
Software signal processing

Joshua Smith
Intel Research Seattle

CSE 466 - Winter 2008 Interfacing 2

Software Signal Processing

Use software to make sensitive measurements
Case study: electric field sensing
You will build an electric field sensor in lab 3

Non-contact hand measurement (like magic!)
Software (de)-modulation for very sensitive measurements
Same basic measurement technique used in accelerometer
We will get signal-to-noise gain by software operations

We will need
some basic electronics
some math facts
some signal processing

CSE 466 - Winter 2008 Interfacing 3

Electrosensory Fish

Weakly electric fish generate and sense electric fields
Measure conductivity “images”
Frequency range .1Hz – 10KHz

W. Heiligenberg. Studies of Brain Function, Vol. 1:
Principles of Electrolocation and Jamming Avoidance
Springer-Verlag, New York, 1977.

Black ghost knife fish
(Apteronotus albifrons)
Continuous wave, 1KHz

Tail curling for active scan

CSE 466 - Winter 2008 Interfacing 4

Electric Field Sensing for input devices

CSE 466 - Winter 2008 Interfacing 5

Cool stuff you can do with E-Field sensing

CSE 466 - Winter 2008 Interfacing 6

Basic electronics

Voltage sources, current sources, and Ohm’s law
AC signals
Resistance, capacitance, inductance, impedance
Op amps

Comparator
Current (“transimpedance”) amplifier
Inverting amplifier
Differentiator
Integrator
Follower

CSE 466 - Winter 2008 Interfacing 7

Voltage & Current sources

“Voltage source”
Example: microcontroller output pin
Provides defined voltage (e.g. 5V)
Provides current too, but current depends on load (resistance)
Imagine a control system that adjusts current to keep voltage fixed

“Current source”
Example: some transducers
Provides defined current
Voltage depends on load

Ohm’s law (V=IR) relates voltage, current, and load (resistance)

CSE 466 - Winter 2008 Interfacing 8

Ohm’s law and voltage divider

Need 3 physics facts:
1. Ohm’s law: V=IR (I=V/R)

Microcontroller output pin at 5V, 100K load I=5V/100K = 50μA
Microcontroller output pin at 5V, 200K load I=5V/200K = 25μA
Microcontroller output pin at 5V, 1K load I=5V/1K = 5mA

2. Resistors in series add
3. Current is conserved (“Kirchoff’s current law”)

Voltage divider
Lump 2 series resistors together (200K)
Find current through both: I=5V/200K=25μA
Now plug this I into Vd=IR for 2nd resistor
Vd=25μA * 100K = 25*10-6 * 105 = 2.5V
General voltage divider formula: Vd=VR2/(R1+R2)

Vd=?

CSE 466 - Winter 2008 Interfacing 9

Using complex numbers to represent AC signals
Math facts

“AC signals”: time varying (vs. steady “DC signals”)
DC signal has magnitude only
AC signal has magnitude and phase

Complex numbers good for representing magnitude and phase
Math facts:

e is Euler’s const, 2.718…
j*j = -1 (“unit imaginary”)
ex+y = ex ey

d{ect}/dt = cect

Can write complex numbers as
Real & imaginary parts: x+jy, or
Polar (magnitude & phase): rejθ

ejθ=cos(θ)+jsin(θ) (“Euler’s equation”)

CSE 466 - Winter 2008 Interfacing 10

Using complex numbers to represent AC signals
How to do it

Pretend signals are complex during calculations
Take the real part at the end to find out what really happens
Multiply signal by real number magnitude change
Multiply by complex number phase and magnitude

Example: S’pose we want to represent cos(2πft+Δ) (phase shift Δ)
In complex exponentials, it’s ej(2πft+Δ)=ejΔ ej(2πft)

Passive components (inductors & capacitors) affect phase and mag
We will model the effect of passives with a single complex number

“Complex impedance”
Bonus: taking derivatives is easy with this representation

CSE 466 - Winter 2008 Interfacing 11

0 2 4 6 8 10
-1

-0.5

0

0.5

1
cos(2 π t)

0 2 4 6 8 10
-1

-0.5

0

0.5

1
real(ej(2 π t))

0 2 4 6 8 10
-1

-0.5

0

0.5

1
cos(2 π t + π/2)

0 2 4 6 8 10
-1

-0.5

0

0.5

1
real(ejπ/2 ej(2 π t))

0 2 4 6 8 10
-1

-0.5

0

0.5

1
cos(2 π t + π)

0 2 4 6 8 10
-1

-0.5

0

0.5

1
real(ejπ ej(2 π t))

