Software signal processing

Joshua Smith
Intel Research Seattle
Software Signal Processing

- Use software to make sensitive measurements
- Case study: electric field sensing
- You will build an electric field sensor in lab 3
 - Non-contact hand measurement (like magic!)
 - Software (de)-modulation for very sensitive measurements
 - Same basic measurement technique used in accelerometer
 - We will get signal-to-noise gain by software operations

- We will need
 - some basic electronics
 - some math facts
 - some signal processing
Electrosensory Fish

- Weakly electric fish generate and sense electric fields
- Measure conductivity “images”
- Frequency range .1Hz – 10KHz

Tail curling for active scan

Black ghost knife fish
(*Apteronotus albifrons*)
Continuous wave, 1KHz

Electric Field Sensing for input devices
Cool stuff you can do with E-Field sensing
Basic electronics

- Voltage sources, current sources, and Ohm’s law
- AC signals
- Resistance, capacitance, inductance, impedance
- Op amps
 - Comparator
 - Current (“transimpedance”) amplifier
 - Inverting amplifier
 - Differentiator
 - Integrator
 - Follower
Voltage & Current sources

- “Voltage source”
 - Example: microcontroller output pin
 - Provides *defined* voltage (e.g. 5V)
 - Provides current too, but current depends on load (resistance)
 - Imagine a control system that adjusts current to keep voltage fixed

- “Current source”
 - Example: some transducers
 - Provides *defined* current
 - Voltage depends on load

- Ohm’s law \((V=IR)\) relates voltage, current, and load (resistance)
Ohm’s law and voltage divider

Need 3 physics facts:

1. Ohm’s law: $V = IR$ ($I = V/R$)
 - Microcontroller output pin at 5V, 100K load $\Rightarrow I = 5V/100K = 50\mu A$
 - Microcontroller output pin at 5V, 200K load $\Rightarrow I = 5V/200K = 25\mu A$
 - Microcontroller output pin at 5V, 1K load $\Rightarrow I = 5V/1K = 5mA$

2. Resistors in series add
3. Current is conserved (“Kirchoff’s current law”)

Voltage divider

- Lump 2 series resistors together (200K)
- Find current through both: $I = 5V/200K = 25\mu A$
- Now plug this I into $V_d = IR$ for 2nd resistor
- $V_d = 25\mu A \times 100K = 25 \times 10^{-6} \times 10^5 = 2.5V$
- General voltage divider formula: $V_d = VR_2/(R_1 + R_2)$
Using complex numbers to represent AC signals

Math facts

- “AC signals”: time varying (vs. steady “DC signals”)
- DC signal has magnitude only
- AC signal has magnitude and phase
 - Complex numbers good for representing magnitude and phase
- Math facts:
 - e is Euler’s const, 2.718…
 - $j^2 = -1$ (“unit imaginary”)
 - $e^{x+y} = e^x \cdot e^y$
 - $\frac{d}{dt} (e^{ct}) = ce^{ct}$
 - Can write complex numbers as
 - Real & imaginary parts: $x+jy$, or
 - Polar (magnitude & phase): $r e^{j\theta}$
 - $e^{j\theta} = \cos(\theta) + jsin(\theta)$ (“Euler’s equation”)

Using complex numbers to represent AC signals

How to do it

- Pretend signals are complex during calculations
- Take the real part at the end to find out what really happens
- Multiply signal by real number \leftrightarrow magnitude change
- Multiply by complex number \leftrightarrow phase and magnitude
 - Example: S’pose we want to represent $\cos(2\pi ft + \Delta)$ (phase shift Δ)
 - In complex exponentials, it’s $e^{j(2\pi ft + \Delta)} = e^{j\Delta} e^{j(2\pi ft)}$
 - Passive components (inductors & capacitors) affect phase and mag
 - We will model the effect of passives with a single complex number
 - “Complex impedance”
 - Bonus: taking derivatives is easy with this representation
Using complex numbers to represent AC signals

