
1

CSE 466 - Winter 2008 Microcontrollers 1

Computational hardware

Digital logic (CSE370)
Gates and flip-flops: glue logic, simple FSMs, registers
Two-level PLDs: FSMs, muxes, decoders

Programmable logic devices (CSE370, CSE467)
Field-programmable gate arrays: FSMs, basic data-paths
Mapping algorithms to hardware

Microprocessors (CSE378)
General-purpose computer
Instructions can implement complex control structures
Supports computations/manipulations of data in memory

CSE 466 - Winter 2008 Microcontrollers 2

Microprocessors

Arbitrary computations
Arbitrary control structures
Arbitrary data structures
Specify function at high-level and use compilers and debuggers

Microprocessors can lower hardware costs
If function requires too much logic when implemented with gates/FFs

Operations are too complex, better broken down as instructions
Lots of data manipulation (memory)

If function does not require higher performance of customized logic
Ever-increasing performance of processors puts more and more applications
in this category
Minimize the amount of external logic

2

CSE 466 - Winter 2008 Microcontrollers 3

Microprocessor basics

Composed of three parts
Data-path: data manipulation and storage
Control: determines sequence of actions executed in data-path

and interactions to be had with environment
Interface: signals seen by the environment of the processor

Instruction execution engine: fetch/execute cycle
Flow of control determined by modifications to program counter
Instruction classes:

Data: move, arithmetic and logical operations
Control: branch, loop, subroutine call
Interface: load, store from external memory

CSE 466 - Winter 2008 Microcontrollers 4

Microprocessor basics (cont’d)

Can implement arbitrary state machine with auxiliary
data-path

Control instructions implement state diagram
Registers and ALUs act as data storage and manipulation
Interaction with the environment through memory interface
How are individual signal wires sensed and controlled?

3

CSE 466 - Winter 2008 Microcontrollers 5

control

arithmetic

logic

unit

m

a

r

m

d

r

register

file

source bus

destination bus
source bus

Microprocessor organization

Controller
Inputs: from ALU (conditions), instruction read from memory
Outputs: select inputs for registers, ALU operations, read/write to memory

Data-path
Register file to hold data
Arithmetic logic unit to manipulate data
Program counter (to implement relative jumps and increments)

Interface
Data to/from memory (address and data registers in data path)
Read/write signals to memory (from control)

CSE 466 - Winter 2008 Microcontrollers 6

General-purpose processor

Programmed by user
New applications are developed routinely
General-purpose

Must handle a wide ranging variety of applications

Interacts with environment through memory
All devices communicate through memory data
Direct-memory access (DMA) operations
between disk and I/O devices
Dual-ported memory (e.g., display screen)
Generally, oblivious to passage of time

4

CSE 466 - Winter 2008 Microcontrollers 7

Embedded processor

Typically programmed once
by manufacturer of system

Rarely does the user load new software
Executes a single program (or a limited suite) with few
parameters
Task-specific

Can be optimized for a specific application
Interacts with environment in many ways

Direct sensing and control of signal wires
Communication protocols to environment and other devices
Real-time interactions and constraints
Power-saving modes of operation to conserve battery power

CSE 466 - Winter 2008 Microcontrollers 8

Why embedded processors?

High overhead in building a general-purpose system
Storing/loading programs
Operating system manages running of programs and access to data
Shared system resources (e.g., system bus, large memory)
Many parts

Communication through shared memory/bus
Each I/O device often requires its own separate hardware unit

Optimization opportunities
As much hardware as necessary for application

Cheaper, portable, lower-power systems
As much software as necessary for application

Doesn’t require a complete OS, get a lot done with a smaller processor
Can integrate processor, memory, and I/O devices on to a single chip

5

CSE 466 - Winter 2008 Microcontrollers 9

CPU
+

Cache
Memory

Display
(with

dual-port
video RAM)

Disk
I/O

(serial line,
keyboard,

mouse)

Network
Interface

standard interfaces

system bus

all the parts around the
processor are usually required

Typical general-purpose architecture

Sound
Interface

Narrow
performance-oriented
view

Compilers

Operating
systems

CSE 466 - Winter 2008 Microcontrollers 10

Microcontroller
(CPU+mem+…)

ROM
Special

I/O
Device
Driver

RAM
Custom

Logic

medium-speed
interactions

high-speed
interactions

low-speed
interactions

standard interface

any of the parts around the
microcontroller are optional

Typical task-specific architecture

General
Purpose

I/O
A/D-D/A

Con-
version

Timers

Feedback/control through
physical environment

diagnostic
tools

6

CSE 466 - Winter 2008 Microcontrollers 11

How does this change things?

