
1

CSE 466 - Winter 2008 Introduction 1

CSE 466 – Software for Embedded Systems

Instructors:
Gaetano Borriello

CSE 572, Hours: T 10:00-11:00, W 1:30-2:30
cse466-instructor@cs.washington.edu

Joshua Smith – Intel Research Seattle
TBD
cse466-instructor@cs.washington.edu

Teaching Assistants:
Fabian Kidarsa and Brian Mayton

CSE 003, Hours TTh 2:30-4:30
cse466-tas@cs.washington.edu

CSE 466 - Winter 2008 Introduction 2

CSE 466 – Software for Embedded Systems

Class Meeting Times and Location:
Lectures: EEB 003, MWF 12:30-1:20
Lab: CSE 003, T – Section A, 2:30-5:20

Th – Section B, 2:30-5:20

Exams
Final demo: Friday, 14 March, CSE Atrium, 12:30-1:20
Exam-I: Friday, 11 February, EEB 003, 12:30-1:20
Exam-II: take home during finals week (but only 1 hr)

Course Evaluation
Wednesday, 12 March, EEB 003, 12:30-1:20

2

CSE 466 - Winter 2008 Introduction 3

Embedded system – from the web

Definitions
A device not independently programmable by the user.
Specialized computing devices that are not deployed as general purpose computers.
A specialized computer system which is dedicated to a specific task.
An embedded system is preprogrammed to perform a narrow range of functions with minimal end user or
operator intervention.

What it is made of
Embedded systems range in size from a single processing board to systems with operating systems.
A combination of computer hardware and software, and perhaps additional mechanical or other parts,
designed to perform a dedicated function.
In some cases, embedded systems are part of a larger system or product, as is the case of an anti-lock
braking system in a car.
A specialized computer system that is part of a larger system or machine.
Typically, an embedded system is housed on a single microprocessor board with the programs stored in
ROM.
Some embedded systems include an operating system, but many are so small and specialized that the entire
logic can be implemented as a single program.

Examples
Virtually all appliances that have a digital interface -- watches, microwaves, VCRs, cars -- utilize embedded
systems.
A computer system dedicated to controlling some non-computing hardware, like a washing machine, a car
engine or a missile.
Examples of embedded systems are medical equipment and manufacturing equipment.
While most consumers aren't aware that they exist, they are extremely common, ranging from industrial
systems to VCRs and many net devices.

CSE 466 - Winter 2008 Introduction 4

What is an embedded system?

Different than a desktop system
Fixed or semi-fixed functionality (not user programmable)
Different human interfaces than screen, keyboard, mouse, audio
Usually has sensors and actuators for interface to physical world
May have stringent real-time requirements

It may:
Replace discrete logic circuits
Replace analog circuits
Provide feature implementation path
Make maintenance easier
Protect intellectual property
Improve mechanical performance

3

CSE 466 - Winter 2008 Introduction 5

What do these differences imply?

Less emphasis on
Graphical user interface
Dynamic linking and loading
Virtual memory, protection modes
Disks and file systems
Processes

More emphasis on
Real-time support, interrupts (very small OS, if we’re lucky)
Tasks (threads)
Task communication primitives
General-purpose input/output
Analog-digital/digital-analog converters
Timers
Event capture
Pulse-width modulation
Inter-device communication methods and protocols

CSE 466 - Winter 2008 Introduction 6

Examples of embedded systems

4

CSE 466 - Winter 2008 Introduction 7

What is an embedded system? (cont’d)

Figures of merit for embedded systems
Reliability – it should never crash, or crash “safely”
Safety – controls things that move and can harm/kill a person
Power consumption – may run on limited power supply
Cost – design cost, manufacturing cost, service cost
Product life cycle – maintainability, upgradeability, serviceability
Performance – real-time requirements, power budget

CSE 466 - Winter 2008 Introduction 8

Example: a temperature controller

thermister

TACH (rev/m)

SPEED (pwm)ADC0
INT0

AREF

PD6
PD0 PWM signal

Task: Tachometer (external interrupt)
now = getTime();
period = then - now; //overflow?
then = now;
return;

Task: FanPWM (periodic, hard constraint)
count++;
if (count == 0) PD6 = 1;
if (count > duty_cycle) PD6 = 0;
if (count == 255) count = 0;
return;

Task: TempControl (periodic, soft constraint)
temp = getTemp();
if (temp > setpoint) duty_cycle++;
if (temp < setpoint) duty_cycle--;
if (period<min || period>max) PD0 = 1;

Task: Main
Thi = 0;
setup timer for 1ms interrupt; // fan
setup timer for 100ms interrupt; // temp
while (1) ;

5

CSE 466 - Winter 2008 Introduction 9

Capacity

Assume:
8 MHz processor @ one instruction/cycle
Assume fan runs between 30Hz and 60Hz
Assume 256ms period on speed control PWM, with 1ms resolution.

What percent of the the available cycles are used for the
temperature controller?

[total instructions in one second] / (8MInstr/sec)

How much RAM do you need?