Examples

Cosine

\[\cos(2 \pi t) \]

Complex exponential

\[\text{real}(e^{j(2 \pi t)}) \]

\[\cos(2 \pi t + \pi) \]

\[\text{real}(e^{j \pi} e^{j(2 \pi t)}) \]

\[\cos(2 \pi t + \pi/2) \]

\[\text{real}(e^{j \pi/2} e^{j(2 \pi t)}) \]

\[\cos(2 \pi t) \]

\[\text{real}(e^{j(2 \pi t)}) \]
R, C, L

- **R**: resistor
 - Non-perfect conductor
 - Turns electrical energy into heat
 - \(V = IR \)

- **C**: capacitor
 - Two conductive plates, not in contact
 - Stores energy in electric field
 \[Q = CV \]
 \[\frac{d}{dt} Q = \frac{d}{dt} CV \implies I = C \frac{dV}{dt} \]
 - Let \(V = V_0 e^{j2\pi ft} \implies I = C j2\pi f V_0 e^{j2\pi ft} \implies V = I \frac{-j}{2\pi f C} \)
 - Blocks DC…passes AC

- **L**: inductor
 - Coil of wire
 - Stores energy in magnetic field
 \[V = L \frac{dI}{dt} \]
 - Let \(I = I_0 e^{j2\pi ft} \implies V = L j2\pi f I_0 e^{j2\pi ft} \implies V = I (j2\pi f L) \)
 - Passes DC…blocks AC
Z

- **Z: Impedance**
 - AC generalization of resistance
 - Models what passive components do to AC signals
 - Frequency dependent, unlike resistance
- **Resistor:** “real impedance” = \(R \)
- **Capacitor:** “negative imaginary impedance” = \(-j/C2\pi f = -j/\omega C\)
 - \(\omega = 2\pi f \)
- **Inductor:** “positive imaginary impedance” = \(j2\pi fL = j\omega L \)

You can lump a network of resistors, capacitors, and inductors together into a single complex impedance with real and imaginary components.

- Capacitive and inductive parts of impedance can cancel each other out
 - when they do, it’s called resonance
Operational amplifiers

- Amplify voltages (increase voltage)
- Turn weak (“high impedance”) signal into robust (“low impedance”) signal
- Perform mathematical operations on signals (in analog)
 - E.g. sum, difference, differentiation, integration, etc
- History
 - Originally computers were text only; signal processing meant analog
 - Next DSPs moved some signal processing functions to digital
 - Now microcontrollers becoming powerful enough to do DSP functions
 - “Software defined radio”
 - Computation can happen in software; still need opamps for amplification
 - But, some kinds of amplification can even happen in software:
 - “processing gain,” “coding gain”
 - Signal processing is historically EE; becoming embedded software topic
Op Amps

- Op amps come 1,2,4 to a package (we will use quad)
- Op amp has two inputs, +ve & -ve.
 - Rule 1: Inputs are “sense only”…no current goes into the inputs
- It amplifies the difference between these inputs
- With a feedback network in place, it tries to ensure:
 - Rule 2: Voltage on inputs is equal
 - as if inputs are shorted together…“virtual short”
 - more common term is “virtual ground,” but this is less accurate

- Using rules 1 and 2 we can understand what op amps do
Comparator

- Used in earlier ADC examples
- No feedback (so Rule 2 won’t apply)
- \(V_{\text{out}} = T\{g^*(V+ - V-)\} \) [g big, say \(10^6\)]
 - \(T\{ \} \) means threshold s.t. \(V_{\text{out}} \) doesn’t exceed rails
- In practice
 - \(V+ > V- \implies V_{\text{out}} = +5 \)
 - \(V+ < V- \implies V_{\text{out}} = 0 \)
Transimpedance amplifier

