
1

CSE 466 - Winter 2008 Interfacing 1

Interfacing

Connecting the computational capabilities of a
microcontroller to external signals

Transforming variable values into voltages and vice-versa
Digital and analog

Issues
How many signals can be controlled?
How can digital and/or analog inputs be used to measure
different physical phenomena?
How can digital and/or analog inputs be used to control different
physical phenomena?

CSE 466 - Winter 2008 Interfacing 2

Controlling and reacting to the environment

To control or react to the environment we need to
interface the microcontroller to peripheral devices

Microcontroller may contain specialized interfaces to sensors and
actuators

Things we want to measure or control
light, temperature, sound, pressure, velocity, position

Sensors
e.g., switches, photoresistors, accelerometers, compass, sonar

Actuators
e.g., motors, relays, LEDs, sonar, displays, buzzers

2

CSE 466 - Winter 2008 Interfacing 3

Typical control system

controller

actuatorssensors

physical
system

interfaces

CSE 466 - Winter 2008 Interfacing 4

Analog to digital conversion

Map analog inputs to a range of binary values
8-bit A/D has outputs in range 0-255

What if we need more information?
linear vs. logarithmic mappings
larger range of outputs (16-bit a/d)

0 64 128 192 255

1 10 100 10000.1

1 10 100 10000.1

analog

analog

digital

3

CSE 466 - Winter 2008 Interfacing 5

Logarithm of a signal

Usually use an op-amp circuit
Often found as a pre-amplifier to ADC circuitry
Simple circuit to compute natural logarithm

VIN VOUT = loge (VIN)

CSE 466 - Winter 2008 Interfacing 6

Analog to digital conversion

Use charge-redistribution technique
no sample and hold circuitry needed
even with perfect circuits quantization error occurs

Basic capacitors
sum parallel capacitance

C C 2C C 2C 4C

C 3C 7C

4

CSE 466 - Winter 2008 Interfacing 7

Analog to digital conversion (cont’d)

Two reference voltage
mark bottom and top end of range of analog values that can be
converted (VL and VH)
voltage to convert must be within these bounds (VX)

Successive approximation
most approaches to A/D conversion are based on this
8 to 16 bits of accuracy

Approach
sample value
hold it so it doesn’t change
successively approximate
report closest match

VX

VL

VH

CSE 466 - Winter 2008 Interfacing 8

A-to-D – sample

During the sample time the top plate of all capacitors is
switched to reference low VL

Bottom plate is set to unknown analog input VX

Q = CV
QS = 16 (VX - VL)

VX

VL

VH

-
+

VI

VL

VX

8 4 2 1 1VL

5

CSE 466 - Winter 2008 Interfacing 9

A-to-D – hold

Hold state using logically controlled analog switches
Top plates disconnected from VL

Bottom plates switched from VX to VL

QH = 16 (VL - VI)
conservation of charge QS = QH

16 (VX - VL) = 16 (VL - VI)
VX - VL = VL - VI (output of op-amp)

VX

VL

VH

-
+

VI

VL

8 4 2 1 1

VL

CSE 466 - Winter 2008 Interfacing 10

A-to-D – successive approximation

Each capacitor successively switched from VL to VH
Largest capacitor corresponds to MSB

Output of comparator determines bottom plate
voltage of cap

> 0 : remain connected to VH
< 0 : return to VL -

+

VI

VL

8 4 2 1 1

VL

VH

MSB LSB

1111 0000

6

CSE 466 - Winter 2008 Interfacing 11

A-to-D example - MSB

Suppose VX = 21/32 (VH - VL) and already sampled
Compare after shifting half of capacitance to VH

VI goes up by + 8/16 (VH-VI) - 8/16 (VL-VI) = + 8/16 (VH - VL)
original VL - VI goes down and becomes
VL - (VI + .5 (VH - VL)) = VL - VI - .5 (VH - VL)

Output > 0

VX

VL

VH

VI (next)

.5 (VH - VL)
-
+

VI

VLVL

VH
8

4 2 1 1

CSE 466 - Winter 2008 Interfacing 12

A-to-D example - (MSB-1)

Compare after shifting another part of cap. to VH
VI goes up by + 4/16 (VH-VI) - 4/16 (VL-VI) = + 4/16 (VH - VL)
original VL - VI goes down and becomes
VL - (VI + .25 (VH - VL)) = VL - VI - .25 (VH - VL)