Sense and control of environment
Processor must be able to “read”
and “write” individual wires
Controls I/O interfaces directly

Measurement of time
Many applications require precise spacing of events in time
Real-time is not the same thing as fast as possible
Reaction times to external stimuli may be constrained

Communication
Protocols must be implemented by processor
Integrate I/O device or emulate in software
Capability of using external device when necessary

CSE 466 - Winter 2008 Microcontrollers 12

Interactions with the environment

Basic processor only has address and data busses to memory
Inputs are read from memory
Outputs are written to memory
Thus, for a processor to sense/control signal wires in the
environment they must be made to appear as memory bits

How do we make wires look like memory?
How long does it take to do these things?

7

CSE 466 - Winter 2008 Microcontrollers 13

RD
WR

WAIT

ADDR

DATA

Micro-
processor

OE

IN

OUT

from environment

to data bus

read signal
decoder from address bus

Sensing external signals

Map external wire to a bit in the address space
of the processor
External register or latch buffers values coming
from environment

Map register into address space
Decoder selects register for reading

Output enable (OE) to get value on to data bus
Lets many registers use the same data bus

CSE 466 - Winter 2008 Microcontrollers 14

RD
WR

WAIT

ADDR

DATA

Micro-
processor

EN

IN

OUT

from data bus

write signal
decoderfrom address bus

to environment

Controlling external signals

Map external wire to a bit in the address space
of the processor
Connect output of memory-mapped register
to environment

Map register into address space
Decoder selects register for writing (holds value indefinitely)

Input enable (EN) to take value from data bus
Lets many registers use the same data bus

8

CSE 466 - Winter 2008 Microcontrollers 15

Time and instruction execution

Keep track of detailed timing of each instruction's execution
Highly dependent on code
Hard to use compilers
Not enough control over code generation
Interactions with caches/instruction-buffers

Loops to implement delays
Keep track of time in counters
Keeps processor busy counting and not doing other useful things

Timer
Take differences between measurements at different points in code
Keeps running even if processor is idle to save power
An independent “co-processor” to main processor

CSE 466 - Winter 2008 Microcontrollers 16

Time measurement via parallel timers

Separate and parallel counting unit(s)
Co-processor to microprocessor
Does not require microprocessor intervention
May be a simple counter or a more featured real-time clock
Alarms can be set to generate interrupts

More interesting timer units
Self reloading timers for regular interrupts
Pre-scaling for measuring larger times
Started by external events

9

CSE 466 - Winter 2008 Microcontrollers 17

Input/output events

Input capture
Record time when input event occured
Can be used in later handling of event

Output compare
Set output event to happen at a point in the future
Reactive outputs

e.g., set output to happen a pre-defined time after some input
Processor can go on to do other things in the meantime

CSE 466 - Winter 2008 Microcontrollers 18

System bus based communication

Extend address/data bus outside of chip
Use specialized devices to implement communication protocol
Map devices and their registers to memory locations
Read/write data to receive/send buffers in shared memory or device
Poll registers for status of communication
Wait for interrupt from device on interesting events

Send completed
Receive occurred

10

CSE 466 - Winter 2008 Microcontrollers 19

Support for communication protocols

Built-in device drivers
For common communication protocols

e.g., RS232, IrDA, USB, Bluetooth, etc.
Serial-line protocols most common as they require fewer pins

Serial-line controller
Special registers in memory space for interaction
May use timer unit(s) to generate timing events

For spacing of bits on signal wire
For sampling rate

Increase level of integration
No external devices
May further eliminate need for shared memory or system bus

CSE 466 - Winter 2008 Microcontrollers 20

Microcontrollers

Embedded processor with much more integrated on
same chip

Processor core + co-processors + memory
ROM for program memory, RAM for data memory, special
registers to interface to outside world
Parallel I/O ports to sense and control wires
Timer units to measure time in various ways
Communication subsystems to permit direct links to other devices

