Wireless Communication

- Serial communication
- Allocated a frequency of operation
 - Could be a range of frequencies
 - Regulated by FCC (Federal Communications Commission) in US
 - Unfortunately, allocations are not world-wide
- Dominant forms
 - Infrared
 - VHF (very-high-frequency)
 - UHF (ultra-high-frequency)
 - Microwave
 - UWB (ultra-wide-band)
How wireless frequencies are allocated

- Garage door openers, alarm systems, etc. – 40MHz
- Cordless phones: 40-50MHz, 900MHz, 2.4GHz, 5.8GHz
- Baby monitors: 49MHz
- Radio controlled toys: 27-75MHz
- Wildlife tracking collars: 215-220MHz
- Cell phones: 824-849MHz, 869-894MHz, 1850-1990MHz
- Public safety (fire, police, ambulance): 849-869MHz
- Air traffic control radar: 960MHz-1.215GHz
- Global Positioning System: 1.227-1.575MHz
- Satellite radio: 2.3GHz
- WiFi/802.11b/g and Bluetooth: 2.4GHz
- Zigbee/802.15.4: 868MHz, 915MHz, 2.4GHz
- Microwave ovens: 2.4GHz
- TV: 54-216 (VHF 2-13), 470-806MHz (UHF 14-69)
- Ultra-wide-band: 3.1-10.6GHz
- ISM (industrial, scientific, medical): 900MHz, 1.8GHz, 2.4GHz, 5.8GHz

Considerations in choosing a carrier frequency

- Carrier frequency
 - Signal that is modulated to carry data
 - Frequency is not equal to bandwidth

- Ability to carry data (modulation rate)
- Availability of devices to transmit and receive signals
- Interference from other devices in same band
 - ISM bands limit power output
- Interactions of radiation with environment
 - absorption by water, metal, building materials, foliage
- Reflection and multi-path properties
 - constructive/destructive interference patterns (e.g., nulls)
Radio Protocols for Wireless Networks

- UHF (300-1000Hz)
 - Mote radio
- WiFi (2.4GHz)
 - Wireless LAN
- Bluetooth (2.4GHz)
 - Common in many consumer devices (PDAs, cell phones, etc.)
- Zigbee (850-930MHz)
 - Next generation radio for sensor networks and consumer devices

Wireless Network Evolution

- Point-to-point
 - Simple wire replacement (Virtual Wire, Bluetooth)
- Star pattern (single base-station)
 - Centralized routing and control point (WiFi, GSM)
- Multi-hop/Mesh (wireless sensor networks)
 - Multiple paths for data
 - Self-configuring
Comparison of Major Protocols

<table>
<thead>
<tr>
<th>Feature(s)</th>
<th>IEEE 802.11b</th>
<th>Bluetooth</th>
<th>ZigBee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Profile</td>
<td>Hours</td>
<td>Days</td>
<td>Years</td>
</tr>
<tr>
<td>Complexity</td>
<td>Very Complex</td>
<td>Complex</td>
<td>Simple</td>
</tr>
<tr>
<td>Nodes/Master</td>
<td>32</td>
<td>7</td>
<td>64000</td>
</tr>
<tr>
<td>Latency</td>
<td>Enumeration upto 3 seconds</td>
<td>Enumeration upto 10 seconds</td>
<td>Enumeration 30ms</td>
</tr>
<tr>
<td>Range</td>
<td>100 m</td>
<td>10m</td>
<td>70m-300m</td>
</tr>
<tr>
<td>Extendability</td>
<td>Roaming possible</td>
<td>No</td>
<td>YES</td>
</tr>
<tr>
<td>Data Rate</td>
<td>11Mbps</td>
<td>1Mbps</td>
<td>250Kbps</td>
</tr>
<tr>
<td>Security</td>
<td>Authentication Service Set ID (SSID)</td>
<td>64 bit, 128 bit</td>
<td>128 bit AES and Application Layer user defined</td>
</tr>
</tbody>
</table>

The Wireless Market

![Wireless Market Diagram]
Zigbee (adapted from www.zigbee.org)

