Software signal processing

Joshua Smith
Intel Research Seattle

Software Signal Processing

- Use software to make sensitive measurements
- Case study: electric field sensing
- You will build an electric field sensor in lab 3
- Non-contact hand measurement (like magic!)
- Software (de)-modulation for very sensitive measurements
- Same basic measurement technique used in accelerometer
- We will get signal-to-noise gain by software operations
- We will need
- some basic electronics
- some math facts
- some signal processing

Electrosensory Fish

- Weakly electric fish generate and sense electric fields
- Measure conductivity "images"
- Frequency range $.1 \mathrm{~Hz}-10 \mathrm{KHz}$

Tail curling for active scan

Electric Field Sensing for input devices

Cool stuff you can do with E-Field sensing

Basic electronics

- Voltage sources, current sources, and Ohm's law
- AC signals
- Resistance, capacitance, inductance, impedance
- Op amps
- Comparator
- Current ("transimpedance") amplifier
- Inverting amplifier
- Differentiator
- Integrator
- Follower

Voltage \& Current sources

- "Voltage source"
- Example: microcontroller output pin
- Provides defined voltage (e.g. 5V)
- Provides current too, but current depends on load (resistance)
- Imagine a control system that adjusts current to keep voltage fixed
- "Current source"
- Example: some transducers
- Provides defined current
- Voltage depends on load
- Ohm's law (V=IR) relates voltage, current, and load (resistance)

Ohm's law and voltage divider

Need 3 physics facts:

- 1. Ohm's law: $\mathrm{V}=\mathrm{IR} \quad(\mathrm{I}=\mathrm{V} / \mathrm{R})$
- Microcontroller output pin at $5 \mathrm{~V}, 100 \mathrm{~K}$ load $\rightarrow \mathrm{I}=5 \mathrm{~V} / 100 \mathrm{~K}=50 \mu \mathrm{~A}$
- Microcontroller output pin at $5 \mathrm{~V}, 200 \mathrm{~K}$ load $\rightarrow \mathrm{I}=5 \mathrm{~V} / 200 \mathrm{~K}=25 \mu \mathrm{~A}$
- Microcontroller output pin at $5 \mathrm{~V}, \quad 1 \mathrm{~K}$ load $\rightarrow \mathrm{I}=5 \mathrm{~V} / 1 \mathrm{~K}=5 \mathrm{~mA}$
- 2. Resistors in series add
- 3. Current is conserved ("Kirchoff's current law")

Voltage divider

- Lump 2 series resistors together (200K)
- Find current through both: $I=5 \mathrm{~V} / 200 \mathrm{~K}=25 \mu \mathrm{~A}$
- Now plug this I into $\mathrm{V}_{\mathrm{d}}=\mathrm{IR}$ for $2^{\text {nd }}$ resistor
- $V_{d}=25 \mu \mathrm{~A} * 100 \mathrm{~K}=25 * 10^{-6} * 10^{5}=2.5 \mathrm{~V}$
- General voltage divider formula: $\mathrm{V}_{\mathrm{d}}=\mathrm{VR}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$

Using complex numbers to represent AC signals

Math facts

- "AC signals": time varying (vs. steady "DC signals")
- DC signal has magnitude only
- AC signal has magnitude and phase
- Complex numbers good for representing magnitude and phase
- Math facts:
- e is Euler's const, 2.718...
- $j^{*} \mathrm{j}=-1$ ("unit imaginary")
- $e^{x+y}=e^{x} e^{y}$
- $\mathrm{d}\left\{\mathrm{e}^{\mathrm{ct}}\right\} / \mathrm{dt}=\mathrm{ce}^{\mathrm{ct}}$
- Can write complex numbers as
- Real \& imaginary parts: $x+j y$, or
- Polar (magnitude \& phase): $\mathrm{re}^{\mathrm{j} \theta}$
- $\mathrm{e}^{\mathrm{j} \theta=}=\cos (\theta)+\mathrm{j} \sin (\theta)$ ("Euler's equation")

