 2 
4.1.2. Channel migration................................................................................................................... 2 

4.2. End Device ..................................................................................................................................... 3 
4.2.1. Startup ..................................................................................................................................... 3 
4.2.2. Channel migration................................................................................................................... 3 
4.2.3. Missed message mitigation ..................................................................................................... 4 

4.3. Range Extender .............................................................................................................................. 4 
4.3.1. Startup ..................................................................................................................................... 4 
4.3.2. Channel migration................................................................................................................... 4 

4.4. Linking ........................................................................................................................................... 5 
5. Scenarios............................................................................................................................................ 6 

5.1. Startup behavior ............................................................................................................................. 6 
5.2. Initiation of channel migration....................................................................................................... 7 
5.3. Channel migration: polling device ................................................................................................. 8 
5.4. Channel migration: TX-only sleeping device ................................................................................ 9 

 

 

 

List of Figures 
Figure 1: Frequency Agility Startup sequence ............................................................................................. 6 

Figure 2: Access Point channel migration initiation .................................................................................... 7 

Figure 3: Channel migration with polling device. ........................................................................................ 8 

Figure 4: Channel migration with application-implemented acknowledge on sleeping device ................. 10 

 

 

 

List of Tables 
Table 1: File location of Channel Table definition ...................................................................................... 1 

 



1 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 

1. Introduction 
This document presents a high level description of the implementation of Frequency Agility (FA) feature 

as realized in the SimpliciTI protocol. 

2. References 
[1] SimpliciTI Specification 

[2] SimpliciTI Developers Notes 

[3] SimpliciTI Channel Table Information 

3. Feature Description 
The feature is intended to make it possible for a network of SimpliciTI-compliant devices to be able to 

migrate among different channels. The purpose of such migration is assumed to be to avoid a noisy 

channel in which the communications among the SimpliciTI devices is disrupted to the point where it 

compromises the network functionality. 

The feature is not intended to accommodate a rapidly changing train of channel changes such as one 

might expect in a network supporting frequency hopping mode of operation. The intended use of the 

feature is not to spread the energy out over a spectrum as a policy, but rather to permit channel changes 

as an exceptional behavior to avoid contention on the channel. 

3.1. Channel table 
The intent is that the population of channels be kept small. The list of possible channels is kept in a 

channel table. The default number in the SimpliciTI distribution is 4 channels. The specific values 

chosen depend on the characteristics of the radio. The default values should be selected to minimize 

known values of contention. For example, for the 2.4 GHz radios we try to avoid choices that overlay 

typical WiFi channels. See [3] for details on the default channel and frequency configurations. 

Both the number of channels and the default table of channels are easily modified in header files. In the 

current design these are set at build time for each device. To work correctly each device in the network 

must have been built with the same channel table. 

From the application perspective channels are referenced as logical channels. The logical channel 

numbers run consecutively from 0 through (sizeof(Channel Table) – 1). In effect the logical channel 

number is the index into the channel table that contains the actual radio value to be set.  

If the feature is not enabled the first entry in the table will be the channel that is used by default. 

The number of entries in the channel table is controlled by the macro __mrfi_NUM_LOGICAL_CHANS__ 

defined in the radio-specific section of the file .\Components\mrfi\mrfi_defs.h. The channel table 

is kept in the radio-specific file as shown below: 

Radio File containing Channel Table 

802.15.4 (CC2430) .\Components\mrfi\radios\family4\mrfi_radio.c 

CC251x/CC2500/CC111x/CC1100 .\Components\mrfi\radios\common\mrfi_f1f2.c 

Table 1: File location of Channel Table definition 

These may be changed at user discretion. 



2 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 

3.2. Network topology 
Support for FA requires that the SimpliciTI network be configured with an Access Point. The Access 

Point manages the FA feature by communicating with other devices using the Network Frequency 

Application Port (see [1]). 

3.3. Channel Migration 
Channel migration is initiated by the Access Point. The migration can be initiated by any one of a 

number of direct actions. It can be initiated by user intervention, for example, pressing a ‘Channel 

Change’ button.  

It can also be initiated by algorithmic inference that the current channel is noisy. The Access Point can 

monitor the current channel for noise and decide on its own that the current channel should be changed.  

Though not currently implemented, the Access Point could initiate a channel change based on a request 

from an End Device. This could occur, for example, if a user pressed a ‘Change Channel’ button on a 

Remote Control implemented as a SimpliciTI End Device. 

4. Device behavior 
Brief descriptions of device behaviors are presented n the following sections.  

4.1. Access Point 

4.1.1. Startup 

At startup the Access Point sets the channel to the default channel. By convention this is logical channel 

0. 

4.1.2. Channel migration 

Channel migration always originates with the Access Point object and is therefore always an active 

process.  