11

CSE 466 - Winter 2008 Microcontrollers 21

Microcontrollers (cont’d)

Other features not usually found in
general-purpose CPUs

Expanded interrupt handling capabilities
Multiple interrupts with priority and selective enable/disable
Automatic saving of context before handling interrupt
Interrupt vectoring to quickly jump to handlers

More instructions for bit manipulations
Support operations on bits (signal wires) rather than just words

Integrated memory and support functions for cheaper
system cost

Built-in EEPROM, Flash, and/or RAM
DRAM controller to handle refresh
Page-mode support for faster block transfers

CSE 466 - Winter 2008 Microcontrollers 22

The AVR Microcontroller Family

Memory
Density

Features

(1KB - 2KB)

(1KB- 8KB)

(16KB - 128KB)

Fully Compatib
le

12

CSE 466 - Winter 2008 Microcontrollers 23

The AVR Microcontroller Family

S1200 S2323 S2343 S2313
Pins 20 8 8 20
Flash 1 KB 2 KB 2 KB 2 KB
SRAM - 128 B 128 B 128 B
EEPROM 64 B 128 B 128 B 128 B
UART - - - 1
PWM - - - 1

tiny11 tiny12 tiny15 tiny28
Pins 8 8 8 28/32
Flash 1 KB 1 KB 1 KB 2 KB
EEPROM - 64 B 64 B -
PWMs - - 1 1
ADC - - 4@10-bit -
S

S4433 S8515 VC8534 S8535
Pins 28/32 40/44 48 40/44
Flash 4 KB 8 KB 8 KB 8 KB
SRAM 128 B 512 B 256 B 512 B
EEPROM 256 B 512 B 512 B 512 B
UART 1 1 - 1
PWM 1 2 - 2
ADC 6@10-bit - 6@10-bit 8@10-bit
RTC - - - Yes

CSE 466 - Winter 2008 Microcontrollers 24

The AVR Microcontroller Family
mega161 mega163 mega32 mega103

Pins 40/44 40/44 40/44 64
Flash 16 KB 16 KB 32 KB 128 KB
SRAM 1 KB 1 KB 2 KB 4 KB
EEPROM 512 B 512 B 1 KB 2 KB
U(S)ART 2 1 1 1
TWI 1 1 1 -
PWM 4 4 4 4
ADC - 8@10-bit 8@10-bit 8@10-bit
RTC Yes Yes Yes Yes
JTAG/OCD - - Yes -
Self Program Yes Yes Yes -
HW MULT Yes Yes Yes -
Brown Out Yes Yes Yes -

mega8 mega16 mega32 mega64 mega128
Pins 28/32 40/44 40/44 64 64
Flash 8 KB 16 KB 32 KB 64 KB 128 KB
SRAM 1 KB 1 KB 2 KB 4 KB 4 KB
EEPROM 512 B 512 B 1 KB 2 KB 4 KB
U(S)ART 1 1 1 2 2
TWI 1 1 1 1 1
PWM 3 4 4 8 8
ADC 8@10-bit 8@10-bit 8@10-bit 8@10-bit 8@10-bit
RTC Yes Yes Yes Yes Yes
JTAG/OCD - Yes Yes Yes Yes
Self Program Yes Yes Yes Yes Yes
HW MULT Yes Yes Yes Yes Yes
Brown Out Yes Yes Yes Yes Yes

13

CSE 466 - Winter 2008 Microcontrollers 25

Microcontroller we will be using

Atmel AVR Microcontroller (ATmega16) – 16 MIPS at 16 MHz
8-bit microcontroller (8-bit data, 16-bit instructions) – RISC Architecture

131 instructions (mostly single-cycle – on-chip 2-cycle multiplier)
32 general-purpose registers
Internal and external interrupts

Memory
instruction (16KB Flash memory – read-while-write)
boot ROM (512 Byte EEPROM)
data (1K static RAM)

Timers/counters
2 8-bit and 1 16-bit timer/counters with compare modes and prescalers
Real-time clock (32.768 kHz) with separate oscillator
Programmable watchdog timer