Output < 0 (went too far)

VX

VL

VH

VI (prev)

.25 (VH - VL)

VI (next)

-
+

VI

VLVL

VH

8 4

2 1 1

7

CSE 466 - Winter 2008 Interfacing 13

A-to-D example - (MSB-2)

Compare after shifting another part of cap. to VH
VI goes up by + 2/16 (VH-VI) - 2/16 (VL-VI) = + 2/16 (VH - VL)
original VL - VI goes down and becomes
VL - (VI + .125 (VH - VL)) = VL - VI - .125 (VH - VL)

Output > 0

VX

VL

VH

VI (prev)
.125 (VH - VL)

VI (next)

-
+

VI

VLVL

VH

8

4

2

1 1

CSE 466 - Winter 2008 Interfacing 14

A-to-D example - LSB

Compare after shifting another part of cap. to VH
VI goes up by + 1/16 (VH-VI) - 1/16 (VL-VI) = + 1/16 (VH - VL)
original VL - VI goes down and becomes
VL - (VI + .0625 (VH - VL)) = VL - VI - .0625 (VH - VL)

Output < 0 (went too far again)

VX

VL

VH

.0625 (VH - VL)
-
+

VI

VLVL

VH

8

4

2 1

1

8

CSE 466 - Winter 2008 Interfacing 15

A-to-D example final result

Input sample of 21/32
Gives result of 1010 or 10/16 = 20/32
3% error

-
+

VI

VLVL

VH

8

4

2

1 1

CSE 466 - Winter 2008 Interfacing 16

A-to-D Conversion Errors

9

CSE 466 - Winter 2008 Interfacing 17

Closer Look at A-to-D Conversion

Needs a comparator
and a D-to-A converter
Takes time to do
successive
approximation
Interrupt generated
when conversion is
completed

CSE 466 - Winter 2008 Interfacing 18

A-to-D Conversion on the ATmega16

10-bit resolution (adjusted to 8 bits as needed)
65-260 usec conversion time
8 multiplexed input channels
Capability to do differential conversion

Difference of two pins
Optional gain on differential signal (amplifies difference)

Interrupt on completion of A-to-D conversion
0-VCC input range
2*LSB accuracy (2 * 1/1024 = ~0.2%)

Susceptible to noise – special analog supply pin (AVCC) and
capacitor connection for reference voltage (AREF)

10

CSE 466 - Winter 2008 Interfacing 19

A-to-D Conversion (cont’d)

CSE 466 - Winter 2008 Interfacing 20

A-to-D Conversion
(cont’d)

Single-ended or differential
1 of 8 single-ended
ADCx – ADC1 at 1x gain
ADC{0,1} – ADC0 at 10x
ADC{0,1} – ADC0 at 200x
ADC{2,3} – ADC2 at 10x
ADC{2,3} – ADC3 at 200x
ADC{0,1,2,3,4,5} – ADC2 at 1x

11

CSE 466 - Winter 2008 Interfacing 21

A-to-D Conversion (cont’d)

CSE 466 - Winter 2008 Interfacing 22

A-to-D Conversion (cont’d)

12

CSE 466 - Winter 2008 Interfacing 23

A-to-D Conversion (cont’d)

CSE 466 - Winter 2008 Interfacing 24

Digital to analog conversion

Map binary values to analog outputs (voltages)
Most devices have a digital interface – use time to encode value
Time-varying digital signals – almost arbitrary resolution

pulse-code modulation (data = number or width of pulses)
pulse-width modulation (data = duty-cycle of pulses)
frequency modulation (data = rate at which pulses occur)

V

t
V

t
V

t

13

CSE 466 - Winter 2008 Interfacing 25

Pulse-width modulation

Pulse a digital signal to get an average “analog” value
The longer the pulse width, the higher the voltage

Pulse-width ratio =
ton

tperiod

t

t

t

average
valuetperiod ton

CSE 466 - Winter 2008 Interfacing 26

Why pulse-width modulation works

Most mechanical systems are low-pass filters
Consider frequency components of pulse-width modulated signal
Low frequency components affect components

They pass through
High frequency components are too fast to fight inertia

They are “filtered out”

Electrical RC-networks are low-pass filters
Time constant (τ = RC) sets “cutoff” frequency
that separates low and high frequencies