- Produces output voltage proportional to input current
- AGND = V+ = 0V
- By 2, V- = V+, so V- = 0V
- Suppose $I_{in} = 1\mu A$
- By 1, no current enters inverting input
- All current must go through R1
- $V_{out} - V_- = -1\mu A \times 10^6 \Omega$
- $\Rightarrow V_{out} = -1V$

- Generally, $V_{out} = -I_{in} \times R1$

1. No current into inputs
2. $V_- = V+$
Inverting (voltage) amplifier

- S’pose $V_{in} = 100\text{mV}$
- Then $I_{in} = \frac{100\text{mV}}{10K} = 10\mu\text{A}$
- By rule 1, that current goes through R_2
- By rule 2, $V_- = 0$
- $V_{out} - V_- = V_{out} = -10\mu\text{A} \times 100K = -1\text{V}$

- In general, $I_{in} = \frac{V_{in}}{R_1}$
- $V_{out} = -I_{in} R_2 = -V_{in} \frac{R_2}{R_1}$
- \Rightarrow Gain = $\frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1}$

- In this case, gain = $\frac{100K}{10K} = -10$
- $-10 \times 100\text{mV} = -1\text{V}$. Yep.
Differentiator

- \(Q = CV \Rightarrow \frac{dQ}{dt} = C \frac{dV}{dt} \Rightarrow I = C \frac{dV}{dt}\)
- \(I_{in} = C \frac{dV_{in}}{dt}\)

- Now pretend it’s a transimpedance amp:
 - \(V_{out} = - I_{in} \times R\)
 - \(\Rightarrow V_{out} = -RC \frac{dV_{in}}{dt}\)

- Output voltage is proportional to derivative of input voltage!
Integrator

\[I_{\text{in}} = \frac{V_{\text{in}}}{R_1} \]

\[Q_1 = \int I_{\text{in}} \, dt \]

\[Q_1 = -C_1 V_{\text{out}} \]

\[\implies V_{\text{out}} = -\frac{1}{C_1} \int \frac{V_{\text{in}}}{R_1} \, dt \]

\[\implies V_{\text{out}} = -\frac{1}{R_1 C_1} \int V_{\text{in}} \, dt \]
Follower

- Because of direct connection, $V_- = V_{out}$
- Rule 2 $\Rightarrow V_- = V_+$, so $V_{out} = V_{in}$

1. No current into inputs
2. $V_- = V_+$
Op Amp power supply

- Dual rail: 2 pwr supplies, +ve & -ve
 - Can handle negative voltages
 - “old school”

- Single supply op amps
 - Signal must stay positive
 - Use Vcc/2 as “analog ground”
 - Becoming more common now, esp in battery powered devices
 - Sometimes good idea to buffer output of voltage divider with a follower

![Diagram of dual rail op-amp and single supply op-amp]
End of basic electronics
Why modulated sensing?

- **Johnson noise**
 - Broadband thermal noise
- **Shot noise**
 - Individual electrons…not usually a problem

- "1/f" “flicker” “pink” noise
 - Worse at lower frequencies
 - ➔ do better if we can move to higher frequencies
- 60Hz pickup

FIGURE 5 Typical electrical noise spectra for some current-carrying devices: 50 KΩ carbon resistor, 2N2009 germanium diode-connected transistor, and 12AX7 vacuum tube. (Reproduced from Brophy).⁴

Modulation

What is it?
- In music, changing key
- In old time radio, shifting a signal from one frequency to another
- Ex: voice (10kHz “baseband” sig.) modulated up to 560kHz at radio station
- Baseband voice signal is recovered when radio receiver demodulates
- More generally, modulation schemes allow us to use analog channels to communicate either analog or digital information
 - Amplitude Modulation (AM), Frequency Modulation (FM), Frequency hopping spread spectrum (FHSS), direct sequence spread spectrum (DSSS), etc

What is it good for?
- Sensitive measurements
 - Sensed signal more effectively shares channel with noise ➔ better SNR
- Channel sharing: multiple users can communicate at once
 - Without modulation, there could be only one radio station in a given area
 - One radio can chose one of many channels to tune in (demodulate)
- Faster communication
 - Multiple bits share the channel simultaneously ➔ more bits per sec
 - “Modem” == “Modulator-demodulator”
Just a little more math