Serial communication interfaces
JTAG boundary-scan interface for programming/debugging
Programmable USART (universal synchronous/asynchronous receiver transmitter)
Two-wire serial interface (can emulate different communication protocols)
SPI serial port (serial peripheral interface)

Peripheral features
Four channels with support for pulse-width modulation
Analog-digital converter (8-channel, 10-bit)
Up to 32 general-purpose I/O pins (with interrupt support)

Six power saving modes

CSE 466 - Winter 2008 Microcontrollers 26

Why did we pick the ATmega16

Modern microcontroller
Easy to use C compiler
Better performance/power than competitors

Microchip PIC
Motorola 68HC11
Intel 80C51

Excellent support for 16-bit arithmetic operations
A lot of registers that eliminate moves to and from SRAM
Single cycle execution of most instructions
Very popular family in a variety of applications including many
sensor network platforms

14

CSE 466 - Winter 2008 Microcontrollers 27

ATMega16 Overview

CSE 466 - Winter 2008 Microcontrollers 28

ATMega16 Pinouts

15

CSE 466 - Winter 2008 Microcontrollers 29

ATmega16 Internals

CSE 466 - Winter 2008 Microcontrollers 30

General-Purpose Working Registers

32 registers
6 are special

Used for
addressing modes

Addressed in regular
memory space

Easier to use
instructions

R0
R1
R2
R3

R26
R27
R28
R29
R30
R31

Register File

X Pointer
Y Pointer
Z Pointer

XL
XH
YL
YH
ZL
ZH

16

CSE 466 - Winter 2008 Microcontrollers 31

Operations on Register/Immediate Values

One cycle register/immediate instructions

Register File

ALU

Register File

Instruction Word

ALU

subi r16,ksub r0,r1

CSE 466 - Winter 2008 Microcontrollers 32

Instruction Timing

17

CSE 466 - Winter 2008 Microcontrollers 33

The Five Memory Areas

General Purpose Register File = 32 B
Flash Program Memory = 8 KB (≤ 8 MB)
SRAM Data Memory = 1 KB (≤ 16 MB)
I/O Memory = 64 B (≤ 64 B)
EEPROM Data Memory = 512 B (≤ 16 MB)

CSE 466 - Winter 2008 Microcontrollers 34

Memory Map

18

CSE 466 - Winter 2008 Microcontrollers 35

Data SRAM −> Register File (RF)

“LD Rd,<PTR>” Load indirect
“LD Rd,<PTR>+” Load indirect with

post-increment
“LD Rd,-<PTR>” Load indirect with

pre-decrement
“LDD Rd,<PTR>+q” Load indirect with

displacement (0-63)*

* PTR =X, Y or Z

CSE 466 - Winter 2008 Microcontrollers 36

Data SRAM <− Register File (RF)

“ST <PTR>,Rd” Store indirect
“ST <PTR>+,Rd” Store indirect with

post-increment
“ST -<PTR>,Rd” Store indirect with

pre-decrement
“STD <PTR>+q,Rd” Store indirect with

displacement (0-63) *

* PTR = X, Y or Z

19

CSE 466 - Winter 2008 Microcontrollers 37

Data Transfer Program Memory −> RF

“LDI” Load a register with an
immediate value (1 Cycle) *

“LPM” Transfer a byte from program
Memory@Z to R0 (3 Cycles)

“LPM Rd,Z” Transfer a byte from program
Memory@Z to Rd (3 Cycles)

“LPM Rd,Z+” As above but with post-
increment of the Z pointer

* Works on R16 - R31

CSE 466 - Winter 2008 Microcontrollers 38

Register File −> Register File

”OUT” Transfer a byte from RF to I/O
”IN” Transfer a byte from I/O to RF

“MOV” Copy a register to another register
“MOVW” Copy a register pair to another register pair.

Aligned.

