TinyOS — an operating system for sensor nets

Embedded operating systems

o How do they differ from desktop operating systems?
Event-based programming model

o How is concurrency handled?

o How are resource conflicts managed?
Programming in TinyOS

o What new language constructs are useful?

CSE 466 - Winter 2006 Wireless Sensor Networks 1

Embedded Operating Systems

Features of all operating systems
o Abstraction of system resources
o Managing of system resources

o Concurrency model

o Launch applications

Desktop operating systems
o General-purpose — all features may be needed
o Large-scale resources — memory, disk, file systems

Embedded operating systems
o Application-specific — just use features you need, save memory
o Small-scale resources — sensors, communication ports

o

CSE 466 - Winter 2006 Wireless Sensor Networks

System Resources on Motes

Timers

Sensors

Serial port

Radio communications
Memory

Power management

CSE 466 - Winter 2006 Wireless Sensor Networks

Abstraction of System Resources

Create virtual components

o E.g., multiple timers from one timer

Allow them to be shared by multiple threads of execution
o E.g., two applications that want to share radio communication
Device drivers provide interface for resource

Encapsulate frequently used functions

Save device state (if any)

Manage interrupt handling

(]

[m]

[m]

CSE 466 - Winter 2006 Wireless Sensor Networks 4

Very simple device driver

Turn LED on/off
Parameters:

o port pin

API:

o on(port_pin) - specifies the port pin (e.g., port D pin 3)
o off(port_pin)

Interactions:
o only if other devices want to use the same port

CSE 466 - Winter 2006 Wireless Sensor Networks

Simple device driver

Turning an LED on and off at a fixed rate
Parameters:
o port pin
o rate at which to blink LED
API:
o on(port_pin, rate)
specifies the port pin (e.g., port D pin 3)
specifies the rate to use in setting up the timer (what scale?)
o off(port_pin)
Internal state and functions:
o keep track of state (on or off for a particular pin) of each pin
o interrupt service routine to handle timer interrupt

CSE 466 - Winter 2006 Wireless Sensor Networks

Interesting interactions

What if other devices also need to use timer
(e.g., PWM device)?

o timer interrupts now need to be handled differently depending on
which device’s alarm is going off

Benefits of special-purpose output compare peripheral
o output compare pins used exclusively for one device
o output compare has a separate interrupt handling routine

What if we don’t have output compare capability or run
out of output compare units?

CSE 466 - Winter 2006 Wireless Sensor Networks 7

Sharing timers

Create a new device driver for the timer unit
o Allow other devices to ask for timer services
o Manage timer independently so that it can service multiple requests
Parameters:
o Time to wait, address to call when timer reaches that value
API:
o set_timer(time_to_wait, call_back_address)
Set call_back_address to correspond to time+time_to_wait
Compute next alarm to sound and set timer
Update in interrupt service routine for next alarm

Internal state and functions:
o How many alarms can the driver keep track of?
o How are they organized? FIFO? priority queue?

CSE 466 - Winter 2006 Wireless Sensor Networks 8

Concurrency

Multiple programs interleaved as if parallel

Each program requests access to devices/services
o e.g., timers, serial ports, etc.
Exclusive or concurrent access to devices
o allow only one program at a time to access a device (e.g., serial port)
o arbitrate multiple accesses (e.g., timer)
State and arbitration needed
o keep track of state of devices and concurrent programs using resource
o arbitrate their accesses (order, fairness, exclusivity)
o monitors/locks (supported by primitive operations in ISA - test-and-set)
Interrupts
o disabling may effect timing of programs
o keeping enabled may cause unwanted interactions

CSE 466 - Winter 2006 Wireless Sensor Networks 9

Handling concurrency

Traditional operating system

multiple threads or processes

file system

virtual memory and paging

input/output (buffering between CPU, memory, and I/O devices)
interrupt handling (mostly with 1/0O devices)

resource allocation and arbitration

command interface (execution of programs)