14

CSE 466 - Winter 2008 Interfacing 27

Anti-lock brake system

Rear wheel controller/anti-lock brake system
Normal operation

Regulate velocity of rear wheel
Brake pressed

Gradually increase amount of breaking
If skidding (front wheel is moving much faster than rear wheel)
then temporarily reduce amount of breaking

Inputs
Brake pedal
Front wheel speed
Rear wheel speed

Outputs
Pulse-width modulation rear wheel velocity
Pulse-width modulation brake on/off

CSE 466 - Winter 2008 Interfacing 28

Rear wheel controller/anti-lock brake system

micro
controller

brake pedal pressed

front wheel velocity

rear wheel velocity

brake on/off

move rear wheel

15

CSE 466 - Winter 2008 Interfacing 29

Basic I/O ports (brakes)

Check if brake pedal pressed – or interrupt
brakePressed = read (brakePedalPort)

Turn brake on/off
write (brakePort, onOff)

Move rear wheel
write (rearWheel, onOff)

micro
controller

brake on/off

move rear wheel

GPIO
port

brake pedal pressed

front wheel velocity

rear wheel velocity

GPIO
port

CSE 466 - Winter 2008 Interfacing 30

Polling vs. interrupts

Software must repeatedly check
Brake pedal port
How often?
Need to make sure not to forget to do so (use timer)

Use automatic detection capability of processor
Connect brake pedal to input capture or external interrupt pin
Interrupt on level change
Interrupt handler for brake pedal

micro
controller

GPIO
portbrake pedal pressed

16

CSE 466 - Winter 2008 Interfacing 31

Pulse-width modulation for brakes

To pump the brakes gradually increase the duty-cycle
(ton) until car stops

t

t

CSE 466 - Winter 2008 Interfacing 32

Use timer to turn brake on and off
Apply brake
Set timer to interrupt after “on” time
Disengage brake
Set time to interrupt after “off” time
Repeat

How do we tell which interrupt is which?

Brake pump setup

t

t t ti i

set timer to go off at each edge

17

CSE 466 - Winter 2008 Interfacing 33

Change value of “on” time to change analog average
average output = (time on) / (period)

How do we decide on the period of the pulses?
Using two timers

One to set period (auto-reload)
One to turn it off at the right duty cycle

Brake pump setup (cont’d)

t

t t ti i

set timer to go off at each edge

CSE 466 - Winter 2008 Interfacing 34

Shaft encoders

Need to determine the rear wheel velocity
Use sensor to detect wheel moving

Determine speed of a bicycle
Attach baseball card so it pokes through spokes
Number of spokes is known
Count clicks per unit time to get velocity

Baseball card sensor is a shaft encoder

bike wheel

baseball card

click!

18

CSE 466 - Winter 2008 Interfacing 35

Shaft encoders

Instead of spokes, we can use black and white segments on a disk
Black segments absorb infrared light, white reflects
Count pulses instead of clicks

emitter
detector

wheel infrared
light

pulse

CSE 466 - Winter 2008 Interfacing 36

IR reflective patterns

How many segments should be used?
More segments give finer resolution
Fewer segments require less processing
Tradeoff resolution and processing

19

CSE 466 - Winter 2008 Interfacing 37

Interfacing shaft encoders

Use interrupt on GPIO pin
Every interrupt, increment counter

Use timer to set period for counting
When timer interrupts, read GPIO pin counter
velocity = counter ∗ “known distance per click” / “judiciously chosen period”
Reset counter

Pulse accumulator function
Common function
Some microcontrollers have this in a single peripheral device
Basically a counter controlled by an outside signal

Signal might enable counter to count at rate of internal clock – to measure time
Signal might be the counter’s clock – to measure pulses

ATmega16 has external clock source for timer/counter

CSE 466 - Winter 2008 Interfacing 38

General interfaces to microcontrollers

Microcontrollers come with built-in I/O devices
Timers/counters
GPIO
ADC
Etc.