20

CSE 466 - Winter 2008 Microcontrollers 39

C-like Addressing Modes (1)

Auto Increment/Decrement:
C Source:
unsigned char *var1, *var2;
*var1++ = *--var2;
Generated code:
LD R16,-X
ST Z+,R16

CSE 466 - Winter 2008 Microcontrollers 40

C-Like Addressing Modes (2)

Indirect with displacement
Efficient for accessing arrays and structs

x_min
x_max
y_min
y_max

Z+2
Z+4
Z+6

SRAM

Z(my_square)

Struct square

{

int x_min;

int x_max;

int y_min;

int y_max;

}my_square;

21

CSE 466 - Winter 2008 Microcontrollers 41

The Status Register - SREG

I

T

H

S

V

N

Z

C

Interrupt Enable

T Flag

Half Carry

Signed Flag

Overflow Flag

Negative Flag

Zero Flag

Carry Flag

Enables Global Interrupts when Set

Source and Destination for BLD and BST

Set if an operation has half carry

Set if Signed Overflow

Set if a Result is Negative

Set if a Result is Zero

Set if an operation has Carry

Used for Signed Tests

7

0

TT Flag Source and Destination for BLD and BST

CSE 466 - Winter 2008 Microcontrollers 42

Branch on SREG Settings

I

T

H

S

V

N

Z

C

BRID

BRTC

BRHC

BRGE

BRVC

BRPL

BRNE

BRSH, BRCC

BRIE

BRTS

BRHS

BRVS

BRMI

BREQ

BRCS, BRLO

BRLT

7

0

Branches
if Bit Set

Branches
if Bit Clear

22

CSE 466 - Winter 2008 Microcontrollers 43

A Small C Function

/* Return the maximum value of a table of 16 integers */

int max(int *array)
{

char a;
int maximum=SMALLEST_NUMBER; /* this is -32768 */

for (a=0;a<16;a++)
if (array[a]>maximum)

maximum=array[a];
return (maximum);

}

CSE 466 - Winter 2008 Microcontrollers 44

AVR Assembly output

; 7. for (a=0;a<16;a++)
LDI R18,LOW(0)
LDI R19,128
CLR R22

?0001:
CPI R22,LOW(16)
BRCC ?0000

; 8. {
; 9. if (array[a]>maximum)

MOV R30,R22
CLR R31
LSL R30
ROL R31
ADD R30,R16
ADC R31,R17

LDD R20,Z+0
LDD R21,Z+1
CP R18,R20
CPC R19,R21
BRGE ?0005

; 10. maximum=array[a];
MOV R18,R20
MOV R19,R21

?0005:
INC R22
RJMP ?0001

?0000:
; 11. }
; 12. return (maximum);

MOV R16,R18
MOV R17,R19

; 13. }
RET

Code Size: 46 Bytes, Execution time: 335 cycles

R19/R18 stores maximum
R22 stores a (index of loop)
R17/R16 stores starting address of array (parameter)
R31/R30 (Z) stores pointer to element of array
R17/R16 updated with return value

23

CSE 466 - Winter 2008 Microcontrollers 45

I/O Ports General Features

Push-pull drivers
High current drive (sinks up to 40 mA)
Pin-wise controlled pull-up resistors
Pin-wise controlled data direction
Fully synchronized inputs
Three control/status bits per bit/pin

CSE 466 - Winter 2008 Microcontrollers 46

I/O Ports

24

CSE 466 - Winter 2008 Microcontrollers 47

I/O Port Configurations

3 Control/Status Bits per Pin
DDx Data Direction Control Bit
PORTx Output Data or Pull-Up Control Bit
PINx Pin Level Bit

CSE 466 - Winter 2008 Microcontrollers 48

Port is Input (Default Configuration)

DDx

PORTx

PINx Physical Pin

Pull-Up

Direction: INPUT
Pull-Up: OFF

??

0

0

25

CSE 466 - Winter 2008 Microcontrollers 49

Port is Open-Collector Input (Switch On Pull-Up)

DDx

PORTx

PINx Physical Pin

Pull-Up

Direction: INPUT
Pull-Up: ON

??