Using complex numbers to represent AC signals
Examples

Cosine Complex exponential

same

same

same

CSE 466 - Winter 2008 Interfacing 12

R,C,L

R: resistor
Non-perfect conductor
Turns electrical energy into heat
V=IR

C: capacitor
Two conductive plates, not in contact
Stores energy in electric field
Q=CV
d{Q}/dt=d{CV}/dt I=C dV/dt
Let V=V0ej2πft I=jC2πfV0ejωt V=I*(1/jC2πf)=I*(-j/C2πf)

Blocks DC…passes AC
L: inductor

Coil of wire
Stores energy in magnetic field
V=L dI/dt
Let I=I0ej2πft V=j2πfLI0ej2πft V=I*(jL2πf)

Passes DC…blocks AC

Q = CV
d
dtQ =

d
dtCV =⇒ I = C dV

dt

Let V = V0e
j2πft =⇒ I = Cj2πfV0e

j2πft =⇒ V = I −j2πfC

V = LdIdt
Let I = I0e

j2πft =⇒ V = Lj2πfI0e
j2πft =⇒ V = I(j2πfL)

CSE 466 - Winter 2008 Interfacing 13

Z

Z: Impedance
AC generalization of resistance
Models what passive components do to AC signals
Frequency dependent, unlike resistance

Resistor: “real impedance” = R
Capacitor: “negative imaginary impedance” = -j/C2πf = -j/ωC

ω=2πf
Inductor: “positive imaginary impedance” = j2πfL = jωL

You can lump a network of resistors, capacitors, and inductors together into
a single complex impedance with real and imaginary components
Capacitive and inductive parts of impedance can cancel each other out

when they do, it’s called resonance

CSE 466 - Winter 2008 Interfacing 14

Operational amplifiers

Amplify voltages (increase voltage)
Turn weak (“high impedance”) signal into robust (“low impedance”)
signal
Perform mathematical operations on signals (in analog)

E.g. sum, difference, differentiation, integration, etc
History

Originally computers were text only; signal processing meant analog
Next DSPs moved some signal processing functions to digital
Now microcontrollers becoming powerful enough to do DSP functions
“Software defined radio”
Computation can happen in software; still need opamps for amplification

But, some kinds of amplification can even happen in software:
“processing gain,” “coding gain”

Signal processing is historically EE; becoming embedded software topic

CSE 466 - Winter 2008 Interfacing 15

Op Amps

Op amps come 1,2,4 to a package (we will use quad)
Op amp has two inputs, +ve & -ve.

Rule 1: Inputs are “sense only”…no current goes into the inputs

It amplifies the difference between these inputs
With a feedback network in place, it tries to ensure:

Rule 2: Voltage on inputs is equal
as if inputs are shorted together…“virtual short”
more common term is “virtual ground,” but this is less accurate

Using rules 1 and 2 we can understand what op amps do

CSE 466 - Winter 2008 Interfacing 16

Comparator

Used in earlier ADC examples
No feedback (so Rule 2 won’t apply)
Vout = T{g*(V+ - V-)} [g big, say 106]

T{ } means threshold s.t. Vout doesn’t exceed rails

In practice
V+ > V- Vout = +5
V+ < V- Vout = 0

V-

V+

+5V

0V

Vout

CSE 466 - Winter 2008 Interfacing 17

Transimpedance amplifier

Produces output voltage proportional
to input current
AGND = V+ = 0V
By 2, V- = V+, so V- = 0V
Suppose Iin = 1μA
By 1, no current enters inverting input
All current must go through R1
Vout-V- = -1μA * 106 Ω

Vout = -1V

Generally, Vout = - Iin * R1

Iin
Vout

1. No current into inputs
2. V- = V+

V-

V+

CSE 466 - Winter 2008 Interfacing 18

Inverting (voltage) amplifier

S’pose Vin=100mV
Then Iin=100mV/10K = 10μA
By rule 1, that current goes through R2
By rule 2, V- = 0
Vout-V- = Vout = -10μA*100K = -1V

In general, Iin= Vin / R1
Vout = -IinR2 = - Vin R2 / R1

Gain = Vout / Vin = - R2 / R1

In this case, gain = 100K / 10K = -10
-10 * 100mV = -1V. Yep.

Vin
Vout

1. No current into inputs
2. V- = V+

CSE 466 - Winter 2008 Interfacing 19

Differentiator

Q=CV dQ/dt = C dV/dt I = C dV/dt
Iin=C dVin/dt

Now pretend it’s a transimpedance amp:
Vout = - Iin * R

Vout = - RC dVin/dt

Output voltage is proportional to derivative of
input voltage!