Sometimes we need more . . .
Options

Get a microcontroller with a different mix of I/O
Get a microcontroller with expansion capability

Parallel memory bus (address and data) exposed to the outside world
Serial communication to the outside world

20

CSE 466 - Winter 2008 Interfacing 39

I/O ports

The are never enough I/O ports
Techniques for creating more ports

port sharing with simple glue logic
decoders/multiplexors
memory-mapped I/O
port expansion units

Direction of ports is important
single direction port easier to implement
timing important for bidirectional ports

CSE 466 - Winter 2008 Interfacing 40

Connecting to the outside world

Exploit specialized functions (e.g., UART, timers)
Attempt to connect directly to a device port without adding interface
hardware (e.g., registers), try to share registers if possible but
beware of unwanted interactions if a signal goes to more than one
device
If out of ports, must force sharing by adding hardware to make a
dedicated port sharable (e.g., adding registers and enable signals
for the registers)
If still run out of ports, then most encode signals to increase
bandwidth (e.g., use decoders)
If all else fails, then backup position is memory-mapped I/O, i.e.,
what we would have done if we had a bare microprocessor

21

CSE 466 - Winter 2008 Interfacing 41

External PWM Unit

Design a system to control the speed of a motor with a
digital value
Solution: design a PWM unit

CSE 466 - Winter 2008 Interfacing 42

if (onOff == OFF)
nextState = MotorLow

else if (highTime Expired)
nextState = MotorLow

else if (highTime NOT Expired)
nextState = MotorHigh

if (onOff == OFF)
nextState = MotorLow
reset counter

else if (period NOT Expired)
nextState = MotorLow

else if (period Expired)
nextState = MotorHigh
reset counter

Motor High StateMotor Low State

External PWM FSM Controller

22

CSE 466 - Winter 2008 Interfacing 43

External PWM software

// in initialization code
Write off to onOff register

// do some stuff

// set up PWM
Repeat for each motor

Write highTime and period registers

// turn motors on
Repeat for each motor

Write on to the onOFF register

// more stuff

CSE 466 - Winter 2008 Interfacing 44

Some example I/O devices

Sonar range finder
IR proximity detector
Accelerometer
Bright LED

23

CSE 466 - Winter 2008 Interfacing 45

Sonar range finder

Uses ultra-sound (not audible) to measure distance
Time echo return
Sound travels at approximately 343m/sec

need at least a 34.3kHz timer for cm resolution

One simple echo not enough
many possible reflections
want to take multiple readings for high accuracy

CSE 466 - Winter 2008 Interfacing 46

Polaroid 6500 sonar range finder

Commonly found on old Polaroid cameras, now a frequently used
part in mobile robots
Transducer (gold disc)

charged up to high voltage
and “snapped”
disc stays sentisized so it
can detect echo (acts as
microphone)

Controller board
high-voltage circuitry
to prepare disc for
transmitting and then
receiving

24

CSE 466 - Winter 2008 Interfacing 47

Polaroid 6500 sonar range finder (cont’d)

Only need to connect two pins to microcontroller
INIT - start transmitting
ECHO - return signal

Some important information
from data sheet

INIT requires large
current (greater than
microcontroller can
provide – add external
buffer/amplifier)
ECHO requires a
pull-up resistor (determine
current that needs to flow
into microcontroller pin
- size resistor so proper
voltage is on pin

CSE 466 - Winter 2008 Interfacing 48

Accelerometer

Micro-electro-mechanical system that measures force
F = ma (I. Newton)
Measured as change
in capacitance
between moving
plates
Designed for a
maximum g-force
(e.g., 2-10g)
2-axis and 3-axis
versions
Used in airbags,
laptop disk drives,
etc.

25

CSE 466 - Winter 2008 Interfacing 49

Accelerometer output

Analog output too susceptible to noise
Digital output requires many pins for precision

Could use serial interface

Use pulse-width modulation
What about gravity?

CSE 466 - Winter 2008 Interfacing 50

Analog Devices ADXL202

2-axis accelerometer
Set 0g at 50% duty-cycle
Positive acceleration
increases duty cycle
Negative acceleration
decreases duty cycle
12.5% per g
in either direction

26

CSE 466 - Winter 2008 Interfacing 51

Typical measurement for ADXL202

Noisy data – all forces are aggregated by accelerometer
Sample trace at 250Hz

Walking down six
flights of stairs Elevator ride

CSE 466 - Winter 2008 Interfacing 52

Typical signal from ADXL202

Cause interrupts at Ta, Tb, and Tc from X-axis output
1. Look for rising edge, reset counter: Ta = 0
2. Look for falling edge, record timer: Tb = positive duty cycle
3. Look for rising edge, record timer, reset counter: Tc = period
Repeat from 2
Same for Y-axis output (T2 is the same for both axes)

27

CSE 466 - Winter 2008 Interfacing 53

What to do about noise/jitter?