Embedded operating system
lightweight threads
input/output

interrupt handling

real-time guarantees

A A A

0O 0o o0 o

CSE 466 - Winter 2006 Wireless Sensor Networks 10

Embedded operating systems

Lightweight threads
o basic locks
o fast context-switches
Input/output
o API for talking to devices
o buffering
Interrupt handling (with 1/0 devices and Ul)
o translate interrupts into events to be handled by user code
o trigger new tasks to run (reactive)
Real-time issues
o guarantee task is called at a certain rate
o guarantee an interrupt will be handled within a certain time
o priority or deadline driven scheduling of tasks

CSE 466 - Winter 2006 Wireless Sensor Networks 11

Examples

Palm OS
o US Robotics Palm Pilot
o Motorola microcontrollers (68328 — Dragonball, migrating to Xscale)
o simple OS for PDAs
o only supports single threads embedded operating
Pocket PC systems typically
PDA operating system reside in ROM (flash)
spin-off of Windows NT
portable to a wide variety of processors (e.g., Xscale)
full-featured OS modularized to only include features as needed
Wind River Systems VxWorks
o one of the most popular embedded OS kernels
o highly portable to an even wider variety of processors (tiny to huge)
o modularized even further than the ones above (basic system under 50K)

| I I S]

CSE 466 - Winter 2006 Wireless Sensor Networks 12

TinyOS

Open-source development environment
Simple (and tiny) operating system — TinyOS
Programming language and model — nesC
Set of services

Principal elements

Scheduler/event model of concurrency

Software components for efficient modularity

o Software encapsulation for resources of sensor networks

=)

(]

CSE 466 - Winter 2006 Wireless Sensor Networks

TinyOS History — www.tinyos.net

Motivation — create Unix analog (circa 1969)

o Uniform programming language: C

a Uniform device abstractions

o Open source: grow with different developers/needs

o Support creation of many tools

Created at UC Berkeley

o 1st version written by Jason Hill in 2000

o Large part of development moved to Intel Research Berkeley in 2001
— www.intel-research.net/berkeley

o Smart Dust, Inc. founded in 2002

Large deployments

a Great Duck Island (GDI)
— http://www.greatduckisland.net/

o Center for Embedded Network Sensing (CENS)
— http://www.cens.ucla.edu/

CSE 466 - Winter 2006 Wireless Sensor Networks

TinyOS Design Goals

Support networked embedded systems
o Asleep most of the time, but remain vigilant to stimuli
o Bursts of events and operations
Support UCB mote hardware
o Power, sensing, computation, communication
o Easy to port to evolving platforms
Support technological advances
o Keep scaling down
o Smaller, cheaper, lower power

CSE 466 - Winter 2006 Wireless Sensor Networks 15

TinyOS Design Options

Can’t use existing RTOS’s
o Microkernel architecture
VxWorks, PocketPC, PalmOS
o Execution similar to desktop systems
PDA’s, cell phones, embedded PC'’s
o More than a order of magnitude too heavyweight and slow
o Energy hogs

CSE 466 - Winter 2006 Wireless Sensor Networks 16

TinyOS Design Conclusion

Similar to building networking interfaces
o Data driven execution
o Manage large # of concurrent data flows
o Manage large # of outstanding events
Add: managing application data processing
Conclusion: need a multi-threading engine
o Extremely efficient
o Extremely simple

CSE 466 - Winter 2006 Wireless Sensor Networks 17

TinyOS Kernel Design

Two-level scheduling structure
o Events
Small amount of processing to be done in a timely manner
E.g. timer, ADC interrupts
Can interrupt longer running tasks
o Tasks
Not time critical
Larger amount of processing
E.g. computing the average of a set of readings in an array

Run to completion with respect to other tasks
o Only need a single stack

CSE 466 - Winter 2006 Wireless Sensor Networks 18

TinyOS Concurrency Model

Tasks - -
Y e

FIFO queue

Interrupts

Two-level of concurrency: tasks and interrupts

CSE 466 - Winter 2006 Wireless Sensor Networks 19

TinyOS Concurrency Model (cont’d)

m Tasks
o FIFO queue
o Placed on queue by:
= Application
= Other tasks
= Self-queued
= Interrupt service routine
o Run-to-completion
= No other tasks can run until completed
= Interruptable, but any new tasks go to end of queue
= Interrupts
o Stop running task
o Post new tasks to queue

