Wireless Sensor Networks

- Important trend in embedded computing
- Connecting the physical world to the world of information
 - Sensing (e.g., sensors)
 - Actuation (e.g., robotics)
- Wireless sensor networks are enabled by three trends:
 - Cheaper computation (Moore’s Law)
 - Compact sensing (MEMS sensors)
 - Wireless networking (low-power radios)

What is embedded networked sensing?

Embedded
- Control system w/ small-form factor
- Un-tethered nodes

Networked
- Exploit collaborative sensing and action

Sensing
- Tightly coupled to physical world

Exploit spatially and temporally dense, in situ, sensing and actuation
Wireless sensor networks

The Basic Idea
Applications

- Un-tethered micro sensors will go anywhere and measure anything – traffic flow, water level, number of people walking by, temperature. This is developing into something like a nervous system for the earth.
- Applications
 - Environmental sensing
 - Habitat monitoring
 - Precision agriculture
 - Military operations
 - Condition-based maintenance
 - Health care

Range of Sensor Nodes

- Large
- Medium
- Small
- Tiny

Resources
- Computation/memory
- Communication/range
- Power
- Sensors
Computation/memory

- Microprocessor
 - 8-bit microcontrollers
 - Xscale processors
 - Digital signal processors
- Memory
 - Flash for non-volatile logging of sensor data
 - Store and forward data from other nodes

Communication

- Radio communication (some infrared)
 - Power tradeoff with bandwidth
 - More power, more range, more interference
 - Less power, less range, may disconnect
- Protocol stack
 - Reliability
 - Routing
 - Naming
 - Broadcast, multicast, unicast
Power

- Battery
 - Rechargeable Li-ion, fuel cell, etc.
- Harvest from environment
 - Solar, piezo (vibration), RF energy, etc.
- Sleep
 - Minimize communication – use radio sparingly
 - What might it miss (sensing, from neighbors)?
 - How often should it communicate (stay connected to network)?
 - Minimize computation – distill data and store/send summaries
 - What info might it lose?
 - When is processing warranted (don’t waste it)?

Sensing

- Microphones
- Accelerometers
- Magnetometers
- Light sensors
- Barometric pressure
- Thermopyle
- Humidity
- Temperature
Issues

- Range and connectivity
- Localization and synchronization
- Routing protocols
- Power management
- Computation

Range and Connectivity
Range and Connectivity (cont’d)

- How do sensor nodes discover their neighbors?
 - Transitively, who can their neighbors talk to?
- What radio range to use?
 - Smaller, less power, more bandwidth (less interference)
 - Larger, more power, more interference
- What to do when nodes are really close together?
 - Let one handle region and others sleep?
- What happens when there are isolated islands?
 - Use mobile nodes?
 - Add more nodes?
- Vary transmit power?
 - Adjust to situation?
Localization and Synchronization

- **Node location is important knowledge**
 - Make decisions about which are active and which sleep
- **Need synchronized clocks**
 - Know the time an event is observed at each of multiple nodes
- **Spatial signal processing**
 - Determine location of sensed phenomena
 - Need to know relative locations for triangulation
 - Need to know time for time-of-arrival calculations

Routing Protocols

- **Getting data from one point to another**
 - Reliability of communication
 - Best effort or acknowledgements with retransmit
- **Which nodes forward data**
 - If all, then may saturate available bandwidth
 - If not enough, may not get to where it needs to go
- **Adjust as nodes are added/removed**
- **Number of hops per packet**
 - Loss at each hop
 - Power for each hop
Routing Protocols

Power Management

- Maximize lifetime of node
 - Independent power management
 - Rendezvous for communication
 - make sure both awake at the same time

- Maximize lifetime of network
 - Judiciously choose which nodes sleep
 - Wakeup to fill in for others that run out of power
Computation

- How is data processed?
 - In network – more computation
 - At edges, after it is gathered – more communication
- How much aggregation is done?
 - Summary data vs. raw data
- Pushing new computation into network
 - Security concerns
- Collaborative signal processing
 - Multiple nodes working together
- Where is data stored?
 - Can I “google” the real world?
- What is the programming model?