Average over time – smoothing
Software filter – like switch debouncing

Take several readings
use average for Tb and Tc or their ratio

Running average so that a reading is available at all
times

e.g., update running average of 8 readings
current average = ⅞ * current average + ⅛ * new reading

Take readings of both Tb and Tc to be extra careful
Tc changes with temperature
Usually can do Tc just once

CSE 466 - Winter 2008 Interfacing 54

Built-in filter

Filter capacitors limit noise
bandwidth limiting – eliminate high-frequency noise

28

CSE 466 - Winter 2008 Interfacing 55

ADXL202 Output

Accelerometer
duty cycle
varies with force
12.5% for each g
RSET determines
duration of period
At 1g duty-cycle
will be 62.5% (37.5%)

CSE 466 - Winter 2008 Interfacing 56

ADXL202 Orientation

Sensitivity (maximum duty cycle change per degree) is
highest when accelerometer is perpendicular to gravity

29

CSE 466 - Winter 2008 Interfacing 57

PWM Calculations

How big a counter do you need?
Assume 7.37MHz clock
1ms period yields a count of 7370

This fits in a 16-bit timer/counter
Should you use a prescaler for the counter?
Bit precision issues

unsigned int positive;
unsigned int period;
unsigned int pos_duty_cycle;

BAD:
pos_duty_cycle = positive/period;

BAD:
pos_duty_cycle = (positive * 1000) / period;

OKAY:
pos_duty_cycle = ((long) positive * 1000) / period;

CSE 466 - Winter 2008 Interfacing 58

LEDs

Easy to control intensity of light through pulse-width
modulation
Duty-cycle is averaged by human eye

Light is really turning on and off each period
Too quickly for human retina (or most video cameras)
Period must be short enough (< 1ms is a sure bet)

LED output is low to turn on light, high to turn it off
Active low output

30

CSE 466 - Winter 2008 Interfacing 59

Sample code for LED

Varying PWM output
volatile uint8_t width; /* positive pulse width */
volatile uint8_t delay; /* used to slow the rate at which pulse width changes */

SIGNAL (SIG_OVERFLOW2)
{

if (delay++ == 20) { OCR2 = width++; delay = 0; }
}

int main (void)
{

/* must make OC2 pin an output for the PWM to visible */
DDRD = _BV(DDD7);
/* use Timer 2 FastPWM and the overflow interrupt to update duty-cycle */
TCCR2 = _BV (WGM21) | _BV (WGM20) | _BV (COM21) | _BV(COM20) | _BV(CS21) | _BV(CS20);
TIMSK = _BV (TOIE2);
/* setup initial conditions */
delay = 0;
/* enable interrupts */
sei ();
for (;;)
{ ; /* LOOP FOREVER as the interrupt will make necessary adjustment */ }
return (0);

}

CSE 466 - Winter 2008 Interfacing 60

Fast PWM

31

CSE 466 - Winter 2008 Interfacing 61

Lab 3

Use accelerometer to set RGB-LED to a color
Vary intensity using a potentiometer

Think of it as a mouse with an enabling button
Tilt the mouse to move in color space – color in X, Y
Turn potentiometer (pot) to adjust brightness

CSE 466 - Winter 2008 Interfacing 62

Color

Color perception usually involves three quantities:
Hue: Distinguishes between colors like red, green, blue, etc
Saturation: How far the color is from a gray of equal intensity
Lightness: The perceived intensity of a reflecting object

Sometimes lightness is called brightness if the object is
emitting light instead of reflecting it.
In order to use color precisely in computer graphics, we
need to be able to specify and measure colors.

32

CSE 466 - Winter 2008 Interfacing 63

Numerous Color Spaces

RGB, CMY, XYZ; HSV, HLS; Lab, UVW, YUV, YCrCb,
Luv, L* u* v*, ..
Different Purposes: display, editing, computation,
compression, ..
Equally distant colors may not be equally perceivable
Separation of luminance and chromaticity (YIQ)

CSE 466 - Winter 2008 Interfacing 64

Additive Model (RGB System)

R, G, B normalized on orthogonal axes
All representable colors inside the unit cube
Color monitors mix R, G and B
Video cameras pick up R, G and B
CIE (Commission Internationale de l’Eclairage)
standardized this system in 1931

B: 435.8 nm, G: 546.1 nm, R: 700 nm.
3 fixed components acting alone
can’t generate all spectrum colors.