When the Access Point invokes channel migration it sends a broadcast frame to the Frequency 

Application port. The application payload of this message contains the logical channel number to which 

to change. All non-sleeping devices should hear this message and change channels accordingly. A 

prudent implementation might send this broadcast more than once to try and ensure compliance by all 

devices (especially Range Extenders) that are always on.  

The recovery from having missed this message will differ depending on device type. Various scenarios 

are discussed in the following sections. 

There are two stimuli that can initiate a channel migration. 

4.1.2.1.Direct User intervention 

In this case the user of the device initiates the channel change. This could be done, for example, by 

pressing a ‘Channel Change’ button on the device such as is frequently done on cordless phones. 



3 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 

4.1.2.2.Algorithmic intervention 

It is possible for the Access Point to monitor the current channel for noise. A policy can be implemented 

based on RSSI measurements that a channel change is required. This allows the Access Point to decide 

on its own that channel migration should be activated. 

4.2. End Device 
End Device behavior depends to some extent on the End Device capabilities. These are addressed in the 

following sections. 

4.2.1. Startup 

All End Devices regardless of configuration start up the same way. If FA is active (implying that an 

Access Point is part of the network) the End Device begins by scanning the channel population. As part 

of the Join discipline, for each channel the End Device sends a Frequency Application Ping frame and 

waits for a reply. The frame is sent to the broadcast address. Only an Access Point will reply to this 

frame. 

A scan results in a list (typically of length 1) of the channels on which the End Device receives a reply to 

the Frequency Application Ping frame. The End Device then tries the usual Join discipline on each of 

these channels. If more than one channel is in the list, which implies that there is more than one active 

network within range, the Join Token should be the object governing the network to which the End 

Device has access. 

4.2.2. Channel migration 

The mechanism of channel migration differs depending on the characteristics of the End Device 

configuration. 

4.2.2.1.Always on 

In the case of an always-on device (regardless of the remainder of the device configuration) the network 

Frequency Application can receive the Access Point broadcast message announcing the channel change. 

In this case the device switches to the announced logical channel. 

It does not matter if there are no user applications expecting messages. An always-on device is assumed 

to be mains powered. It is then permissible to leave the radio in receive mode when idle. In this case the 

Frequency Application will receive the broadcast frame from the Access Point. 

4.2.2.2.Polling  

Polling devices that sleep between polls will miss the Access Point broadcast Frequency Application 

message. Broadcasts are not stored for later forwarding. Polling devices must discover that the channel 

has changed. 

The means used for this discovery is based on the polling discipline. When a polling device polls it 

always expects a reply. If no frames are waiting it will receive a frame spoofed by the Access Point with 

no application payload. If a frame is waiting that frame will be forwarded.  

If no reply is received it is possible that the channel has changed. After a configurable number of poll 

reply failures the device will scan for the current channel and then repeat the polling procedure. 



4 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 

4.2.2.3.Sleeping Transmit-only 

Two kinds of sleeping transmit-only devices are considered. The more general case is the one in which 

applications on a device only transmit but the device is equipped with a transceiver so it can receive 

messages. The second case is one in which the device has a transmit-only radio without the capability of 

receiving messages. 

4.2.2.3.1.Transmit-only with transceiver 

In the case in which no application receives frames but the device has a transceiver there are three 

possibilities. First, the application could act as if it had no receive capability and behave as in Section 

4.2.2.3.2 below. In this case the channel change is never detected. Second, the application could do a 

channel scan each time before sending a frame. Third, the application could be written to expect a reply 

that would serve as an acknowledgment. 

The only way to detect a channel migration having missed the Access Point announcement is to expect to 

receive a frame and then not receive it. This is the basis of the channel scan mechanism but there is no 

reason to waste the resources needed to scan when channel migration is a low frequency event. Better to 

build in an application level acknowledgment where one isn’t necessary in support of the application 

messaging discipline. Then scanning takes place only when failing to get the acknowledge message. 

4.2.2.3.2.Transmit-only with transmitter only 

The only option in this case is for all transmissions from such a device to be done on each and every 

channel for each frame sent. Preferably this cycle should be repeated at least once for insurance. 

4.2.3. Missed message mitigation 

Always-on devices are expected to receive the broadcast announcement from the Access Point that the 

channel is to be changed. If a device misses this message then unless some application periodically 

expects to receive a frame the changed channel will never be detected. 

Always-on devices should be built with protection against this scenario. A backup to missing the Access 

Point announcement is to employ one of the strategies discussed in Section 4.2.2.3.1. 

4.3. Range Extender 

4.3.1. Startup 

The Range Extender startup sequence is the same as that of an always-powered End Device. See Section 

4.2.1. 

4.3.2. Channel migration 

Because the Range Extender is always on it can be expected to receive the Access Point announcement 

of a channel change. If this message is missed other strategies are necessary depending on whether there 

is a peer application running on the Range Extender device. 

The main purpose of the Range Extender is to replay frames. The Range Extender need not and typically 

will not have any peer applications running. If it did it could use the strategies used by the always-on End 

Device (see Section 4.2.3). 