CSE 466 - Winter 2008 Interfacing 20

Integrator

Iin = Vin/R1

Q1 =
R
Iindt

Q1 = −C1Vout

=⇒ Vout = − 1
C1

R
Vin
R1
dt

=⇒ Vout = − 1
R1C1

R
Vindt

CSE 466 - Winter 2008 Interfacing 21

Follower

Because of direct
connection, V- = Vout

Rule 2 V- = V+, so
Vout = Vin Vin

Vout

1. No current into inputs
2. V- = V+

CSE 466 - Winter 2008 Interfacing 22

Op Amp power supply

Dual rail: 2 pwr supplies, +ve & -ve
Can handle negative voltages
“old school”

Single supply op amps
Signal must stay positive
Use Vcc/2 as “analog ground”
Becoming more common now, esp in
battery powered devices
Sometimes good idea to buffer output of
voltage divider with a follower

2.5V
“analog
ground”

Ground
0V

Dual rail op-amp

Single supply op-amp

CSE 466 - Winter 2008 Interfacing 23

End of basic electronics

CSE 466 - Winter 2008 Interfacing 24

Noise
Why modulated sensing?

Johnson noise
Broadband thermal noise

Shot noise
Individual electrons…not usually a
problem

“1/f” “flicker” “pink” noise
Worse at lower frequencies

do better if we can move to higher
frequencies

60Hz pickup

From W.H. Press, “Flicker noises in
astronomy and elsewhere,” Comments
on astrophysics 7: 103-119. 1978.

CSE 466 - Winter 2008 Interfacing 25

Modulation

What is it?
In music, changing key
In old time radio, shifting a signal from one frequency to another
Ex: voice (10kHz “baseband” sig.) modulated up to 560kHz at radio station
Baseband voice signal is recovered when radio receiver demodulates
More generally, modulation schemes allow us to use analog channels to
communicate either analog or digital information

Amplitude Modulation (AM), Frequency Modulation (FM), Frequency hopping spread
spectrum (FHSS), direct sequence spread spectrum (DSSS), etc

What is it good for?
Sensitive measurements

Sensed signal more effectively shares channel with noise better SNR
Channel sharing: multiple users can communicate at once

Without modulation, there could be only one radio station in a given area
One radio can chose one of many channels to tune in (demodulate)

Faster communication
Multiple bits share the channel simultaneously more bits per sec
“Modem” == “Modulator-demodulator”

CSE 466 - Winter 2008 Interfacing 26

Just a little more math

Convolution theorem:
Multiplication in time domain convolution in frequency domain

What is convolution?
Takes two functions a(t), b(t), produces a 3rd: c(τ)

Flip one function (invert time axis)
slide it along to offset of τ
Integrate product of these fns over all t
Each offset τ gives a value of c(τ)

c(τ) =
R
a(t)b(τ − t)dt

Each τ is a different overlapping
of a(t) and (time-inverted) b(-t)

-t b is flipped wrt time

CSE 466 - Winter 2008 Interfacing 27

Amplitude modulation
Frequency domain view

-1200 -800 -400 0 400 800 1200
0

5

10

15
Baseband signal

-1200 -800 -400 0 400 1200 2400
0

1

2
Carrier

-1200 -800 -400 0 400 800 1200
0

5

10

15
Baseband modulated by carrier

-1200 -800 -400 0 400 800 1200
0

10

20

30
Demodulated (before lowpass)

In time domain,
modulation is
multiplication:

(baseband x carrier)

In freq domain
(shown here)

modulation is convolution
of baseband w/ carrier

Horizontal axes:
frequency
(in arbitrary units)

Vertical axes:
amplitude
(arbitrary units)

CSE 466 - Winter 2008 Interfacing 28

Phase shifter

:
Acos ωt

RCV:
I=-CAω sin ωt

sin ωt

R
CAωsinωt× sinωtdt

CSE 466 - Winter 2008 Interfacing 29

Synchronous Demodulation
Time and frequency domain view

Time Frequency

CSE 466 - Winter 2008 Interfacing 30

Electric Field Sensing circuit
Variant 2 (no analog multiplier)

Microcontroller

-1

+1

Square wave
out ADC IN

Replace sine wave TX with square wave (+1, -1)
Multiply using just an inverter & switch (+1: do not invert; -1: invert)
End with Low Pass Filter or integrator as before
Same basic functionality as sine version, but additional harmonics in freq domain view

Square wave controls
switch

CSE 466 - Winter 2008 Interfacing 31

Electric Field Sensing circuit
Variant 3 (implement demodulation in software)

Microcontroller

-1

+1

Square wave
out

ADC
IN

For nsamps desired integration
Assume square wave TX (+1, -1)
After signal conditioning, signal goes direct to ADC
Acc = sum_i T_i * R_i

When TX high, acc = acc + sample
When TX low, acc = acc - sample

CSE 466 - Winter 2008 Interfacing 32

Lab 3 Schematic

CSE 466 - Winter 2008 Interfacing 33

Lab 3 pseudo-code
// Set PORTB as output
// Set ADC0 as input; configure ADC
NSAMPS = 200; // Try different values of NSAMPS
//Look at SNR/update rate tradeoff
acc = 0; // acc should be a 16 bit variable
For (i=0; i<NSAMPS; i++) {