CSE 466 - Winter 2006 Wireless Sensor Networks 20

10

TinyOS Concurrency Model (cont’d)

Two-levels of concurrency
o Possible conflicts between interrupts and tasks

Atomic statements
atomic {

Asynchronous service routines (as opposed to
synchronous tasks)

async result_t interface_name.cmd_or_event_name {

Race conditions detected by compiler

o Can generated false positives — norace keyword to stop
warnings, but be careful

CSE 466 - Winter 2006 Wireless Sensor Networks 21

TinyOS Programming Model

Separation of construction and compaosition

a Programs are built out of components

Specification of component behavior in terms of a set of interfaces
o Components specify interfaces they use and provide

Components are statically wired to each other via their interfaces
o This increases runtime efficiency by enabling compiler optimizations
Finite-state-machine-like specifications

Thread of control passes into a component through its interfaces to
another component

CSE 466 - Winter 2006 Wireless Sensor Networks 22

11

TinyOS Basic Constructs

= Commands
o Cause action to be initiated
= Events
o Notify action has occurred
o Generated by external interrupts

o Call back to provide results
from previous command

= Tasks
a Background computation
o Not time critical

Application

command
event

Component

command
event

Hardware
Interface

task

task

//\/

task

CSE 466 - Winter 2006 Wireless Sensor Networks

23

Flow of Events and Commands

= Fountain of events leading to commands and tasks (which in turn
issue may issue other commands that may cause other events, ...)

task to get

Wan

out of async \ \ﬂ

commands

events

T interrupts

N

Software

\, Hardware

CSE 466 - Winter 2006 Wireless Sensor Networks

24

12

TinyOS File Types

= Interfaces (xxx.nc)
» Specifies functionality to outside world
» what commands can be called
» what events need handling
= Module (xxxM.nc)
» Code implementation
» Code for Interface functions
= Configuration (xxxC.nc)
o Wiring of components

o When top level app,
drop C from filename xxx.nc

main.nc

complC.nc
(wires)

comp2M.nc
(code)

comp3M.nc
(code)

CSE 466 - Winter 2006 Wireless Sensor Networks 25

The nesC Language

= nesC: networks of embedded sensors C

= Compiler for applications that run on UCB motes Ap&';go“
o Built on top of avg-gcc l
o nesC uses the filename extension ".nc* - AN
= Static Language TinyOS kernel (C) / nesC \‘
i TinyOS libs (nesC (Compiler
o No dynamic memory (no malloc) inyOs libs (nesC) _

o No function pointers
o No heap

T

Applic;tion &

= Influenced by Java TinyOS (C)
= Includes task FIFO scheduler
= Designed to foster code reuse c \
= Modules per application range from 8 to 67, mean of 24*** \compiler
= Average lines of code in a module only 120*** 2
= Advantages of eliminating monolithic programs 1 .

o Code can be reused more easily égglclﬁf:b?g

o Number of errors should decrease

**The NesC Language: A Holistic Approach to Network of Embedded Systems. David Gay, Phil Levis, Rob von Behren, Matt Welsh, Eric Brewer,
and David Culler. Proceedings of Programming Language Design and Implementation (PLDI) 2003, June 2003.

CSE 466 - Winter 2006 Wireless Sensor Networks 26

13

Commands

Commands are issued with “call”

call Timer._start(TIMER_REPEAT, 1000);

Cause action to be initiated

Bounded amount of work
o Does not block

Act similarly to a function call
o Execution of a command is immediate

CSE 466 - Winter 2006 Wireless Sensor Networks 27

Events

Events are called with “signal”

signal ByteComm.txByteReady(SUCCESS);

Used to notify a component an action has occurred
Lowest-level events triggered by hardware interrupts

Bounded amount of work
o Do not block

Act similarly to a function call
o Execution of a event is immediate

CSE 466 - Winter 2006 Wireless Sensor Networks 28

14

Tasks

Tasks are queued with “post”

post radioEncodeThread();

Used for longer running operations

Pre-empted by events
o Initiated by interrupts

Tasks run to completion
Not pre-empted by other tasks

Example tasks
o High level — calculate aggregate of sensor readings
o Low level — encode radio packet for transmission, calculate CRC

CSE 466 - Winter 2006 Wireless Sensor Networks 29

Components

Two types of components in nesC:
o Module
o Configuration

A component provides and uses Interfaces

CSE 466 - Winter 2006 Wireless Sensor Networks 30

15

Module

Provides application code

o Contains C-like code

Must implement the ‘provides’ interfaces
o Implement the “commands” it provides

o Make sure to actually “signal”

Must implement the ‘uses’ interfaces

o Implement the “events” that need to be handled
o “call” commands as needed

CSE 466 - Winter 2006 Wireless Sensor Networks 31

Configuration

* A configuration is a component that "wires" other
components together.

