Interrupts

Fundamental concept in computation

Interrupt execution of a program to “handle” an event
o Don't have to rely on program relinquishing control
o Can code program without worrying about others

Issues

What can interrupt and when?

Where is the code that knows what to do?

How long does it take to handle interruption?

Can an interruption be, in turn, interrupted?

How does the interrupt handling code communicate its results?
How is data shared between interrupt handlers and programs?

0O 0O 0O O

(]

[m]

CSE 466 - Winter 2008 Interrupts 1

What is an Interrupt?

Reaction to something in /0O (human, comm link)
Usually asynchronous to processor activities
“interrupt handler” or “interrupt service routine” (ISR)
invoked to take care of condition causing interrupt

o Change value of internal variable (count)

o Read a data value (sensor, receive)

o Write a data value (actuator, send)

Main Program

Instruction 1 / ISR

Instruction 2 Save state
Instruction 3 Instruction 1
Instruction 4 Instruction 2

..... Instruction 3

Restore state
Return from Interrupt

CSE 466 - Winter 2008 Interrupts 2

Interrupts

Code sample that does not interrupt
char SPI_SlaveReceive(void)

{

/* Wait for reception complete */
while(I(SPSR & (1<<SPIF)))

/* Return data register */
return SPDR;

}

Instead of busy waiting until a byte is received the

processor can generate an interrupt when it sets SPIF
SIGNAL(SIG_SPI) {
RX_Byte = SPDR
}

CSE 466 - Winter 2008 Interrupts

Saving and Restoring Context

Processor and compiler dependent

Where to find ISR code?
o Different interrupts have separate ISRs

Who does dispatching?
o Direct
Different address for each interrupt type
Supported directly by processor architecture
o Indirect
One top-level ISR
Switch statement on interrupt type
o A mix of these two extremes?

CSE 466 - Winter 2008 Interrupts

Saving and Restoring Context

How much context to save?

o Registers, flags, program counter, etc.

o Save all or part?

o Agreement needed between ISR and program

Where should it be saved?

o Stack, special memory locations, shadow registers, etc.

o How much room will be needed on the stack?

o Nested interrupts may make stack reach its limit — what then?

Restore context when ISR completes

CSE 466 - Winter 2008 Interrupts 5

Ignoring Interrupts

Can interrupts be ignored?

o It depends on the cause of the interrupt

o No, for nuclear power plant temperature warning

o Yes, for keypad on cell phone (human timescale is long)

When servicing another interrupt
o Ignore others until done
o Can't take too long — keep ISRs as short as possible
Just do a quick count, or read, or write — not a long computation
Interrupt disabling
o Will ignored interrupt “stick”?
Rising edge sets a flip-flop
o Or will it be gone when you get to it?
Level changes again and its as if it never happened
o Don't forget to re-enable

CSE 466 - Winter 2008 Interrupts 6

Prioritizing Interrupts

When multiple interrupts happen simultaneously
o Which is serviced first?

o Fixed or flexible priority?

Priority interrupts

o Higher priority can interrupt

o Lower priority can't

Maskable interrupts

o “don’t bother me with that right now”