0

111

CSE 466 - Winter 2008 Microcontrollers 50

Port is Output

DDx

PORTx

PINx Physical Pin

Pull-Up

Direction: OUTPUT
Pull-Up: OFF

11

1

11

11

1

26

CSE 466 - Winter 2008 Microcontrollers 51

Sample Code from Lab 1

.include "C:\Program Files\Atmel\AVR
Tools\AvrAssembler\Appnotes\m16def.inc"

.cseg
ldi r16, 0xff
out DDRB, r16
ldi r16, 0x00
out PORTB, r16
loop:
jmp loop

CSE 466 - Winter 2008 Microcontrollers 52

Alternate Port
Functions

Generalizing
I/O ports so that
they can be used
by other I/O devices

27

CSE 466 - Winter 2008 Microcontrollers 53

I/O Port Registers

CSE 466 - Winter 2008 Microcontrollers 54

Full I/O Register Map (pg. 331)

28

CSE 466 - Winter 2008 Microcontrollers 55

Instruction Classes (pg. 333)

Arithmetic/Logic Instructions
Data Transfer Instructions
Program Control Instructions
Bit Set/Test Instructions

CSE 466 - Winter 2008 Microcontrollers 56

Arithmetic/Logical Instructions

Add Instructions
“ADD” Add Two Registers
“ADC” Add Two Registers and Carry
“INC” Increment a Register
“ADIW” Add Immediate to Word *

Subtract Instructions
“SUB” Subtract Two Registers
“SBC” Subtract with Carry Two Registers
“SUBI” Subtract Immediate from Register*
“SBCI” Subtract with Carry Immediate from Register*
“DEC” Decrement Register
“SBIW “ Subtract Immediate From Word**

Compare Instructions
“CP” Compare Two Registers
”CPC” Compare with Carry Two Registers
“CPI” Compare Register and Immediate*
“CPSE” Compare Two Registers and Skip Next Instruction if Equal

29

CSE 466 - Winter 2008 Microcontrollers 57

16-bit and 32-bit support

Carry instructions
Addition, subtraction and comparison
Register with register or immediate
Zero flag propagation

SUB R16,R24 SUBI R16,1
SBC R17,R25 SBCI R17,0

All branches can be made based on last result
Direct 16 bit instructions

Addition and subtraction of small immediates
Pointer arithmetics

CSE 466 - Winter 2008 Microcontrollers 58

Subtracting Two 16-Bit Values

R1:R0 – R3:R2 (e.g., $E104 – $E101)
Without zero-flag propagation

With zero-flag propagation

R1 R0

E1sub r0,r2 03

Z

0

sbc r1,r3 0300

E1 04 X

1 Wrong!

R1 R0

E1sub r0,r2 03

Z

0

sbc r1,r3 0300 0

E1 04 X

Correct!

30

CSE 466 - Winter 2008 Microcontrollers 59

Comparing Two 32-Bit Values

Example: Compare R3:R2:R1:R0 and R7:R6:R5:R4

cp r0,r4
cpc r1,r5
cpc r2,r6
cpc r3,r7

After last instruction, status register indicates equal,
higher, lower, greater (signed), or less than (signed)

CSE 466 - Winter 2008 Microcontrollers 60

Arithmetic/Logical Instructions (cont’d)

Multiply instructions
“MUL” 8x8 −> 16 (UxU)
“MULS” 8x8 −> 16 (SxS)*
“MULSU” 8x8 −> 16 (SxU)**

Logical Instructions
“AND” Logical AND Two Registers
“ANDI” Logical AND Immediate and Register *
“OR” Logical OR Two Registers
“ORI” Logical OR Immediate and Register *
“EOR” Logical XOR Two Registers

* Works on Registers R16 - R31
** Works on Registers R16-R23

The result is present in R1:R0.. All multiplication instructions are 2 cycles.

31

CSE 466 - Winter 2008 Microcontrollers 61

Arithmetic/Logical Instructions (cont’d)

Shift / Rotate Instructions
“LSL” Logical Shift Left
“LSR” Logical Shift Right
“ROL” Rotate Left Through Carry
“ROR” Rotate Right Through Carry
“ASR” Arithmetic Shift Right

LSR
Register Carry

0
MSB LSB

ROR

ASR

CSE 466 - Winter 2008 Microcontrollers 62

Data Transfer Instruction Types

Data SRAM <−> Register File (2)
Program Memory −> Register File (1/3)
I/O Memory <−> Register File (1)
Register File <−> Register File (1)

of Cycles

32

CSE 466 - Winter 2008 Microcontrollers 63

Data Transfer RF <−> SRAM Stack

“PUSH” PUSH a register on the stack
Decrements stack pointer by 1
Decremented by 2 when a return address is pushed on the stack