» Configurations are used to assemble other
components together

» Connects interfaces used by components to
interfaces provided by others.

CSE 466 - Winter 2006 Wireless Sensor Networks 32

16

Interfaces

Bi-directional multi-function interaction channel between two
components

Allows a single interface to represent a complex event

o E.g., aregistration of some event, followed by a callback

a Critical for non-blocking operation

“provides” interfaces

o Represent the functionality that the component provides to its user
o Service “commands” — implemented command functions

o Issue “events” — signal to user for passing data or signalling done
“uses” interfaces

o Represent the functionality that the component needs from a provider
o Service “events” — implement event handling

o Issue “commands” — ask provider to do something

CSE 466 - Winter 2006 Wireless Sensor Networks 33

Application

Consists of one or more components,
wired together to form a runnable program

Single top-level configuration
that specifies the set of components in the application
and how they connect to one another

Connection (wire) to main component to start execution
o Must implement init, start, and stop commands

CSE 466 - Winter 2006 Wireless Sensor Networks 34

17

Components/Wiring

Directed wire (an arrow: ‘->") connects components

o Only 2 components at a time — point-to-point

o Connection is across compatible interfaces

o ‘A<-B’isequivalentto ‘B -> A’

[component using interface] -> [component providing interface]

o [interface] -> [implementation]

‘=" can be used to wire a component directly to the top-level object’s

interfaces

a Typically used in a configuration file to use a sub-component directly
Unused system components excluded from compilation

CSE 466 - Winter 2006 Wireless Sensor Networks 35

Blink Application

What the executable does:
1. Main initializes and starts the application
2. BlinkM initializes ClockC's rate at 1Hz

3. ClockC continuously signals BlinkM
at a rate of 1 Hz

4. BlinkM commands LedsC red led
to toggle each time it receives
a signal from ClockC

tos/system/Main.nc

tos/interfaces/StdControl.nc

I

tos/interfaces/StdControl.nc

BlinkM.nc
Note: The StdControl interface
is similar to state machines (init, tos/interfaces/Timer.nc tos/interfaces/Leds.nc
start, stop); used extensively
throughout TinyOS apps & libs
toslinterfaceslSingIeTfner.nc
tos/interfaces/Timer.nc tos/interfaces/Leds.nc
tos/system/TimerC.nc tos/system/LedsC.nc
CSE 466 - Winter 2006 Wireless Sensor Networks 36

18

Blink.nc

configuration Blink {

}

implementation {
components Main, BlinkM, SingleTimer, LedsC;
Main.StdControl -> SingleTimer.StdControl;
Main.StdControl -> BlinkM.StdControl;
BlinkM_.Timer -> SingleTimer._Timer;
BlinkM.Leds -> LedsC ;

CSE 466 - Winter 2006 Wireless Sensor Networks

StdControl.nc

interface StdControl {
command result_t init();
command result_t start();
command result_t stop();

}

CSE 466 - Winter 2006 Wireless Sensor Networks

19

BlinkM.nc

BlinkM.nc module BlinkM {
provides {
interface StdControl;

}
uses { implementation {
interface Timer; command result_t StdControl.init() {
interface Leds; call Leds.initQ);
} return SUCCESS;
b 3
command result_t StdControl.start() {

3

command result_t StdControl.stop() {
return call Timer.stop();

3

event result_t Timer.fired()

call Leds.redToggle();
return SUCCESS;
3
}

return call Timer.start(TIMER_REPEAT, 1000);

CSE 466 - Winter 2006 Wireless Sensor Networks 39

SingleTimer .11C (should have been SingleTimerC.nc)