Using complex numbers to represent AC signals

How to do it

- Pretend signals are complex during calculations
- Take the real part at the end to find out what really happens
- Multiply signal by real number $\leftrightarrow \rightarrow$ magnitude change
- Multiply by complex number \leftrightarrow phase and magnitude
- Example: S'pose we want to represent $\cos (2 \pi \mathrm{ft}+\Delta)($ phase shift $\Delta)$
- In complex exponentials, it's $\mathrm{e}^{\mathrm{j}(2 \pi \mathrm{ft}+\Delta)}=\mathrm{e}^{\mathrm{j} \Delta} \mathrm{e}^{\mathrm{j}(2 \pi \mathrm{tt})}$
- Passive components (inductors \& capacitors) affect phase and mag
- We will model the effect of passives with a single complex number
- "Complex impedance"
- Bonus: taking derivatives is easy with this representation

Using complex numbers to represent AC signals

Examples
Cosine
Complex exponential

R,C,L

- R: resistor
- Non-perfect conductor
- Turns electrical energy into heat
- $\quad V=I R$
- C: capacitor
- Two conductive plates, not in contact
- Stores energy in electric field

$$
\begin{aligned}
& Q=C V \\
& \frac{d}{d t} Q=\frac{d}{d t} C V \Longrightarrow I=C \frac{d V}{d t}
\end{aligned}
$$

Let $V=V_{0} e^{j 2 \pi f t} \Longrightarrow I=C j 2 \pi f V_{0} e^{j 2 \pi f t} \Longrightarrow V=I \frac{-j}{2 \pi f C}$

- Blocks DC....passes AC
- L: inductor
- Coil of wire
- Stores energy in magnetic field

$$
V=L \frac{d I}{d t}
$$

Let $I=I_{0} e^{j 2 \pi f t} \Longrightarrow V=L j 2 \pi f I_{0} e^{j 2 \pi f t} \Longrightarrow V=I(j 2 \pi f L)$

- Passes DC...blocks AC

Z

- Z: Impedance
- AC generalization of resistance
- Models what passive components do to AC signals
- Frequency dependent, unlike resistance
- Resistor: "real impedance" = R
- Capacitor: "negative imaginary impedance" = $-j / C 2 \pi f=-j / \omega C$ - $\omega=2 \pi \mathrm{f}$
- Inductor: "positive imaginary impedance" = j2 $2 \pi \mathrm{fL}=\mathrm{j} \omega \mathrm{L}$
- You can lump a network of resistors, capacitors, and inductors together into a single complex impedance with real and imaginary components
- Capacitive and inductive parts of impedance can cancel each other out - when they do, it's called resonance

Operational amplifiers

- Amplify voltages (increase voltage)
- Turn weak ("high impedance") signal into robust ("low impedance") signal
- Perform mathematical operations on signals (in analog)
- E.g. sum, difference, differentiation, integration, etc
- History
- Originally computers were text only; signal processing meant analog
- Next DSPs moved some signal processing functions to digital
- Now microcontrollers becoming powerful enough to do DSP functions
- "Software defined radio"
- Computation can happen in software; still need opamps for amplification
- But, some kinds of amplification can even happen in software:
- "processing gain," "coding gain"
- Signal processing is historically EE; becoming embedded software topic

Op Amps

- Op amps come 1,2,4 to a package (we will use quad)
- Op amp has two inputs, +ve \& -ve.
- Rule 1: Inputs are "sense only"...no current goes into the inputs
- It amplifies the difference between these inputs
- With a feedback network in place, it tries to ensure:
- Rule 2: Voltage on inputs is equal
- as if inputs are shorted together..."virtual short"
- more common term is "virtual ground," but this is less accurate
- Using rules 1 and 2 we can understand what op amps do

Comparator

- Used in earlier ADC examples
- No feedback (so Rule 2 won't apply)

- $\mathrm{V}_{\text {out }}=\mathrm{T}\left\{\mathrm{g}^{*}(\mathrm{~V}+-\mathrm{V}-)\right\}$ [g big, say $\left.10^{6}\right]$
- $\mathrm{T}\left\}\right.$ means threshold s.t. $\mathrm{V}_{\text {out }}$ doesn't exceed rails
- In practice
- $V+>V_{-} \rightarrow V_{\text {out }}=+5$
- $\mathrm{V}+<\mathrm{V}-\boldsymbol{\rightarrow} \mathrm{V}_{\text {out }}=0$