o Not all interrupts are maskable, some are non-maskable

CSE 466 - Winter 2008 Interrupts

Interrupts in the ATmegal6

External interrupts
o From I/O pins of microcontroller

Internal interrupts

o Timers
Output compare
Input capture
Overflow

o Communication units
Receiving something
Done sending

o ADC
Completed conversion

CSE 466 - Winter 2008 Interrupts

Interrupt Jump Vector Table

Address Labels Code Comments

gooo jmp RESET ; Reset Handler
ooz jmp EXT_INTO ; IRQO Handlsr
good jmp EXT_INT1 ; IROL Handler
. . §006 jmp TIM2_OOME ; Timerz Compars Handler
Fixed location sacs e ToG R) Tieers overtlow tamdler
H o goon jmp TIMI_CRET ; Timerl capturs Handler
In memory tO flnd gooc Jmp TIMJ:C\:ME’R ; Timerl Comparsh Handler
. - - §008 jmp TIM1_OOMER ; Timerl ComparsE Handler
flrst |nStrUCt|0n for §010 Jmp TIMJ:D'\FF‘ ; Timerl overflow Handlsr
§012 jmp TIMO_OVF ; Timero overflow Handler
eaCh type Of §014 imp SPI_sTC i EPI Transfer Complete Handler
. §016 jmp USART_RXC ; USART RX Complete Handler
|nterru pt ELRE] Jmp USART_UDRE ; UDR Empty Handler
$01A jmp USART_TXIC ; USART TX Complete Handler
Only room for One go1c Jmp ADC ; ADC Conversion Complete Handler
go1g jmp EE_RDY ; EEPROM Ready Handler
instru Ction §0z0 jmp ARR CCME ; analog Comparator Handler
gozz Jmp TWSI ; Two-wire Serial Interface Handler
. gozd imp EXT_INTZ ; IFQZ2 Handler
a ‘]MP to Iocatlon §026 Jmp TIMO_OOME ; Timero compars Handler
Of com plete ISR §0z8 jmp SPM_RDY ; Stors Program Memory Ready Handler
g0z RESET 1di r16,high(RAMEND) ; Main program start
$028 ocut SPH,T1S ; Set Stack Polinter to top of REM
§0zC 1di 116, low|RRMEND)
§0z0 cut SPL,rlE
§028 8= ; Enable interrupta
§0ZF cinstrs xwc
CSE 466 - Winter 2008 Interrupts 9

Chain of Events on Interrupt

Finish executing current instruction
Disable all interrupts
Push program counter on to stack
Jump to interrupt vector table
Jump to start of complete ISR

Save any context that ISR may otherwise change
o Registers and flags must be saved within ISR and restgréd before it
returns — this is very important! -

SEI

Re-enable interrupts if nested interrupts are ok
Complete ISR’s code

Re-enable interrupts upon return

Jump back to next instruction before interruption

Compiler

i

CSE 466 - Winter 2008 Interrupts 10

Shared Data Problem

When you use interrupts you create the opportunity for
multiple sections of code to update a variable.

This might cause a problems in your logic if an interrupt
updates a variable between two lines of code that are
directly dependent on each other (e.g. if statement)
One solution is to create critical sections where you

disable the interrupts for a short period of time while you
complete your logic on the shared variable

cliQ);
..... critical section code goes here.....
sei();

CSE 466 - Winter 2008 Interrupts 1

External Interrupts

General Interrupt Control

Register — GICR B N B 5 4 3 2 N o
B e e e
Special pins: INTO, INT1, INT2
o Can interrupt on edge or level
Can interrupt even if set to be output pins
o Implements “software interrupts” by setting output
mgg é:;mrol Register — ngrﬁjc h(éc;r;t.rol Register contains control bits for interrupt sense control and general

Bit a8 3

7 5 4 3 2 1 a
I SM2 SE SM1 SMU 1SC11 1SC10 _ISC01 1SCO0 MCUCR
—
ReadWrie W RiwW W RW RW AW RW RW
Initial Value] 0 [} a] o 0 o

ISC11 ISC10 Description

o] 0 The low level of INT1 generates an interrupt request.

Any legical change on INT1 generates an interrupt request.

- |- o

1
0 The falling edge of INT1 generates an interrupt request.
1

The rising edge of INT1 generates an interrupt request.

CSE 466 - Winter 2008 Interrupts 12

‘ Closer Look at a Timer/Counter

= Timer0/CounterO
o Clear timer on compare match (auto reload)
o Prescaler (divide clock by up to 1024)
o Overflow and compare

. — . #n
match interrupts e
. ;
o Registers — e

Cortrnl Lage

= Configuration
= Count value scrrou
= Output compare value £

P p % 4

| Frim Prasssise |

oCn
e

-)