“POP” POP a register from the stack
Increments stack pointer by 1
Incremented by 2 when a return address is popped off on return

Stack grows from higher to lower memory locations
Must start after $0060 (past I/O registers)
Size of pointer varies depending on memory available

CSE 466 - Winter 2008 Microcontrollers 64

Flow Control

Unconditional Jumps
Conditional Branches
Subroutine Call and Returns

33

CSE 466 - Winter 2008 Microcontrollers 65

Unconditional Jump Instructions

“RJMP” Relative Jump *
“JMP” Absolute Jump **

* Reaches ± 2K instructions from current program location.
Reaches all locations for devices up to 8KBytes (wrapping)

** 4-Byte Instruction

CSE 466 - Winter 2008 Microcontrollers 66

Conditional Branches (Flag Set)

“BREQ” Branch if Equal
“BRSH” Branch if Same or Higher
“BRGE” Branch if Greater or Equal (Signed)
“BRHS” Branch if Half Carry Set
“BRCS” Branch if Carry Set
“BRMI” Branch if Minus
“BRVS” Branch if Overflow Flag Set
“BRTS” Branch if T Flag Set
“BRIE” Branch if Interrupt Enabled

34

CSE 466 - Winter 2008 Microcontrollers 67

Subroutine Call and Return

“RCALL” Relative Subroutine Call *
“CALL” Absolute Subroutine Call **

“RET” Return from Subroutine
“RETI” Return from Interrupt Routine

* Reaches ± 2K instructions from current program location.
Reaches all locations for devices up to 8KBytes (wrapping)

** 4-Byte Instruction

CSE 466 - Winter 2008 Microcontrollers 68

Bit Set/Clear and Bit Test Instructions

“SBR” Set Bit(s) in Register *
“SBI” Set Bit in I/O Register **
“SBRS” Skip if Bit in Register Set
“SBIS” Skip if Bit in I/O Register Set **
“CBR” Clear Bit(s) in Register *
“CBI” Clear Bit in I/O Register **
“SBRC” Skip if Bit in Register Clear
“SBIC” Skip if Bit in I/O Register Clear **

* Works on Registers R16 - R31
** Works on I/O Addresses $00 - $1F

35

CSE 466 - Winter 2008 Microcontrollers 69

Programming the ATmega16

Traditional in-system programming
In-system programmable FLASH, EEPROM, and lock bits
Programmable at all frequencies
Programmable at any value of Vcc above 2.7V
Only four pins + ground required
Requires adapter device to control programming pins

Self programming
The AVR reprograms itself without any external components
Re-programmable through any communication interface

Does not have to be removed from board
Uses existing communication ports

Critical functions still operating
device is running during programming

CSE 466 - Winter 2008 Microcontrollers 70

AVR JTAG Interface

Complies to
IEEE std 1149.1 (JTAG)
Boundary-scan
for efficient PCB test

Standard for interconnection test
All I/O pins controllable and
observable from tester

On-chip debugging
in production

AVR MCU

Bypass

Identification

Instruction

TAP
Controller

TMS
TCK

TDI TDO

36

CSE 466 - Winter 2008 Microcontrollers 71

JTAG In System Programming

The JTAG interface can be used to program the Flash
and EEPROM
Save time and production cost

No additional programming stage
Programming time independent of system clock

AVR
3rd Party

JTAG equiment

3rd Party
Software

-DOS
-DLL

-UNIX

CSE 466 - Winter 2008 Microcontrollers 72

JTAG In-Circuit Emulator

Controlled by AVR Studio
Real-Time emulation in actual silicon

Debug the real device at the target board
Talks directly to the device through
the 4-pin JTAG interface

Supports
Program and data breakpoints
Full execution control
Full I/O-view and watches

37

CSE 466 - Winter 2008 Microcontrollers 73

AVR Studio

Integrated development environment for AVR
Front end for the AVR simulator and emulators
C and assembly source level debugging
Supports third party compilers
Maintains project information
Freely available from www.atmel.com
Third-party compilers