Transimpedance amplifier

- Produces output voltage proportional to input current
- AGND = V+ = 0V
- By 2, V- = V+, so V- = 0V
- Suppose $\mathrm{I}_{\text {in }}=1 \mu \mathrm{~A}$
- By 1, no current enters inverting input
- All current must go through R1
- $\mathrm{V}_{\text {out }}-\mathrm{V}-=-1 \mu \mathrm{~A} * 10^{6} \Omega$
$-\rightarrow V_{\text {out }}=-1 \mathrm{~V}$
- Generally, $\mathrm{V}_{\text {out }}=-I_{\text {in }}$ * R 1

Inverting (voltage) amplifier

- S'pose $\mathrm{V}_{\text {in }}=100 \mathrm{mV}$
- Then $\mathrm{I}_{\mathrm{in}}=100 \mathrm{mV} / 10 \mathrm{~K}=10 \mu \mathrm{~A}$
- By rule 1, that current goes through R2
- By rule 2, V- = 0
- $\mathrm{V}_{\text {out }}-\mathrm{V}-=\mathrm{V}_{\text {out }}=-10 \mu \mathrm{~A} * 100 \mathrm{~K}=-1 \mathrm{~V}$
- In general, $\mathrm{I}_{\text {in }}=\mathrm{V}_{\text {in }} / \mathrm{R} 1$
- $\mathrm{V}_{\text {out }}=-\mathrm{l}_{\text {in }} \mathrm{R} 2=-\mathrm{V}_{\text {in }} \mathrm{R} 2 / \mathrm{R} 1$
- \rightarrow Gain $=V_{\text {out }} / V_{\text {in }}=-R 2 / R 1$
- In this case, gain $=100 \mathrm{~K} / 10 \mathrm{~K}=-10$
- -10 * $100 \mathrm{mV}=-1 \mathrm{~V}$. Yep.

Differentiator

- $\mathrm{Q}=\mathrm{CV} \rightarrow \mathrm{dQ} / \mathrm{dt}=\mathrm{CdV} / \mathrm{dt} \rightarrow \mathrm{I}=\mathrm{C} \mathrm{dV} / \mathrm{dt}$
- $\mathrm{I}_{\text {in }}=\mathrm{C} \mathrm{dV}$ in $/ \mathrm{dt}$
- Now pretend it's a transimpedance amp:
- $V_{\text {out }}=-I_{\text {in }} * R$
- $\rightarrow V_{\text {out }}=-R C d V_{\text {in }} / d t$

- Output voltage is proportional to derivative of input voltage!

Integrator

$$
\begin{aligned}
& I_{\text {in }}=V_{\text {in }} / R_{1} \\
& Q_{1}=\int I_{\text {in }} d t \\
& Q_{1}=-C_{1} V_{\text {out }} \\
& \Longrightarrow V_{\text {out }}=-\frac{1}{C_{1}} \int \frac{V_{\text {in }}}{R_{1}} d t \\
& \Longrightarrow V_{\text {out }}=-\frac{1}{R_{1} C_{1}} \int V_{\text {in }} d t
\end{aligned}
$$

Follower

- Because of direct connection, V - $=\mathrm{V}_{\text {out }}$
- Rule $2 \rightarrow \mathrm{~V}$ - = $\mathrm{V}+$, so
- $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {in }}$

1. No current into inputs
2. $\mathrm{V}-=\mathrm{V}+$

Op Amp power supply

- Dual rail: 2 pwr supplies, +ve \& -ve
- Can handle negative voltages
- "old school"
- Single supply op amps

- Signal must stay positive
- Use Vcc/2 as "analog ground"
- Becoming more common now, esp in battery powered devices
- Sometimes good idea to buffer output of voltage divider with a follower

Single supply op-amp

End of basic electronics

Noise

Why modulated sensing?

- Johnson noise
- Broadband thermal noise
- Shot noise
- Individual electrons...not usually a problem

FIGURE 5 Typical electrical noise spectra for some current-carrying devices: $50 \mathrm{~K} \Omega$ carbon resistor, 2 N 2000 germanium diode-connected transistor, and 12AX7 vacuum tube. (Reproduced from Brophy). ${ }^{4}$

From W.H. Press, "Flicker noises in astronomy and elsewhere," Comments on astrophysics 7: 103-119. 1978.