CSE 466 - Winter 2008 Interrupts 13

‘ Timer/Counter Registers

e
TCCRD

Resaitne
vt vae [[l [0 o @] il

] Tlmerlcounter + Bit 7 - FOCO: Force Qutput Compare

. The FOCO bil is only active when the WGEMOO bil specifies a non-PWM mode. Howaver,
CO ntrol Reg | Ste r for ensuring compatibility with future devices, this bit must be set to 2era when TCCRO is
writlen when operating i PWM mode. When writing a logical one to the FOCO bit, an
immaediate compare match is forcad on the Wavatorm Genaration unit The OCO output
TCC RO 15 changed according to s COMO1.0 bes selting. Note that the FOCD bilis mplermented
as @ slrobe. Therefore il is the value present in the COMD1.0 bils that determines the

affect of the forced compars

A FOCD strobe will not generate any intermupt, nor will it clear the timer in CTC mode
uging OCRO as TOP

Thi FOCO bit 5 always read as 7660

+ Bit 6 3 - WGM01:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum
(TOP) counter value, and what type of Waveform Generation to be used. Modes of
operation supporad by the TimerCountar unit are: Mormal mode, Clear Timar on Com-
pare Match (CTC) mode, and two types of Pulse Width Modulaben (PWM) modes. See
Table 38 and “Modes of Operation” on page 74

Table 38. Wavelom Generation Mode Bit Descrption'’!

WEMI1 | WEMDO | Timer/Counter Mode Update of | TOVE Flag
Mode | [CTCO) | (PWMI) | of Gperation TOP | OCRO Set-on
0 0 o Neemal OxFF Immediata | MAX
1 o 1 PV, Phase Comect | OxFF | TOP BOTTOM
2 1 a cTC OCRO | Immediate | MAX
3 1 1 Fast P OxFF ToP MaX
Mote: 1. The CTCO and PYWMO bet definition names are now obsclete. Use the WGMD 10 def.

nitions. However, the functionalty and locabon of these bis are compatibée with
Previous versions. of the timer.

CSE 466 - Winter 2008 Interrupts 14

Timer/Counter Registers (cont’d)

Timer/Counter
Control Register
TCCRO

+ Bit 5:4 - COM01:0: Compare Match Output Mode

These bits control the Qutput Compare pin (OCO) behavior. If one or both of the
COMO01:0 bits are set, the OCO output overrides the normal port functionality of the /O
pin it is connected to. However, note that the Data Direction Register (DDR) bit corre-
sponding to the OCO pin must be set in arder to enable the output driver.

When OCO is connected to the pin, the function of the COMO1:0 bits depends on the
WGMO1:0 bit setting. Table 39 shows the COMO1:0 bit functionality when the WGMO01:0
bits are set to a normal or CTC mode (non-PWM)

Table 39. Compare Qutput Mode, non-PWM Mode

comMo1 COMO00 Description
0 0 Normal port eperation, OCO disconnected.
0 1 Toggle OCO on compare match
1 0 Clear OC0 en compare match
1 1 Set OCO on compare match
CSE 466 - Winter 2008 Interrupts 15

Timer/Counter Registers (cont’d)

Timer/Counter
Control Register
TCC RO + Bit 2:0 - CS02:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter.
Table 42. Clock Select Bit Description

cso02 Cso01 csoo0 Description

0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clky,o/(No prescaling)

0 1 0 clky,o/8 (From prescaler)

0 1 1 clky,/64 (From prescaler)

1
1

0 clky/256 (From prescaler)

Q
0 1 clkyq/1024 (From prescaler)

1 1 0 External clock source en TO pin. Clock on falling edge

1 1 1 External clock source en TO pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter(, transitions on the TO pin will
clock the counter even if the pin is configured as an output. This feature allows software
control of the counting

CSE 466 - Winter 2008 Interrupts 16

Timer/Counter Registers (cont’d)

Timer/Counter Register —
TCNTO

Qutput Compare Register —
OCRO

Timer/Counter Interrupt Mask
Register — TIMSK

Timer/Counter Interrupt Flag
Register - TIFR

CSE 466 - Winter 2008

Bit

Read'rite
Initial Value

Bit

Read/Write
Initial Value

Bit

Readrite

Initial Value

Bit

Read/\Write

Initial Value

7 [5 4 3 2 1 0
TCNTOLT 0] TCNTO
RIW RIW RIW RV R RV RIW RV
0 0 0 0 0 0 a 0
7 [5 4 E 2 1 0
I OCROI7:0]] ocre
RIW RIW RIW RW R RW RIW RW
0 [} 0 0 0 0 0 0