- Simple protocol (small memory footprint for protocol stack)
- Broadcast support (unlike Bluetooth)
- Full network support (up to 64-bit addresses)
- Very low power (batteries that last years)
- Consumer device networks
 - Remote monitoring and control
 - Low-cost, low-complexity
 - Support ad-hoc and mesh networking
- Industry consortium
- Builds on IEEE standard 802.15.4 physical radio standard – OQSK encoding (offset quadrature phase shift keyed)
 - Adds logical network, security and application software
- 250Kb/sec bandwidth – 128Kb/sec effective, 30m range at 2.4GHz
 - 40Kb/sec at 915MHz

Why is low power important

- Always need to be conscious of energy
- Consider a future home with 100 wireless control/sensor devices and 50K homes in a city
 - Case 1: 802.11 Rx power is 667 mW (always on) = 3.33MW
 - Case 2: 802.15.4 Rx power is 30 mW (always on) = 150KW
 - Case 3: 802.15.4 Rx power cycled at .1% (typical) = 150W
Applications

ZigBee

Wireless Control that Simply Works

BUILDING AUTOMATION

PERSONAL HEALTH CARE

INDUSTRIAL CONTROL

RESIDENTIAL/LIGHT COMMERCIAL CONTROL

CONSUMER ELECTRONICS

PC & PERIPHERALS

TV

VCR

DVD/CD remote

mouse

keyboard

joystick

security

HVAC

lighting control

access control

lawn & garden irrigation

security

HVAC

lighting control

access control

PC & PERIPHERALS

APPLICATION/PROFILES

ZigBee or OEM

APPLICATION FRAMEWORK

NETWORK/SECURITY LAYERS

IEEE

MAC LAYER

PHY LAYER

IEEE

Silicon

ZigBee Platform Stack

Application

8-bit microcontroller

Compact protocol stack <32KB

Supports even simpler slave-only stack <4KB

Coordinator requires extra memory for storing association tables

IEEE
802.15.4 Packet Format

- Physical Protocol Data Unit
 - Preamble Sequence: 4 Octets
 - Start of Frame Delimiter: 1 Octet
 - Frame Length: 1 Octet

- Physical Service Data Unit
 - Frame Control: 2 Octets
 - Data Sequence Number: 1 Octet
 - Address Information: 4 – 20 Octets
 - Frame Check Sequence: 2 Octets

Zigbee Networks

- 64-bit address, 16-bit network address
- Optimized for timing-critical applications
 - Network join time: 30 ms (typ)
 - Sleeping slave changing to active: 15 ms (typ)
 - Active slave channel access time: 15 ms (typ)
- Traffic types
 - Periodic data (e.g., sensor)
 - Intermittent data, event (e.g., light switch)
 - Low-latency, slotted (e.g., mouse)
Zigbee Networks (cont’d)

- PAN coordinator
- Full Function Device
- Reduced Function Device

Star

Mesh

Cluster Tree

Lighting Control

- Advance Transformer
 - Wireless lighting control
 - Dimmable ballasts
 - Light switches anywhere
 - Customizable lighting schemes
 - Energy savings on bright days
 - Dali [or other] interface to BMS
- Extendable networks
 - Additional sensors
 - Other networks

[Philips Lighting]
HVAC Energy Management

- Hotel energy management
 - Major operating expense for hotel
 - Centralized HVAC management allow hotel operator to make sure empty rooms are not cooled
 - Retrofit capabilities
 - Battery operated thermostats can be placed for convenience
 - Personalized room settings at check-in

Asset Management

- Within each container, sensors form a mesh network.
- Multiple containers in a ship form a mesh to report sensor data
- Increased security through on-truck and on-ship tamper detection
- Faster container processing. Manifest data and sensor data are known before ship docks at port.
Residential Control

Residential Example
Wireless radio on iMote2

- **Chipcon 2420**
 - Low-cost transceiver at 2.4GHz (unlicensed ISM band)
 - Compliant with IEEE 802.15.4 (ZigBee physical layer)
- **Key features**
 - Low current consumption (RX: 19.7 mA, TX: 17.4 mA)
 - Low supply voltage with internal voltage regulator (2.1 V - 3.6 V)
 - Programmable output power
 - Few external components
 - Packet handling with 128 byte (RX) + 128 byte (TX) data buffering
 - Digital RSSI/LQI support
 - Hardware MAC encryption and authentication (AES-128)