33

CSE 466 - Winter 2008 Interfacing 65

Problems with RGB

Only a small range of potential perceivable colors
(particularly for monitor RGB)
It isn’t easy for humans to say how much of RGB to use
to get a given color

How much R, G, and B is there in “brown”?

Perceptually non-linear

CSE 466 - Winter 2008 Interfacing 66

How Do Artists Do It?

Artists often specify color as tints, shades, and tones of saturated
(pure) pigments
Tint: determined by adding
white to a pure pigment,
thereby decreasing saturation
Shade: determined by adding
black to a pure pigment,
thereby decreasing lightness
Tone: determined by adding
white and black to a pure pigment

White

Pure Color

Black

Grays

Tints

Shades
Tones

34

CSE 466 - Winter 2008 Interfacing 67

HSV Color Space

Computer scientists frequently use an intuitive color
space that corresponds to tint, shade, and tone:

Hue - The color we see (red, green, purple)
Saturation - How far is the color from gray (pink is less saturated
than red, sky blue is less saturated than royal blue)
Brightness (Luminance) - How bright is the color (how bright are
the lights illuminating the object?)

CSE 466 - Winter 2008 Interfacing 68

HSV Color space

H and S are polar coordinates
H is angle (0 to 2π radians)
S is distance along radial (0 to 1)

V is height (0 to 1)

35

CSE 466 - Winter 2008 Interfacing 69

HSV Color Space

A more intuitive color space
H = Hue
S = Saturation
V = Value (or brightness)

http://www.cs.rit.edu/~ncs/color/a_spaces.html

CSE 466 - Winter 2008 Interfacing 70

if (S == 0) //HSV values = From 0 to 1
{

R = V * 255 //RGB results = From 0 to 255
G = V * 255
B = V * 255

}
else
{

var_h = H * 6
var_i = int(var_h) //Or ... var_i = floor(var_h)
var_1 = V * (1 - S)
var_2 = V * (1 - S * (var_h - var_i))
var_3 = V * (1 - S * (1 - (var_h - var_i)))

if (var_i == 0) { var_r = V ; var_g = var_3 ; var_b = var_1 }
else if (var_i == 1) { var_r = var_2 ; var_g = V ; var_b = var_1 }
else if (var_i == 2) { var_r = var_1 ; var_g = V ; var_b = var_3 }
else if (var_i == 3) { var_r = var_1 ; var_g = var_2 ; var_b = V }
else if (var_i == 4) { var_r = var_3 ; var_g = var_1 ; var_b = V }
else { var_r = V ; var_g = var_1 ; var_b = var_2 }

R = var_r * 255 //RGB results = From 0 to 255
G = var_g * 255
B = var_b * 255
}

}

HSV to RGB Conversion

36

CSE 466 - Winter 2008 Interfacing 71

Our version

HSV scale goes from 0 to COLOR_SPACE_MAX for H
and S, and 0 to 255 for V
Issue:

Full square of H, S doesn’t translate to cone
Can’t have 0,0 or 255,255

We use a smaller square
Clip some colors to that square

0,0

255,255

0,0

CSM,CSM

CSE 466 - Winter 2008 Interfacing 72

A Series of Translations

Accelerometer
Provides PWM signal

Measure duty-cycle using microcontroller
% of period PWM signal is high

Map this to a color space
We’ll use two dimensions of HSV space
(H – hue) and (S – saturation) and
leave the intensity (V – value)
to be adjusted by a potentiometer

Translate color values to PWM signals to control tricolor-LED
HSV becomes 3 separate duty-cycle %ages for RGB

Generates these signals using timers of microcontroller
Translate to a period and counter value for corresponding duty-cycle
PWM tri-color LED reproduces color selected with accelerometer

37

CSE 466 - Winter 2008 Interfacing 73

First steps

Accelerometer does not generate full range of possible duty cycles –
each part is slightly different

Measure your part for its range as you vary from +1g to -1g
Determine the mapping of your accelerometer’s measurements to
minimum and maximum color space values

Range from 0 to 150
Calculations to map to RGB values given H, S, and V is provided

Lab 3
Timer0 is used to generate the 3 PWM signals needed for the tri-color LED
Timer1 is input capture for the x-axis
Timer2 is used with INT0 to perform input capture for the y-axis
ADC to measure position of potentiometer for intensity