Parameterized interfaces

o allows a component to provide multiple instances of an interface that are
parameterized by a value

Timer implements one level of indirection to actual timer functions
o Timer module supports many interfaces
o This module simply creates one unique timer interface and wires it up

o By wiring Timer to a separate instance of the Timer interface provided by TimerC,
each component can effectively get its own "private" timer

o Uses a compile-time constant function unique () to ensure index is unique

configuration SingleTimer {
provides interface Timer;
provides interface StdControl;

-

mplementation {
components TimerC;

Timer = TimerC.Timer[unique('Timer')];
StdControl = TimerC ;
}

CSE 466 - Winter 2006 Wireless Sensor Networks 40

20

Blink.nc without SingleTimer

configuration Blink {

}

implementation {
components Main, BlinkM, TimerC, LedsC;
Main.StdControl -> TimerC.StdControl;
Main.StdControl -> BlinkM.StdControl;
BlinkM.Timer -> TimerC.Timer[unique("'Timer™)];
BlinkM.Leds -> LedsC ;

CSE 466 - Winter 2006 Wireless Sensor Networks 41

Timer.nc

interface Timer {
command result_t start(char type, uint32_t interval);
command result_t stop();
event result_t fired();

}

CSE 466 - Winter 2006 Wireless Sensor Networks 42

21

TimerC.nc

Implementation of multiple timer interfaces
to a single shared timer

Each interface is named
Each interface connects to one other module

CSE 466 - Winter 2006 Wireless Sensor Networks 43

Leds.nc (partial)

interface Leds {

/**
* Initialize the LEDs; among other things, initialization turns them all off.
*/

async command result_t init();

/**
* Turn the red LED on.
*/

async command result_t redOn();

/**
* Turn the red LED off.
*/

async command result_t redOff();

/**
* Toggle the red LED. If it was on, turn it off. If it was off,
* turn it on.
*/
async command result_t redToggle();

CSE 466 - Winter 2006 Wireless Sensor Networks 44

22

LedsC.nc (partial)

module LedsC {
provides interface Leds;

implementation
uint8_t ledsOn;

enum {

RED_BIT = 1,
GREEN_BIT = 2,
YELLOW_BIT = 4
}:

async command result_t Leds.init() {
atomic {
ledsOn = 0;

dbg(DBG_BOOT, "LEDS: initialized.\n");

TOSH_MAKE_RED_LED_OUTPUT();
TOSH_MAKE_YELLOW_LED_OUTPUT(Q) ;
TOSH_MAKE_GREEN_LED_OUTPUT()
TOSH_SET_RED_LED_PINQ):
TOSH_SET_YELLOW_LED_PINQ);
TOSH_SET_GREEN_LED_PIN(Q);

3
return SUCCESS;

async command result_t Leds.redOn() {
dbg(DBG_LED, "LEDS: Red on.\n");
atomic {
TOSH_CLR_RED_LED_PINQ);
ledsOn |= RED_BIT;

H
return SUCCESS;

async command result_t Leds.redOff() {
dbg(DBG_LED, "LEDS: Red off.\n");
atomic {
TOSH_SET_RED_LED_PINQ);
ledsOn &= ~RED_BIT;

3
return SUCCESS;

async command result_t Leds.redToggle() {
result_t rval;
atomic {
if (ledsOn & RED_BIT)
rval = call Leds.redOff();
else
rval = call Leds.redOn();

return rval;

CSE 466 - Winter 2006 Wireless Sensor Networks 45

Controlling the hardware in TinyOS

in tos/platform/mica2dot/hardware.h: you have

TOSH_ASSIGN_PIN(INTO, D, 0);

#define TOSH_ASSIGN_PIN(name, port, bit) \

static inline void TOSH_SET_##name##_PIN() {sbi(PORT##port , bit);} \
static inline void TOSH_CLR_##name##_PIN() {cbi(PORT##port , bit);} \
static inline int TOSH_READ_##name##_PIN() \

{return (inp(PIN##port) & (1 << bit)) 1= 0;}\

static inline void TOSH_MAKE_##name##_OUTPUT() {sbi(DDR##port , bit);} \
static inline void TOSH_MAKE_##name##_INPUT() {cbi(DDR##port , bit);}