- Convolution theorem:
 - Multiplication in time domain ↔ convolution in frequency domain

- What is convolution?
 - Takes two functions $a(t)$, $b(t)$, produces a 3rd: $c(\tau)$
 - Flip one function (invert time axis)
 - Slide it along to offset of τ
 - Integrate product of these fns over all t
 - Each offset τ gives a value of $c(\tau)$

\[
c(\tau) = \int a(t)b(\tau - t)dt
\]

- $-t \Rightarrow b$ is flipped wrt time
- Each τ is a different overlapping of $a(t)$ and (time-inverted) $b(-t)$
Amplitude modulation
Frequency domain view

In time domain, modulation is multiplication:
(baseband x carrier)

In freq domain (shown here) modulation is convolution of baseband w/ carrier

In time domain, modulation is multiplication: (baseband x carrier)

In freq domain (shown here) modulation is convolution of baseband w/ carrier

Horizontal axes: frequency (in arbitrary units)
Vertical axes: amplitude (arbitrary units)
Basic Electric Field Sensing Circuit (Analog)

\[\text{RCV:} \quad I = -CA\omega \sin \omega t \]

\[\int CA\omega \sin \omega t \times \sin \omega t \, dt \]
Synchronous Demodulation
Time and frequency domain view

Transmitted waveform \(\phi \)

Received waveform \(a\phi \)

\[a\phi(t) \times \phi(t) \]
Electric Field Sensing circuit

Variant 2 (no analog multiplier)

- Replace sine wave TX with square wave (+1, -1)
- Multiply using just an inverter & switch (+1: do not invert; -1: invert)
- End with Low Pass Filter or integrator as before
- Same basic functionality as sine version, but additional harmonics in freq domain view
Electric Field Sensing circuit
Variant 3 (implement demodulation in software)

- For nsamps desired integration
- Assume square wave TX (+1, -1)
- After signal conditioning, signal goes direct to ADC
- \[\text{Acc} = \sum_i T_i \times R_i \]
 - When TX high, acc = acc + sample
 - When TX low, acc = acc - sample

Square wave out

Microcontroller
Lab 3 Schematic
Lab 3 pseudo-code

// Set PORTB as output
// Set ADC0 as input; configure ADC
NSAMPS = 200; // Try different values of NSAMPS
// Look at SNR/update rate tradeoff
acc = 0; // acc should be a 16 bit variable
For (i=0; i<NSAMPS; i++) {
 SET PORTB HIGH
 acc = acc + ADCVALUE
 SET PORTB LOW
 acc = acc - ADCVALUE
}
Return acc

Why is this implementing inner product correlation? Imagine unrolling the loop. We'll write \(\text{ADC}_1, \text{ADC}_2, \text{ADC}_3, \ldots\) for the 1\(^{st}\), 2\(^{nd}\), 3\(^{rd}\), \ldots ADCVALUE
acc = \text{ADC}_1 - \text{ADC}_2 + \text{ADC}_3 - \text{ADC}_4 + \text{ADC}_5 - \text{ADC}_6 + \ldots
acc = +1*\text{ADC}_1 + -1*\text{ADC}_2 + +1*\text{ADC}_3 + -1*\text{ADC}_4 + \ldots
acc = \text{C}_1*\text{ADC}_1 + \text{C}_2*\text{ADC}_2 + \text{C}_3*\text{ADC}_3 + \text{C}_4*\text{ADC}_4 + \ldots
where \text{C}_i is the \(i\)th sample of the carrier
acc = <C,ADC> Inner product of the carrier vector with the ADC sample vector
End of intro to E-Field Sensing
Outline

- Demo of EF Sensing circuit
- A completely different way to think about modulation
- Synchronous demodulation vs diode demodulation
More math facts!