- $\boldsymbol{\rightarrow}$ do better if we can move to higher frequencies
- 60 Hz pickup

Modulation

- What is it?
- In music, changing key
- In old time radio, shifting a signal from one frequency to another
- Ex: voice (10 kHz "baseband" sig.) modulated up to 560 kHz at radio station
- Baseband voice signal is recovered when radio receiver demodulates
- More generally, modulation schemes allow us to use analog channels to communicate either analog or digital information
- Amplitude Modulation (AM), Frequency Modulation (FM), Frequency hopping spread spectrum (FHSS), direct sequence spread spectrum (DSSS), etc
- What is it good for?
- Sensitive measurements
- Sensed signal more effectively shares channel with noise $\boldsymbol{\rightarrow}$ better SNR
- Channel sharing: multiple users can communicate at once
- Without modulation, there could be only one radio station in a given area
- One radio can chose one of many channels to tune in (demodulate)
- Faster communication
- Multiple bits share the channel simultaneously \rightarrow more bits per sec
- "Modem" == "Modulator-demodulator"

Just a little more math

- Convolution theorem:
- Multiplication in time domain \longleftrightarrow convolution in frequency domain
- What is convolution?
- Takes two functions $\mathrm{a}(\mathrm{t}), \mathrm{b}(\mathrm{t})$, produces a $3^{\text {rd }}: \mathrm{c}(\tau)$
- Flip one function (invert time axis)
- slide it along to offset of τ
- Integrate product of these fns over all t
- Each offset τ gives a value of $c(\tau)$

$$
c(\tau)=\int a(t) b(\tau-t) d t
$$

Amplitude modulation

Frequency domain view

In time domain,
modulation is
multiplication:
(baseband x carrier)

In freq domain (shown here) modulation is convolution of baseband w/ carrier

Horizontal axes: frequency (in arbitrary units)

Vertical axes: amplitude (arbitrary units)

Basic Electric Field Sensing Circuit (Analog)

Synchronous Demodulation

Time and frequency domain view

Time

x
Received waveform $a \phi-0.5 \cdot-1.5 \sqrt[2]{\sqrt[3]{4} \sqrt[4]{5}}$
=

Frequency

3

Electric Field Sensing circuit

Variant 2 (no analog multiplier)

- Replace sine wave TX with square wave (+1, -1)
- Multiply using just an inverter \& switch (+1: do not invert; -1 : invert)
- End with Low Pass Filter or integrator as before
- Same basic functionality as sine version, but additional harmonics in freq domain view

Electric Field Sensing circuit

Variant 3 (implement demodulation in software)

- For nsamps desired integration
- Assume square wave TX (+1, -1)
- After signal conditioning, signal goes direct to ADC
- Acc = sum_i T_i *R_i \rightarrow
- When TX high, acc = acc + sample
- When TX low, acc = acc - sample

Square wave
out

Lab 3 Schematic

Lab 3 pseudo-code

```
// Set PORTB as output
// Set ADC0 as input; configure ADC
NSAMPS = 200; // Try different values of NSAMPS
//Look at SNR/update rate tradeoff
acc = 0; // acc should be a 16 bit variable
For (i=0; i<NSAMPS; i++) {
    SET PORTB HIGH
    acc = acc + ADCVALUE
    SET PORTB LOW
    acc = acc - ADCVALUE
}
Return acc
```

Why is this implementing inner product correlation? Imagine unrolling the loop. We'll write $A D C_{1}, ~ A D C_{2}, ~ A D C C_{3}, \ldots$ for the $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, \ldots$ ADCVALUE $\mathrm{acc}=\mathrm{ADC}_{1}-\mathrm{ADC}_{2}+\mathrm{ADC}_{3}-\mathrm{ADC}_{4}+\mathrm{ADC}_{5}-\mathrm{ADC}_{6}+\ldots$ acc $=+1^{*} \mathrm{ADC}_{1}+-$ * $^{*} \mathrm{ADC}_{2}++$ 1* $^{*} \mathrm{ADC}_{3}+-1 * \mathrm{ADC}_{4}+\ldots$ $\mathrm{acc}=\mathrm{C}_{1}{ }^{*} \mathrm{ADC}_{1}+\mathrm{C}_{2}{ }^{*} \mathrm{ADC}_{2}+\mathrm{C}_{3}{ }^{*} \mathrm{ADC}_{3}+\mathrm{C}_{4}{ }^{*} \mathrm{ADC}_{4}+\ldots$ where C_{i} is the ith sample of the carrier acc $=<C, A D C>$ Inner product of the carrier vector with the ADC sample vector

End of intro to E-Field Sensing

Outline

- Demo of EF Sensing circuit
- A completely different way to think about modulation
- Synchronous demodulation vs diode demodulation

More math facts!