Radio Data Packets on the iMote2

- **Packet contents**
 - 4 byte preamble
 - 1 byte frame delimiter (hex 7A – 01111010)
 - 1 byte frame length (all that follows: 39)
 - 2 byte frame control (defaults: see Fig 19 of data sheet)
 - 1 byte sequence number (increments for every packet sent)
 - 6 byte address
 - 2 byte dest. network (fixed to a default value)
 - 2 byte dest. node (1st byte is group number, 2nd byte is group’s iMote (1 or 2))
 - 1 byte packet type (used to indicate handler to use)
 - 1 byte packet group (not used)
 - 28 byte data payload
 - 2 byte frame check sequence
Basic data transfer

- 44 total bytes sent by CC2420
- User-level program provides 34 bytes (address, payload)
- CC2420 sends fully-formed packet
- Awaits acknowledgement from receiving CC2420
- Acknowledgement frame automatically sent
 - 4 byte preamble
 - 1 byte frame delimiter
 - 1 byte frame length
 - 2 byte frame control
 - 1 byte data sequence number (same as received packet)
 - 2 byte frame check sequence
- For “broadcast” packets, drivers turn off acknowledgement required bit in frame control field

API to user-level program

- Yet another character-based device
- Open device
- Create packet (referred to as ToS message)
- Write to file descriptor (provide struct)
- Close file
ToS message struct

```c
struct __TOS_Msg
{
  __u8 length;
  __u8 fcfhi;
  __u8 fcflo;
  __u8 dsn;
  __u16 destpan; // destPAN
  __u16 addr;    // destAddr
  __u8 type;
  __u8 group;
  __s8 data[MAX_TOSH_DATA_LENGTH + 6];
  __u8 strength;
  __u8 lqi;
  __u8 crc;
  __u8 ack;
  __u16 time;
};
```

Sending a packet

```c
int tosmac_dev;
TOS_Msg recv_pkt;
TOS_Msg send_pkt;

tosmac_dev = open(TOSMAC_DEVICE, O_RDWR);
msg_init(&send_pkt);
send_pkt.addr = 99;
memcpy(send_pkt.data, "0000000000000", 14);
send_pkt.length = 14;
write(tosmac_dev, (TOS_Msg*)&send_pkt, sizeof(TOS_Msg));
close(tosmac_dev);
```
Receiving a packet

```c
int tosmac_dev;
TOS_Msg recv_pkt;
TOS_Msg send_pkt;

// open as blocking mode
tosmac_dev = open(TOSMAC_DEVICE, O_RDWR);
read(tosmac_dev, &recv_pkt, sizeof(TOS_Msg));
printf("length is %d\n", recv_pkt.length);
printf("data is %s\n", recv_pkt.data);
close (tosmac_dev);
```

Bluetooth

- Short-range radio at 2.4GHz
- Available globally for unlicensed users
- Low-power
- Low-cost
- Cable replacement
- Devices within 10m can share up to 1Mb/sec – 700Kb/sec effective
- Universal short-range wireless capability
Bluetooth Application Areas

- Data and voice access points
 - Real-time voice and data transmissions
 - Cordless headsets
 - Three-in-one phones: cell, cordless, walkie-talkie
- Cable replacement
 - Eliminates need for numerous cable attachments for connection
 - Automatic synchronization when devices within range
- Ad hoc networking
 - Can establish connections between devices in range
 - Devices can “imprint” on each other so that authentication is not required for each instance of communication
 - Support for object exchange (files, calendar entries, business cards)

Bluetooth Standards Documents

- Core specifications
 - Details of various layers of Bluetooth protocol architecture
 - Emphasis on physical and transport layers
- Profile specifications
 - Use of Bluetooth technology to support various applications
 - Examples include point-to-point audio and local area network
Protocol Architecture