0

1
0

0

RIW
0

7 © 5 4 2 2 1
Tows) sk
R RIW R RIW RIW RIW RIW RIW
0 0 0 o 0 o 0
7 & 5 4 3 2 1
[[oc T o Tier T ocriA T GCF1B | TOVA | OCF0] ToV0]
R RV RIN =T RIW] RIW
0 0 i 0 0 i 0
Interrupts

Setting Register Values

Defined names for each register and bit

=)

=)

Set timer to clear on match
Set prescaler to 1024

TCCRO = (1<<WGMO1) | (1<<CS02) | (1<<CS00);

o Set count value to compare against

OCRO = 150;

o Set timer to interrupt when it reaches count

TIMSK = (1<<OCIEO);

CSE 466 - Winter 2008

Interrupts

Writing an Interrupt Handler in C

Set and clear interrupt enable
o sei();

a cli();

Interrupt handler

o SIGNAL(SIG_OUTPUT_COMPAREO)
{

}
Setting 1/O registers
o TCCRO = (1<<WGM01) | (1<<CS02) | (1<<CS00);
Enabling specific interrupts
o TIMSK = (1<<OCIEQ);

i++;

CSE 466 - Winter 2008 Interrupts 19

Writing an Interrupt Handler in C (cont’d)

Ensure main program sets up all registers
Enable interrupts as needed
Enable global interrupts (SEI)

Write handler routine for each enabled interrupt

o What if an interrupt occurs and a handler isn't defined?
Make sure routine does not disrupt others

o Data sharing problem

o Save any state that might be changed (done by compiler)
Re-enable interrupts upon return

o Done by compiler with RETI

CSE 466 - Winter 2008 Interrupts 20

10

Power modes

Processor can go to “sleep” and save power

Different modes put different sets of modules to sleep

o Which one to use depends on which modules are needed to
wake up processor

o Timers, external interrupts, ADC, serial communication lines, etc.
set_sleep_mode (mode);
sleep_mode ();

CSE 466 - Winter 2008 Interrupts 21

Power modes (cont’d)

MCU Control Register — The MCU Control Register contains control bits for power management
MCUCR git 7 & 5 4 3 2 1 0
[Shz] e] s] sw [ser] scw [moor [wew] meuck
ReadiWrite B RN R "W R R R B
Inifial Vaiue 0] [} 0 0 0 0 0

+ Bits 7, 5,4 - SM2..0: Sleep Mode Select Bits 2, 1, and 0

These bits select between the six available sleep modes as shown in Table 13

Table 13. Sleep Mode Select

SM2 SM1 SM0 Sleep Mode
0 o] Idle
0 a 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standhby™
1 1 1 Extended Standby!!

Note 1. Standhy mode and Extended Standby maode are only available with external erystals
or resonators.

+ Bit 6 - SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep made when the
SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is
the programmers purpose, it is recommended to write the Sleep Enable (SE) bit to one
just befare the execution of the SLEEP instruction and to clear it immediately after wak-
ing up.

CSE 466 - Winter 2008 Interrupts 22

Power modes (cont’d)

Wake up sources and active clocks

Active Clock domains Oscillators Wake-up Sources
INT2 ™I SPM

Sleep Main Clock Timer Osc. | INT1| Address | Timer(EEPROM Other
Mode lkgpy | Clke ngn| Ko | Clkupe | Clkyg, [Source Enabled | Enabled | INTO[Match F Ready | ADC| 1O
ldle X X X X X2 X X X X X X
ADC
Noise
Redu- X X X X X X X X
clion
Power (3
Down * *
Power 2) i2) 3 2)
Save X X X X X
Standby'' X X
Exten- . .
ded X2 X X2 X b X2
Standby!"
Notes: 1. External Crystal or resonator selected as clock source.

2. If AS2 bitin ASSR s set
3. Only INT2 or level interrupt INT1 and INTO

CSE 466 - Winter 2008

Interrupts

IN)
@

12

