Software signal processing

Joshua Smith Intel Research Seattle

Software Signal Processing

- Use software to make sensitive measurements
- Case study: electric field sensing
- You will build an electric field sensor in lab 3
 - Non-contact hand measurement (like magic!)
 - Software (de)-modulation for very sensitive measurements
 - Same basic measurement technique used in accelerometer
 - We will get signal-to-noise gain by software operations

We will need

- some basic electronics
- some math facts
- some signal processing

Electrosensory Fish

- Weakly electric fish generate and sense electric fields
- Measure conductivity "images"
- Frequency range .1Hz 10KHz

Black ghost knife fish (*Apteronotus albifrons*) Continuous wave, 1KHz

U(1,42) object 18.2 40001 object object 2 ∆U(1,42) 200 1000 100 4000 200 0 100 1000 4000 300 200 100 1000 0 NF2 NF2 hills

W. Heiligenberg. Studies of Brain Function, Vol. 1:Principles of Electrolocation and Jamming AvoidanceSpringer-Verlag, New York, 1977.

Tail curling for active scan

Electric Field Sensing for input devices

Cool stuff you can do with E-Field sensing

Basic electronics

- Voltage sources, current sources, and Ohm's law
- AC signals
- Resistance, capacitance, inductance, impedance
- Op amps
 - Comparator
 - Current ("transimpedance") amplifier
 - Inverting amplifier
 - Differentiator
 - Integrator
 - Follower

Voltage & Current sources

- "Voltage source"
 - Example: microcontroller output pin
 - Provides *defined* voltage (e.g. 5V)
 - Provides current too, but current depends on load (resistance)
 - Imagine a control system that adjusts current to keep voltage fixed

"Current source"

- Example: some transducers
- Provides *defined* current
- Voltage depends on load
- Ohm's law (V=IR) relates voltage, current, and load (resistance)

Ohm's law and voltage divider

Need 3 physics facts:

- 1. Ohm's law: V=IR (I=V/R)
 - □ Microcontroller output pin at 5V, 100K load → I=5V/100K = 50μ A
 - □ Microcontroller output pin at 5V, 200K load → I=5V/200K = 25μ A
 - □ Microcontroller output pin at 5V, 1K load \rightarrow I=5V/1K = 5mA
- 2. Resistors in series add
- 3. Current is conserved ("Kirchoff's current law")

Voltage divider

- Lump 2 series resistors together (200K)
- Find current through both: I=5V/200K=25μA
- Now plug this I into V_d=IR for 2nd resistor
- $V_d = 25\mu A * 100K = 25*10^{-6} * 10^5 = 2.5V$
- General voltage divider formula: V_d=VR₂/(R₁+R₂)

Using complex numbers to represent AC signals

- "AC signals": time varying (vs. steady "DC signals")
- DC signal has magnitude only
- AC signal has magnitude and phase
 - Complex numbers good for representing magnitude and phase
- Math facts:
 - e is Euler's const, 2.718...
 - □ $j^*j = -1$ ("unit imaginary")
 - $e^{x+y} = e^x e^y$
 - $\Box \quad d\{e^{ct}\}/dt = ce^{ct}$
 - Can write complex numbers as
 - Real & imaginary parts: x+jy, or
 - Polar (magnitude & phase): re^{jθ}
 - $e^{j\theta} = \cos(\theta) + j\sin(\theta)$ ("Euler's equation")

Using complex numbers to represent AC signals How to do it

- Pretend signals are complex during calculations
- Take the real part at the end to find out what really happens
- Multiply signal by real number ←→ magnitude change
- Multiply by complex number ← → phase and magnitude
 - Example: S'pose we want to represent $cos(2\pi ft+\Delta)$ (phase shift Δ)
 - In complex exponentials, it's $e^{j(2\pi ft+\Delta)} = e^{j\Delta} e^{j(2\pi ft)}$
 - Passive components (inductors & capacitors) affect phase and mag
 - We will model the effect of passives with a single complex number
 - "Complex impedance"
 - Bonus: taking derivatives is easy with this representation