Since Range Extenders typically will not have peer applications running they should periodically do a 

channel scan to detect a channel migration. The period of this scan is left unspecified. 



5 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 

4.4. Linking 
Unlike joining, the current implementation of linking makes no provision for FA. That is, the link 

procedure will not discover if the device is on the incorrect channel at link time. The listener will listen 

on an incorrect channel indefinitely. If the linking device is on the incorrect channel the linking will 

continue to fail because it will not get a response. 

This implies that the linking procedure should occur in close temporal proximity to another service or 

exchange which can be guaranteed to discover the correct channel. For example, linking immediately 

after joining will likely not fail due to channel migration.
1
 All the SimpliciTI sample applications work 

this way. 

If linking procedure is required at some later time and the device is possibly on the incorrect channel a 

scan can be done using the SMPL_Ioctl() interface presenting an opportunity for link success based on 

temporal proximity as above. 

                                                      
1
 There is the small possibility of a channel migration between the join and the link. But even in this case if the 

receiver is on the AP broadcast channel migration message will likely be processed. 



6 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 

5. Scenarios 
The following drawings represent the general device behaviors described above in a pictorial format. Not 

every possible permutation is shown. 

5.1. Startup behavior 
Startup is the same for all non-Access Point devices. 

 

 

Figure 1: Frequency Agility Startup sequence 



7 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 

5.2. Initiation of channel migration 
The following diagram indicates how the Access Point initiates a channel change. 

SimpliciTI Example Session:

Active Channel Migration

(Access Point)

NWK

Access 

Point

API

SMPL_Init()

Initialize radio

Initialize stack

while (1) {

 if (change)

 {                    

SMPL_Ioctl(change_channel);

 }

}

IOCTL 

interface

Frequency

Application

Frequency App

Change channel

(broadcast)

Announce change

Change channel

Initiate change by intervention 

(e.g., button press) or 

automatically (algorithmic 

noisy channel assessment).

 

Figure 2: Access Point channel migration initiation 

An example of an auto-migration algorithm is implemented in the ‘Access Pont as data hub’ example in 

the SimpliciTI distribution. See Release Notes for versions 1.0.4 and later for details. 



8 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 

5.3. Channel migration: polling device 
This sequence represents behavior when a polling device faces a channel migration. The polling device 

does not hear the broadcast channel change message from the AP. The polling device receives no reply to 

the initial poll and scans to recover. 

 

 

Figure 3: Channel migration with polling device. 

 



9 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 

5.4. Channel migration: TX-only sleeping device 
This sequence shows the device described in Section 4.2.2.3.1. This is an End Device object that 

functionally does not need to listen but can do so by nature of its hardware support.  

For example, a temperature sensor that awakens and sends a temperature measurement periodically does 

not need to listen. However, hardware permitting, this kind of device must have the capability to listen in 

order to detect a channel change. The ‘listen’ aspect must be implemented at the SimpliciTI application 

level as does the channel migration logic itself. It is realized as a SMPL_Receive() call either polled or 

stimulated by a callback. 

In the following sequence both peers as well as the Access Point are shown. One peer (End Device) is 

always awake and can hear the channel migration announcement from the Access Point. The other peer 

(End Device) is the sleeping device the only needs to send periodic messages to the peer. The peers 

implement an acknowledgment discipline at the application level which provides a mechanism for the 

sleeping device to detect the channel migration. 

The following sequence diagram begins after all devices have started up and the peers have joined and 

linked successfully. These sequences have appeared elsewhere (see [2]).  

 



10 Copyright  2007-2009 Texas Instruments, Inc.  All rights reserved. 

API NWK

End Device 

Peer

(always on)

NWK API

End Device 

Peer 

(sleeping)

SMPL_Send()

SMPL_Receive()

SMPL_Receive()

SMPL_Send()

(sleep)

SMPL_Send()

SMPL_Receive()

SMPL_Receive()

SMPL_Send()

(sleep)

SMPL_Ioctl(change_channel);

IOCTL 

interface

Frequency App

Change 

channel

(broadcast)

Frequency

Application

Announce change

Change channel

Temp info

Temp info

Ack

Ack

Access 

Point

NWK API

Frequency App

Change 

channel

(broadcast)

Frequency

Application

Change channel

(sleep)

SMPL_Send()
Temp info

(no reply)

SMPL_Ioctl(Scan)

IOCTL 

interface

Freq App

Ping

Freq App

Ping Reply

SMPL_Send()

SMPL_Receive()

SMPL_Receive()

Temp InfoSMPL_Receive()

SMPL_Send() Ack

(unheard)

SMPL_Ioctl(Chg_Chan)

IOCTL 

interface

Freq App

Change Chnl

(awake)

(awake)

(awake)

(sleep)

 

Figure 4: Channel migration with application-implemented acknowledge on sleeping device 