How much ROM?

CSE 466 - Winter 2008 Introduction 10

Resource analysis of temp controller

10 * 10 = 1002 (temp, duty_cycle)~10TempControl

10 * 1000 = 100001 (count)~10FanPWM

4 * 60 = 2403 (period, then, now)~4Tach

Instructions/SecRAMROMTask

Total Instructions/Sec = 10340, at 8MIPS, that’s only 0.13% utilization!
Other resources? global and static variables, stack

Task: Tachometer (external interrupt)
now = getTime();
period = then - now; //overflow?
then = now;
return;

Task: FanPWM (periodic, hard constraint)
count++;
if (count == 0) PD6 = 1;
if (count > duty_cycle) PD6 = 0;
if (count == 255) count = 0;
return;

Task: TempControl (periodic, soft constraint)
temp = getTemp();
if (temp > setpoint) duty_cycle++;
if (temp < setpoint) duty_cycle--;
if (period<min || period>max) PD0 = 1;

Task: Main
duty_cycle = 0;
setup timer for 1ms interrupt; // fan
setup timer for 100ms interrupt; // temp
while (1) ;

6

CSE 466 - Winter 2008 Introduction 11

What Are You Going to Learn?

Hardware
I/O, memory, busses, devices, control logic, interfacing hw to sw

Software
Lots of C and assembly, device drivers, low level OS issues
Concurrency

Software/Hardware interactions
Where to put functionality

Hardware or software
Software functions: threads, interrupt handlers

What are the costs
performance
memory requirements (RAM and/or ROM)

How to communicate
shared memory
encoding of information

CSE 466 - Winter 2008 Introduction 12

What are you going to learn? (cont’d)

Understanding of basic microcontroller architecture
Understanding of interfacing techniques
Appreciation of power management methods
Understanding of basic communication methods and protocols
Facility with a complete set of tools for design/debug
Experience implementing some real systems

7

CSE 466 - Winter 2008 Introduction 13

Class logistics – see course web

http://www.cs.washington.edu/466
expands to the current quarter
http://www.cs.washington.edu/education/courses/cse466/08wi/

Class structure
Grading
Syllabus
What we’ll be doing

CSE 466 - Winter 2008 Introduction 14

Class structure

Lecture (26)
Closely linked to laboratory assignments
Cover main concepts, introduced laboratory problems

Lab (8)
Implementation of two projects
Lab demos/reports due within 30 minutes of start of next lab section

Exams (2 – one in-class, one take-home)
Based on lectures, labs, and reading assignments

Final demo (1 – in atrium)
During last scheduled meeting – participation required

Reading and source material (medium amount)
Some assigned, most you’ll find on your own

8

CSE 466 - Winter 2008 Introduction 15

Other Matters

Lecture slides will be on line after class (links in several places)
Random lab partner assignments, changed mid-quarter
Sign up for CSE466 mailing list

CSE 466 - Winter 2008 Introduction 16

Grading

Lab reports:
Demonstration(s) required
Brief answers to questions embedded in assignment
Sometimes hand-in code
Do with your partner

Distribution:
Labs: 40%
Exams: 30% (Monday, 11 Feb and take-home during finals week)
Demo: 10%
Class and Lab Participation: 20%

9

CSE 466 - Winter 2008 Introduction 17

CSE466 Lab Projects

Two multi-week projects
Four lab assignments each
Different lab partners

First project
Familiarize with microcontroller
Learn how to interface devices to it
Build your own sensor
Test and debug
Basic communication between devices as well as devices and PC

Second project
Wireless communication (of two flavors: RF and electric field)
Embedded operating system
Real-time issues
Test and debug
Coordinated behavior among multiple devices

CSE 466 - Winter 2008 Introduction 18

CSE466 Lab Projects (cont’d)

Project 1 – a basic USB device
Platform: ATmega16 AVR microcontroller
Detect varying capacitance from proximity to hand
RGB tri-color LED to display value
Connects sensor to PC (over USB) where
calculation/averaging is performed
Result is communicated back (over USB)
to microcontroller and displayed on LED
Summary: LED pulse rate and color changes to match sensed capacitance

Sensor detects changes in capacitance due to presence/position of hand
Microcontroller interfaces to sensor converting readings to values
Communicates to PC to get smoothed value
Pulse-width modulation of multi-color LED to produce appropriate color

Past: heart-rate sensor using LED and light sensor

10

CSE 466 - Winter 2008 Introduction 19

CSE466 Lab Projects (cont’d)

Project 2 – controller for multi-player soccer
Platform: Intel iMote2 wireless sensor nodes (“motes”)
XScale processor + 802.15.4 radio + Linux
Custom UW board w/ LCD, camera, USB, mic, speaker, jog dial,
capacitance sensor, etc.
“Cell phone” functionality
(except GSM/GPRS)
Air joystick (using capacitance
sensor) to control player movement

Past: accelerometer to control via tilting

CSE 466 - Winter 2008 Introduction 20

Our platform (iMote2 + sensors + SuperBird)