SET PORTB HIGH
acc = acc + ADCVALUE
SET PORTB LOW
acc = acc - ADCVALUE

}
Return acc

Why is this implementing inner product correlation? Imagine unrolling the loop.
We’ll write ADC1, ADC2, ADC3, … for the 1st, 2nd, 3rd, … ADCVALUE
acc = ADC1 – ADC2 + ADC3 – ADC4 + ADC5 – ADC6 +…
acc = +1*ADC1 + -1*ADC2 + +1*ADC3 + -1*ADC4 +…
acc = C1*ADC1 + C2*ADC2 + C3*ADC3 + C4*ADC4 + …

where Ci is the ith sample of the carrier
acc = <C,ADC> Inner product of the carrier vector with the ADC sample vector

CSE 466 - Winter 2008 Interfacing 34

End of intro to E-Field Sensing

CSE 466 - Winter 2008 Interfacing 35

Outline

Demo of EF Sensing circuit
A completely different way to think about modulation
Synchronous demodulation vs diode demodulation

CSE 466 - Winter 2008 Interfacing 36

a

More math facts!

Think of a signal as a vector of samples
Vector lives in a vector space, defined by bases
Same vector can be represented in different bases

Vector a in
some basis

<1,2>
a

Vector a in
another basis

<2.236,0>

Length:
Sqrt(12+22)=2.236

Length:
Sqrt(2.2362)=2.236

CSE 466 - Winter 2008 Interfacing 37

Still more math facts…

Remember inner (“dot”) product:
<1,2,3,4 | 5,6,7,8> = 1*5 + 2*6 + 3*7 + 4*8=70
<a|b> = |a|*|b| cos θ (“projection of a onto b”)
If b is a unit vector, then <a|b> = |a| cos θ
Inner product is a good measure of correlation

Two identical signals parallel vectors perfectly correlated
<b|b> == 1 (b normalized)

…no common component orthogonal vectors ~ uncorrelated
<b|c> == 0 (b and c orthogonal)

Used frequently in communication: correlate received signal with
various possible transmitted signals; highest correlation wins
DSPs (and now micros) have special “multiply-accumulate”
instructions for inner product / correlation

θ

a

b

CSE 466 - Winter 2008 Interfacing 38

Another view of modulation & demodulation

Now consider discrete-time:

Suppose we’re (de)modulating just one bit (time 0 to T). Then to do low pass filter at end
of demodulation operation, we can integrate over the whole bit period T (intuition:
integration for all time gives DC [0 frequency] component…all higher frequencies
contribute nothing to integral)

Modulation is multiplication by carrier

Demodulation is 2nd multiplication by carrier
Low pass filter implemented by integration from 0 to T

Modulation is multiplication by carrier

Demodulation is 2nd multiplication by carrier
Hey, that looks like an inner product

Let ct = cos(ωt)

m(t) = b cos(ωt)

d =

Z T

0

m(t) cos(ωt)dt

mt = bct

d =

TX
t=0

mtct

d =

TX
t=0

bctct = b < ct|ct > For ct normalized <ct|ct>=1 d=b

CSE 466 - Winter 2008 Interfacing 39

Other observations

Inner product concept applies in continuous case
too…just that vectors are infinite dimensional. Instead of
summing as last step of inner product, integrate
Sines, cosines of different frequencies are orthogonal

They form a complete basis for “function space”
Fourier transform is a change of basis

Time domain basis is delta fns (spikes):
Project signal onto each frequency component (each basis vector
for frequency domain) to get representation in Fourier basis

Synchronous demodulation is computing one Fourier
component

Rejects noise at all frequencies further from carrier than final low
pass filter bandwidth

f(t) =
R
f(t)δ(t)dt

CSE 466 - Winter 2008 Interfacing 40

Synchronous demodulation example

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-2

0

2
Baseband bits

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-2

0

2
Carrier

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-2

0

2
Modulated

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-5

0

5

Modulated + noise

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-2

0

2
Demodulated bits

Horizontal axes:
Time

Signal apparently
buried by noise

Correct
bits recovered
(threshold this

signal to get bits)

Signal during one bit
period: b (a constant)

Carrier during one bit
period: ct=cos(ωt)

Modulated carrier
mt=b ct

Signal + noise:
mt+nt = b ct+10*(rand-.5)

d = 1
500

P500
t=1(mt + nt)× ct

d = 1
500

P500
t=1(bct + nt)× ct

d = 1
500

P500
t=1(bctct + ntct))

CSE 466 - Winter 2008 Interfacing 41

Envelope-following demodulation

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1
Rectified modulated carrier --- no noise

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1
Envelope following demod --- no noise

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-2

0

2

4
Envelope following demod --- with noise

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-2

0

2
Demodulated bits

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6
Rectified modulated carrier --- with noise

Horizontal axes:
Time