Using complex numbers to represent AC signals

CSE 466 - Winter 2008

R,C,L

R: resistor Non-perfect conductor R Turns electrical energy into heat V=IR C: capacitor Two conductive plates, not in contact Stores energy in electric field Q = CV $\frac{d}{dt}Q = \frac{d}{dt}CV \implies I = C\frac{dV}{dt}$ Let $V = V_0 e^{j2\pi ft} \implies I = Cj2\pi fV_0 e^{j2\pi ft} \implies V = I \frac{-j}{2\pi fC}$ Blocks DC...passes AC L: inductor Coil of wire Stores energy in magnetic field $V = L \frac{dI}{dt}$ Let $I = I_0 e^{j2\pi ft} \implies V = Lj2\pi fI_0 e^{j2\pi ft} \implies V = I(j2\pi fL)$

Passes DC...blocks AC

Ζ

- Z: Impedance
 - AC generalization of resistance
 - Models what passive components do to AC signals
 - Frequency dependent, unlike resistance
- Resistor: "real impedance" = R
- Capacitor: "negative imaginary impedance" = -j/C2πf = -j/ωC
 ω=2πf
- Inductor: "positive imaginary impedance" = $j2\pi fL = j\omega L$
- You can lump a network of resistors, capacitors, and inductors together into a single complex impedance with real and imaginary components
- Capacitive and inductive parts of impedance can cancel each other out
 - when they do, it's called resonance

Operational amplifiers

- Amplify voltages (increase voltage)
- Turn weak ("high impedance") signal into robust ("low impedance") signal
- Perform mathematical *operations* on signals (in analog)
 - E.g. sum, difference, differentiation, integration, etc
- History
 - Originally computers were text only; signal processing meant analog
 - Next DSPs moved some signal processing functions to digital
 - Now microcontrollers becoming powerful enough to do DSP functions
 - "Software defined radio"
 - Computation can happen in software; still need opamps for amplification
 - But, some kinds of amplification can even happen in software:
 - "processing gain," "coding gain"
 - Signal processing is historically EE; becoming embedded software topic

Op Amps

- Op amps come 1,2,4 to a package (we will use quad)
- Op amp has two inputs, +ve & -ve.
 - Rule 1: Inputs are "sense only"...no current goes into the inputs
- It amplifies the difference between these inputs
- With a feedback network in place, it tries to ensure:
 - Rule 2: Voltage on inputs is equal
 - as if inputs are shorted together..."virtual short"
 - more common term is "virtual ground," but this is less accurate
- Using rules 1 and 2 we can understand what op amps do

Comparator

- Used in earlier ADC examples
- No feedback (so Rule 2 won't apply)

- T{ } means threshold s.t. V_{out} doesn't exceed rails
- In practice

$$\Box \quad V+ > V- \rightarrow V_{out} = +5$$

$$\Box \quad V + < V - \twoheadrightarrow V_{out} = 0$$

Transimpedance amplifier

- Produces output voltage proportional to input current
- AGND = V+ = 0V

- Suppose $I_{in} = 1 \mu A$
- By 1, no current enters inverting input
- All current must go through R1

•
$$V_{out}$$
-V- = -1 μ A * 10⁶ Ω

►
$$\rightarrow V_{out} = -1V$$

• Generally,
$$V_{out} = -I_{in} * R1$$

No current into inputs
 V- = V+

Inverting (voltage) amplifier

- S'pose V_{in}=100mV
- Then $I_{in} = 100 \text{mV} / 10 \text{K} = 10 \mu \text{A}$
- By rule 1, that current goes through R2
- By rule 2, V- = 0

•
$$V_{out}$$
-V- = V_{out} = -10 μ A*100K = -1V

In general, I_{in}= V_{in} / R1

•
$$V_{out} = -I_{in}R2 = -V_{in}R2 / R1$$

- \rightarrow Gain = V_{out} / V_{in} = R2 / R1
- In this case, gain = 100K / 10K = -10
- -10 * 100mV = -1V. Yep.