Application: Environmental Sensing

- Tracking a chemical cloud
- Emergency response
- Sprinkle sensors over affected area and vicinity
- Track movement of cloud and warn affected communities
Application: Habitat Monitoring

- Great Duck Island, ME
- Monitoring burrow nest and environment of petrels
- Data previously unavailable
 - Much too expensive to gather

Application: Precision Agriculture

- Monitor micro-climates throughout vineyard
- Add water, heat, and fertilizer where needed
- Cost-savings, maximum yield, customize grape
Application: Military Operations

- Sniper detection
- Vehicle tracking

Red circle: Sniper position
Red line: Shot direction
Large green circle: Sensor node (good measurement)
Small green dot: Sensor Node (no or missing measurement)

Application: Condition-based Maintenance

- Monitor structural stresses
- Data collection from vehicle driving by
- Early warning of problems
Application: Health Care

- Monitor all aspects of human activity
 - Mechanics/chemistry of body
 - Trends over time
 - Detect problems early
 - Monitor effects of medication
 - Elder care

Sensor networks are the next IT revolution

- Number crunching
- Data storage
- Personal productivity interactive
- Streaming information to/from physical world

Ultimately used in many ways not previously imagined!
A Popular Sensor Network Platform

- UC Berkeley sensor “mote”
 - ATmega 8-bit microcontroller
 - 40Kb/sec radio (433MHz)
 - 128K code, 4KB data
- Mainstay platform for the sensor network research community
- Used in CSE466 over the past three years
- Two form factors
 - Mica2
 - Dot
- Now distributed by Crossbow (xbow.com)

Platform details

- ATmega microcontroller (103L, 128)
 - 32Khz crystal and 4Mhz crystal
 - 10 bit ADC
 - 2 UARTs
 - SPI bus
 - I2C bus
 - Radio (RFM or Chipcon 1000)
- External serial flash memory (512K byte)
- Connectors for interfacing to sensor and programming boards
- 3 programmable leds (1 for dot)
- JTAG programming port
Key Design Elements

- Efficient wireless protocol primitives
- Flexible sensor interface
- Ultra-low power standby
- Very fast wakeup
- Watchdog and monitoring
- Data SRAM is critical limiting resource

A newer platform – the Intel iMote2

- Developed by Intel Research
 - 13-416MHz 32-bit PXA271
 - 64MB memory (half Flash, half RAM)
 - IEEE 802.15.4 radio
 - 250 kbits/sec (2.4GHz)
- New for CSE466 last year
- Recently available commercially
 - again from Crossbow (xbox.com)
Platform details
- Intel PXA271 XScale® at 13 – 416MHz
- Intel Wireless MMX DSP Coprocessor
- 256kB SRAM, 32MB FLASH, 32MB SDRAM
- Integrated 802.15.4 Radio and 2.4GHz Antenna
- Multi-color Status Indicator LED
- USB Client With On-board mini-BConnector and Host Adapters
- Intel Wireless MMX DSP Coprocessor
- Rich Set of Standard I/O: 3xUART, 2xSPI, I2C, SDIO, GPIOs
- Application Specific I/O: I2S, AC97, Camera Chip Interface, JTAG
- Compact Size: 36mm x 48mm x 9mm, 12g (w/o battery)

iMote2 Connectors
- UARTs, SPI, I2C
- USB
- High-speed data transfer (up to 192Mbps)
- JTAG
- SDIO
- Camera
- Power
Other iMote2 elements

- Battery board (51g – 3 AAA)
 - 4x weight and 2x volume of main board
- Interface board
 - Expands USB ports and provides JTAG interface (up to 1MB/sec per port)
- Basic sensor board
 - 5 sensors for basic applications
- Other boards
 - Intel, UW, UCLA, Yale

More detail

- In CSE466, we'll use the iMote2 base board and basic sensor board for Labs 5 and 6
iMote2 Basic Sensor Board

- ST Micro LIS3L02DQ
 3D 12 bit +/-2g accelerometer
- High Accuracy, +/-0.3°C
 Sensirion SHT15
 temperature/humidity sensor
- TAOS TSL2651 light sensor
- TI Tmp175 digital temperature sensor with two-wire interface
- Maxim MAX1363 4-channel general-purpose A/D

- We'll make use of the accelerometer and light sensors