- Think of a signal as a vector of samples
- Vector lives in a vector space, defined by bases
- Same vector can be represented in different bases

![Diagram showing vector a in two different bases](image)

Vector a in some basis:
- Length: $\sqrt{1^2+2^2}=2.236$

Vector a in another basis:
- Length: $\sqrt{2.236^2}=2.236$
Still more math facts…

- Remember inner ("dot") product:
 - $\langle 1,2,3,4 \mid 5,6,7,8 \rangle = 1*5 + 2*6 + 3*7 + 4*8 = 70$
 - $\langle a \mid b \rangle = |a|*|b| \cos \theta$ ("projection of a onto b")
 - If b is a unit vector, then $\langle a \mid b \rangle = |a| \cos \theta$
 - Inner product is a good measure of correlation
 - Two identical signals \Rightarrow parallel vectors $\Leftarrow\Rightarrow$ perfectly correlated
 - $\langle b \mid b \rangle = 1$ (b normalized)
 - …no common component \Rightarrow orthogonal vectors $\Leftarrow\sim\Rightarrow$ uncorrelated
 - $\langle b \mid c \rangle = 0$ (b and c orthogonal)
 - Used frequently in communication: correlate received signal with various possible transmitted signals; highest correlation wins
 - DSPs (and now micros) have special “multiply-accumulate” instructions for inner product / correlation
Another view of modulation & demodulation

Suppose we’re (de)modulating just one bit (time 0 to T). Then to do low pass filter at end of demodulation operation, we can integrate over the whole bit period T (intuition: integration for all time gives DC [0 frequency] component...all higher frequencies contribute nothing to integral)

\[m(t) = b \cos(\omega t) \]

Modulation is multiplication by carrier

\[d = \int_{0}^{T} m(t) \cos(\omega t) \, dt \]

Demodulation is 2nd multiplication by carrier

Low pass filter implemented by integration from 0 to T

Now consider discrete-time:

Let \(c_t = \cos(\omega t) \)

\[m_t = b c_t \]

Modulation is multiplication by carrier

\[d = \sum_{t=0}^{T} m_t c_t \]

Demodulation is 2nd multiplication by carrier

Hey, that looks like an inner product

\[d = \sum_{t=0}^{T} b c_t c_t = b < c_t | c_t > \]

For \(c_t \) normalized \(\Rightarrow < c_t | c_t > = 1 \Rightarrow d = b \)
Other observations

- Inner product concept applies in continuous case too…just that vectors are infinite dimensional. Instead of summing as last step of inner product, integrate.

- Sines, cosines of different frequencies are orthogonal.
 - They form a complete basis for “function space”

- Fourier transform is a change of basis.
 - Time domain basis is delta fns (spikes): $f(t) = \int f(t)\delta(t)dt$
 - Project signal onto each frequency component (each basis vector for frequency domain) to get representation in Fourier basis.

- Synchronous demodulation is computing one Fourier component.
 - Rejects noise at all frequencies further from carrier than final low pass filter bandwidth.
Synchronous demodulation example

Horizontal axes: Time

Signal during one bit period: \(b \) (a constant)

Carrier during one bit period: \(c_t = \cos(\omega t) \)

Modulated carrier
\(m_t = b \cdot c_t \)

Signal + noise:
\(m_t + n_t = b \cdot c_t + 10 \cdot (\text{rand} - .5) \)

\[d = \frac{1}{500} \sum_{t=1}^{500} (m_t + n_t) \times c_t \]
\[d = \frac{1}{500} \sum_{t=1}^{500} (b c_t + n_t) \times c_t \]
\[d = \frac{1}{500} \sum_{t=1}^{500} (bc_t c_t + n_t c_t) \]
Envelope-following demodulation

Horizontal axes:
Time

- Rectified modulated carrier --- no noise
- Envelope following demod --- no noise
- Rectified modulated carrier --- with noise
- Envelope following demod --- with noise
- Demodulated bits