- Think of a signal as a vector of samples
- Vector lives in a vector space, defined by bases
- Same vector can be represented in different bases

Length:
Sqrt $\left(1^{2}+2^{2}\right)=2.236$

Length:
Sqrt(2.236²)=2.236

Still more math facts...

- Remember inner ("dot") product:
- <1,2,3,4 | $5,6,7,8>=1 * 5+2 * 6+3 * 7+4 * 8=70$
- <a|b> =|a|*|b|cos θ ("projection of \mathbf{a} onto \mathbf{b} ")

- If \mathbf{b} is a unit vector, then $<\mathbf{a}|\mathbf{b}>=|\mathbf{a}| \cos \theta$
- Inner product is a good measure of correlation
- Two identical signals \rightarrow parallel vectors \leftrightarrow perfectly correlated
- <b|b> == 1 (b normalized)
- ...no common component \rightarrow orthogonal vectors $\longleftrightarrow \sim$ uncorrelated
- <b|c> == 0 (b and corthogonal)
- Used frequently in communication: correlate received signal with various possible transmitted signals; highest correlation wins
- DSPs (and now micros) have special "multiply-accumulate" instructions for inner product / correlation

Another view of modulation \& demodulation

Suppose we're (de)modulating just one bit (time 0 to T). Then to do low pass filter at end of demodulation operation, we can integrate over the whole bit period T (intuition: integration for all time gives DC [0 frequency] component...all higher frequencies contribute nothing to integral)
$m(t)=b \cos (\omega t) \quad$ Modulation is multiplication by carrier
$d=\int_{0}^{T} m(t) \cos (\omega t) d t$
Demodulation is $2^{\text {nd }}$ multiplication by carrier
Low pass filter implemented by integration from 0 to T

Now consider discrete-time:
Let $c_{t}=\cos (\omega t)$

$$
m_{t}=b c_{t} \quad \text { Modulation is multiplication by carrier }
$$

$$
d=\sum_{t=0}^{T} m_{t} c_{t}
$$

$$
d=\sum_{t-0}^{T} b c_{t} c_{t}=b<c_{t}\left|c_{t}\right\rangle \quad \text { For } c_{\mathrm{t}} \text { normalized } \rightarrow\left\langle c_{\mathrm{t}} \mid \mathrm{c}_{\mathrm{t}}\right\rangle=1 \rightarrow \mathrm{~d}=\mathrm{b}
$$

Other observations

- Inner product concept applies in continuous case too...just that vectors are infinite dimensional. Instead of summing as last step of inner product, integrate
- Sines, cosines of different frequencies are orthogonal
- They form a complete basis for "function space"
- Fourier transform is a change of basis
- Time domain basis is delta fns (spikes): $f(t)=\int f(t) \delta(t) d t$
- Project signal onto each frequency component (each basis vector for frequency domain) to get representation in Fourier basis
- Synchronous demodulation is computing one Fourier component
- Rejects noise at all frequencies further from carrier than final low pass filter bandwidth

Synchronous demodulation example
 Baseband bits

Horizontal axes: Time

Signal during one bit period: b (a constant)

Carrier during one bit period: $\mathrm{c}_{\mathrm{t}}=\cos (\omega \mathrm{t})$

Modulated carrier

 $\mathrm{m}_{\mathrm{t}}=\mathrm{b} \mathrm{c}_{\mathrm{t}}$Signal + noise: $\mathrm{m}_{\mathrm{t}}+\mathrm{n}_{\mathrm{t}}=\mathrm{b} \mathrm{c} \mathrm{c}_{\mathrm{t}}+10 *$ (rand-.5)

$$
\begin{aligned}
d & =\frac{1}{500} \sum_{t=1}^{500}\left(m_{t}+n_{t}\right) \times c_{t} \\
d & =\frac{1}{500} \sum_{t=1}^{500}\left(b c_{t}+n_{t}\right) \times c_{t} \\
d & \left.=\frac{1}{500} \sum_{t=1}^{500}\left(b c_{t} c_{t}+n_{t} c_{t}\right)\right)
\end{aligned}
$$

Envelope-following demodulation

Horizontal axes: Time

Demodulated bits