No current into inputs
 V- = V+

Differentiator

- Q=CV \rightarrow dQ/dt = C dV/dt \rightarrow I = C dV/dt
- I_{in}=C dV_{in}/dt
- Now pretend it's a transimpedance amp:
 - $\Box V_{out} = -I_{in} * R$

$$\Box \rightarrow V_{out} = - RC \, dV_{in}/dt$$

 Output voltage is proportional to derivative of input voltage!

Integrator

$$I_{in} = V_{in}/R_1$$

$$Q_1 = \int I_{in} dt$$

$$Q_1 = -C_1 V_{out}$$

$$\implies V_{out} = -\frac{1}{C_1} \int \frac{V_{in}}{R_1} dt$$

$$\implies V_{out} = -\frac{1}{R_1 C_1} \int V_{in} dt$$

Follower

 Because of direct connection, V- = V_{out}

•
$$V_{out} = V_{in}$$

Op Amp power supply

- Dual rail: 2 pwr supplies, +ve & -ve
 - Can handle negative voltages
 - "old school"
- Single supply op amps
 - Signal must stay positive
 - Use Vcc/2 as "analog ground"
 - Becoming more common now, esp in battery powered devices
 - Sometimes good idea to buffer output of voltage divider with a follower

End of basic electronics

Noise

Why modulated sensing?

- Johnson noise
 - Broadband thermal noise
- Shot noise
 - Individual electrons...not usually a problem

- "1/f" "flicker" "pink" noise
 - Worse at lower frequencies
 - → do better if we can move to higher frequencies
- 60Hz pickup

FIGURE 5 Typical electrical noise spectra for some current-carrying devices: 50 K Ω carbon resistor, 2N2000 germanium diode-connected transistor, and 12AX7 vacuum tube. (Reproduced from Brophy).⁴

From W.H. Press, "Flicker noises in astronomy and elsewhere," Comments on astrophysics 7: 103-119. 1978.

Modulation

- What is it?
 - □ In music, changing key
 - □ In old time radio, shifting a signal from one frequency to another
 - Ex: voice (10kHz "baseband" sig.) modulated up to 560kHz at radio station
 - Baseband voice signal is recovered when radio receiver demodulates
 - More generally, modulation schemes allow us to use analog channels to communicate either analog or digital information
 - Amplitude Modulation (AM), Frequency Modulation (FM), Frequency hopping spread spectrum (FHSS), direct sequence spread spectrum (DSSS), etc
- What is it good for?
 - Sensitive measurements
 - Sensed signal more effectively shares channel with noise → better SNR
 - Channel sharing: multiple users can communicate at once
 - Without modulation, there could be only one radio station in a given area
 - One radio can chose one of many channels to tune in (demodulate)
 - Faster communication
 - Multiple bits share the channel simultaneously → more bits per sec
 - "Modem" == "Modulator-demodulator"

Just a little more math

Convolution theorem:

Multiplication in time domain $\leftarrow \rightarrow$ convolution in frequency domain

What is convolution?

- □ Takes two functions a(t), b(t), produces a 3rd: $c(\tau)$
 - Flip one function (invert time axis)
 - slide it along to offset of τ
 - Integrate product of these fns over all t
 - Each offset τ gives a value of $c(\tau)$

$$c(\tau) = \int a(t)b(\tau - t)dt$$

$$\uparrow \quad \uparrow \quad \bullet \text{ b is flipped wrt time}$$

Each τ is a different overlapping
of a(t) and (time-inverted) b(-t)

Amplitude modulation

Frequency domain view

Synchronous Demodulation

Time and frequency domain view

Electric Field Sensing circuit

Variant 2 (no analog multiplier)

- Replace sine wave TX with square wave (+1, -1)
- Multiply using just an inverter & switch (+1: do not invert; -1: invert)
- End with Low Pass Filter or integrator as before
- Same basic functionality as sine version, but additional harmonics in freq domain view

Electric Field Sensing circuit

Variant 3 (implement demodulation in software)

- For nsamps desired integration
- Assume square wave TX (+1, -1)
- After signal conditioning, signal goes direct to ADC
- Acc = sum_i T_i * R_i \rightarrow
 - When TX high, acc = acc + sample
 - When TX low, acc = acc sample

