FM synthesis examples

Basic FM

This example shows J. Chowning’s basic FM instruments with three different sets of parameters to create bell, brass and percussion (wood-drum) sounds (see Dodge & Jerse). The orchestra is based on the two-oscillator FM set-up, plus two envelope generators: for creating dynamic spectra (index envelope) and controlling the amplitude. These envelopes are created by using two oscillators reading envelope function tables. The shape of the envelope will be one of the parameters determining the output sound.

The parameters are (function table numbers refer to the numbers used in the score):

Bell
duration (DUR) = 15 seconds
carrier frequency (FC) = 200 Hz, modulator frequency (FM) = 280 Hz (FC:FM = 5:7)
max value for index of modulation (IMAX) = 10
function table (FN) 2 used for both index & amplitude envelopes

Wood-drum
DUR = 0.2 seconds
FC = 80 Hz, FM = 55 Hz
IMAX = 25
FN 3 for amplitude envelope
FN 4 for index envelope

Brass
DUR = 0.6 seconds
FC = 440 Hz, FM = 440 Hz (FC:FM = 1:1)
IMAX = 5
FN 5 for amplitude envelope

The instrument (see Dodge & Jerse for its signal flowchart):

```
instr 1

  idur = p3
  iamp = p4
  ifp = p5 ; Fc
  ifm = p6 ; Fm
  imax = p7 ; max index
  iftable1 = p8 ; time functions
  iftable2 = p9
  ifsine = 1 ; sinewave

  kamp oscil iamp, 1/idur, iftable1 ; amplitude envelope
  kndx oscil ifm*imax, 1/idur, iftable2 ; index envelope
  amod oscil kndx, ifm, ifsine ; modulator
  acar oscil kamp, ifp+amod, ifsine ; carrier

  out acar

endin
```
The score will have to define five function tables: sinewave, bell envelope, wood-drum amp envelope, wood-drum index envelope and brass envelope. We are also asking for the following p-fields (i-statement): p4 (amp), p5 (FC), p6 (FM), p7 (IMAX), p8 (FN1, amp envelope function table) and p9 (FN2, index envelope function table).

First the function tables:

Sinewave
\[f_1 0 1024 \ 10 \ 1 \ ; \ \text{sine} \]

bell exponential decay (GEN 5)
\[f_2 0 1024 \ 5 \ 1 \ 686 0.0001 338 0.0001 \]

wood-drum amp envelope, also an exponential curve (GEN 5)
\[f_3 0 1024 \ 5 \ .8 \ 204 \ 1 \ 820 \ 0.001 \]

wood-drum index envelope, linear (GEN7)
\[f_4 0 1024 \ 7 \ 1 \ 156 \ 0 \ 871 \ 0 \]

brass envelopes, a simple linear 4-segment envelope
\[f_5 0 1024 \ 7 \ 0 \ 102 \ 1 \ .75 \ 768 \ .75 \ 103 \ 0 \]

Here are the plots for the ftables 2–5:
The following i-statement will generate a bell sound (using the parameters defined above)

; dur amp fp fm imax ftable1 ftable2
i1 0 15 16000 200 280 10 2 2

This line will generate a wood-drum sound:

; dur amp fp fm imax ftable1 ftable2
i1 0 .2 16000 80 55 25 3 4

A brass-like sound can be generated with the following parameters

; dur amp fp fm imax ftable1 ftable2
i1 0 .6 16000 440 440 5 5 5

Using foscil, foscili

The FM pair is such an useful design that csound offers it as a single opcode, named foscil (and its interpolating sibling foscili):

ar foscil xamp, xcps, xcar, xmod, kndx, ifn

where xamp, xcps, ifn are amplitude, base freq and table number (as in oscil) and the extra parameters are: xcar and xmod, these define the fc:fm ratio of the synthesis, so that fc = xcar*xcps, and fm = xmod * xcps.

kndx, this is the index of modulation.

A Chowning clarinet design using foscili would look like this:
instr 1

 idur = p3
 iamp = p4 ; amp
 ifund = cpspch(p5) ; freq (converted from octave point pitch-class)
 imax = p6 ; max index
 imin = 2
 isnetab = 1
 iamptab = 2
 indxtab = 3

 kamp oscil1 0, iamp, idur, iamptab
 kndx oscil1 0, imax-imin, idur, indxtab

 aout foscili kamp, ifund, 3, 2, kndx+imin, isnetab

 out aout

endin

;score

f1 0 1024 10 1
f2 0 1025 5 0.000001 256 1 640 1 128 0.000001
f3 0 1025 5 1 256 0.000001 768 0.000001

i1 0 .5 10000 8.09 4 ; A
i1 + .5 16000 8.04 5 ; E
i1 + .5 24000 8.00 6 ; C

In this example, I also introduce two new elements of csound programming:

(a) pitch conversion: \texttt{cpspch(.)} converts octave point pitch class into Hz
 octave point pitch class is written \texttt{oct.pc} (8 is central C octave, C3, and
 pitch classes are C = 00, C#=01, D=02, D#=03, E=04, ..., A#=10,B=11.

 \textbf{6.07} is a G1
 \textbf{10.04} is E5

(b) The + sign on \texttt{p2} indicates that the start time is the sum of the previous
 start time (p2) plus its duration (p3). It only works on lines with same p1 (instrument
 number). The start times of the example above will be 0,2,4.