- Bluetooth is a layered protocol architecture
 - Core protocols
 - Cable replacement and telephony control protocols
 - Adopted protocols
- Core protocols
 - Radio
 - Baseband
 - Link manager protocol (LMP)
 - Logical link control and adaptation protocol (L2CAP)
 - Service discovery protocol (SDP)

Bluetooth Stack Overview

![Bluetooth Stack Diagram]

The diagram shows the layers of the Bluetooth stack, starting from the lower layers:
- **Radio**
- **LMP**
- **L2cap**
- **sdp**
- **pan**
- **rfcomm**
- **IP**

Each layer connects to the layer above and below it, forming a stack. The top layer is the application level, and the bottom layer connects to the physical wireless medium. The diagram also includes a section for the **HCI (USB, Serial,...)** connection.
Protocol Architecture

- Cable replacement protocol
 - RFCOMM
- Telephony control protocol
 - Telephony control specification – binary (TCS BIN)
- Adopted protocols
 - PPP
 - TCP/UDP/IP
 - OBEX
 - WAP
- Profiles – vertical slide through the protocol stack
 - Basis of interoperability
 - Each device supports at least one profile
 - Defined based on usage models
 - e.g., headset, camera, personal server, etc.

Piconets and Scatternets

- Piconet
 - Basic unit of Bluetooth networking
 - Master and up to 7 slave devices
 - Master determines channel and phase
- Scatternet
 - Device in one piconet may exist as master or slave in another piconet
 - Allows many devices to share same area
 - Makes efficient use of bandwidth
Radio Specification

- **Classes of transmitters**
 - Class 1: Outputs 100 mW for maximum range
 - Power control mandatory
 - Provides greatest distance
 - Class 2: Outputs 2.4 mW at maximum
 - Power control optional
 - Class 3: Nominal output is 1 mW
 - Lowest power
Frequency Hopping in Bluetooth

- Provides resistance to interference and multipath effects
- Provides a form of multiple access among co-located devices in different piconets

Frequency Hopping

- Total bandwidth divided into 1MHz physical channels
- Frequency hopping occurs by moving transmitter/receiver from one channel to another in a pseudo-random sequence
- Hopping sequence shared with all devices in the same piconet so that they can hop together and stay in communication
Physical Links between Master - Slave

- **Synchronous connection oriented (SCO)**
 - Allocates fixed bandwidth between point-to-point connection of master and slave
 - Master maintains link using reserved slots
 - Master can support three simultaneous links

- **Asynchronous connectionless (ACL)**
 - Point-to-multipoint link between master and all slaves
 - Only single ACL link can exist

Bluetooth Packet Fields

- **Access code**
 - timing synchronization, offset compensation, paging, and inquiry

- **Header**
 - identify packet type and carry protocol control information

- **Payload**
 - contains user voice or data and payload header, if present
Channel Control

- States of operation of a piconet during link establishment and maintenance
- Major states
 - Standby – default state
 - Connection – device connected
- Interim substates for adding new slaves
 - Page – device issued a page (used by master)
 - Page scan – device is listening for a page
 - Master response – master receives a page response from slave
 - Slave response – slave responds to a page from master
 - Inquiry – device has issued an inquiry for identity of devices within range
 - Inquiry scan – device is listening for an inquiry
 - Inquiry response – device receives an inquiry response
State Transition Diagram

Scenario steps

- Master device (e.g., PDA) pages for nearby devices
- Receives response from 0, 1, or more devices
 - Slave device (e.g., headphone) responds to page
- Determines which it “knows” — established connections
- L2CAP establishes Bluetooth connection assigning paging device to be master
- Devices exchange profiles they both support
- Agree upon profile (e.g., audio streaming)
- Master sends audio data
 - Two devices synchronize their frequency hopping
- Keep-alive packets used to maintain connections
- Connections dropped if keep-alive packets are not acknowledged
Limitations/Issues

- Discovery time on the order of 10sec for unknown devices
- Interaction with user required to connect to unknown devices or if multiple masters
- Can connect 8 devices at a time, more need to be multiplexed radically lowering throughput
- Doesn’t support simple broadcast – need to be on same frequency hopping schedule
- Effective bandwidth closer to 500Kbps (within one scatternet, order of magnitude lower if between two)