CSE 466 - Winter 2008

Lab 3 Schematic

CSE 466 - Winter 2008

Lab 3 pseudo-code

```
// Set PORTB as output
// Set ADC0 as input; configure ADC
NSAMPS = 200; // Try different values of NSAMPS
//Look at SNR/update rate tradeoff
acc = 0; // acc should be a 16 bit variable
For (i=0; i<NSAMPS; i++) {
    SET PORTB HIGH
    acc = acc + ADCVALUE
    SET PORTB LOW
    acc = acc - ADCVALUE
}
Return acc
```

```
Why is this implementing inner product correlation? Imagine unrolling the loop.
We'll write ADC_1, ADC_2, ADC_3, ... for the 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup>, ... ADCVALUE
acc = ADC_1 - ADC_2 + ADC_3 - ADC_4 + ADC_5 - ADC_6 + ...
acc = +1*ADC_1 + -1*ADC_2 + +1*ADC_3 + -1*ADC_4 + ...
acc = C_1*ADC_1 + C_2*ADC_2 + C_3*ADC_3 + C_4*ADC_4 + ...
where C_i is the ith sample of the carrier
acc = <C,ADC > Inner product of the carrier vector with the ADC sample vector
```

End of intro to E-Field Sensing

Outline

- Demo of EF Sensing circuit
- A completely different way to think about modulation
- Synchronous demodulation vs diode demodulation

More math facts!

- Think of a signal as a vector of samples
- Vector lives in a vector space, defined by bases
- Same vector can be represented in different bases

<2.236,0> Vector a in another basis

Length: Sqrt(2.236²)=2.236

Still more math facts...

Remember inner ("dot") product:

- = <1,2,3,4 | 5,6,7,8 > = 1*5 + 2*6 + 3*7 + 4*8 = 70
- □ $<\mathbf{a}|\mathbf{b}> = |\mathbf{a}|^*|\mathbf{b}| \cos \theta$ ("projection of **a** onto **b**")
- □ If **b** is a unit vector, then $\langle a|b \rangle = |a| \cos \theta$
- Inner product is a good measure of correlation
 - Two identical signals → parallel vectors ← → perfectly correlated
 - \Box <b|b> == 1 (b normalized)
 - …no common component → orthogonal vectors ← ~→ uncorrelated
 - \Box <b|c> == 0 (b and c orthogonal)
 - Used frequently in communication: correlate received signal with various possible transmitted signals; highest correlation wins
 - DSPs (and now micros) have special "multiply-accumulate" instructions for inner product / correlation

Another view of modulation & demodulation

Suppose we're (de)modulating just one bit (time 0 to T). Then to do low pass filter at end of demodulation operation, we can integrate over the whole bit period T (intuition: integration for all time gives DC [0 frequency] component...all higher frequencies contribute nothing to integral)

$$m(t) = b\cos(\omega t)$$
$$d = \int_0^T m(t)\cos(\omega t)dt$$

Modulation is multiplication by carrier

Demodulation is 2nd multiplication by carrier Low pass filter implemented by integration from 0 to T

Now consider discrete-time:

Let
$$c_t = \cos(\omega t)$$

 $m_t = bc_t$ Modulation is multiplication by carrier
 $d = \sum_{t=0}^T m_t c_t$ Demodulation is 2nd multiplication by carrier
Hey, that looks like an inner product
 $d = \sum_{t=0}^T bc_t c_t = b < c_t | c_t > For c_t normalized \Rightarrow =1 \Rightarrow d=b$

CSE 466 - Winter 2008

Other observations

- Inner product concept applies in continuous case too...just that vectors are infinite dimensional. Instead of summing as last step of inner product, integrate
- Sines, cosines of different frequencies are orthogonal
 They form a complete basis for "function space"
- Fourier transform is a change of basis
 - □ Time domain basis is delta fns (spikes): $f(t) = \int f(t)\delta(t)dt$
 - Project signal onto each frequency component (each basis vector for frequency domain) to get representation in Fourier basis
- Synchronous demodulation is computing one Fourier component
 - Rejects noise at all frequencies further from carrier than final low pass filter bandwidth

Synchronous demodulation example