Gives these control mechanisms:
TOSH_SET_INTO_PIN();
TOSH_CLR_INTO_PIN();
TOSH_READ_INTO_PIN();
TOSH_MAKE_INTO_OUTPUTY();
TOSH_MAKE_INTO_INPUT();

CSE 466 - Winter 2006 Wireless Sensor Networks 46

23

Blink — Compiled

1K lines of C
(another 1K lines of comments)

= ~1.5K bytes of assembly code

CSE 466 - Winter 2006

Wireless Sensor Networks 47

Blink — Compiled — a small piece

} else { rval = LedsC$Leds$redOn();

__nesc_atomic_end(__nesc_atomic); }
return rval;

unsigned char result;
result = LedsC$Leds$redToggle();
return result;

BlinkM$Leds$redToggle();
return SUCCESS;

static inline result_t LedsC$Leds$redToggle(void)

>t __nesc_atomic = __nesc_atomic_start();

if (LedsC$ledsOn & LedsC$RED_BIT) { rval = LedsC$Leds$redOff();

3
inline static result_t BlinkM$Leds$redToggle(void)

¥
static inline result_t BlinkM$Timer$fired(void)

static inline result_t LedsC$Leds$redOn(void)
{ __nesc_atomic_t __nesc_atomic = __nesc_atomic_start();

TOSH_CLR_RED_LED_PINQ);
LedsC$ledsOn |= LedsC$RED_BIT;

__nesc_atomic_end(__nesc_atomic); }
return SUCCESS;

static inline result_t LedsC$Leds$redOff(void)
{ __nesc_atomic_t __nesc_atomic = __nesc_atomic_start();

TOSH_SET_RED_LED_PINQ);
LedsC$ledsOn &= ~LedsC$RED_BIT;

__nesc_atomic_end(__nesc_atomic); }
return SUCCESS;

CSE 466 - Winter 2006

Wireless Sensor Networks 48

24

Concurrency Model

Asynchronous Code (AC)

o Any code that is reachable from an interrupt handler

Synchronous Code (SC)

o Any code that is ONLY reachable from a task

o Boot sequence

Potential race conditions

o Asynchronous Code and Synchronous Code

a Asynchronous Code and Asynchronous Code

a Non-preemption eliminates data races among tasks

nesC reports potential data races to the programmer at compile time
(new with version 1.1)

Use atomic statement when needed

async keyword is used to declare asynchronous code to compiler

CSE 466 - Winter 2006 Wireless Sensor Networks 49

Commands, Events, and Tasks

{

.ééatus = call CmdName(args)

j-- command CmdName(args) {
;éiurn status;

}

event EvtName (args) {

return status;
} {
status = signal EvtName(args)

{ .
}

post TskName(Q); ®...,

hos .".".",“ task void TskName {
} I

i--

CSE 466 - Winter 2006 Wireless Sensor Networks 50

25

Split Phase Operations

Componentl

Event or task

call command,
try again if not OK

Component2

N
V-'.\s

Command

post task and return
OK, or return busy

Event handler

Check success flag
(OK, failed, etc.)

k//

Task
task executes and
signals completion
with event

CSE 466 - Winter 2006

Wireless Sensor Networks

Phase |

« call command with parameters

« command either posts task to do
real work or signals busy and
to try again later

Phase Il

« task completes and uses event
(with return parameters) to signal
completion

« event handler checks for success
(may cause re-issue of
command if failed)

Naming Convention

Use mixed case with the first letter of word capitalized

o Interfaces (Xxx.nc)

o Components
Configuration (XxxC.nc)
Module (XxxM.nc)

o Application — top level component (Xxx.nc)

Commands, Events, & Tasks
u First letter lowercase

o Task names should start with the word “task”, commands with “cmd”,
events with “evt” or “event”

o If a command/event pair form a split-phase operation, event name should
be same as command name with the suffix “Done” or “Complete”

o Commands with “TOSH_” prefix indicate that they touch hardware directly
Variables — first letter lowercase, caps on first letter of all sub-words
Constants — all caps

CSE 466 - Winter 2006

Wireless Sensor Networks

26

Interfaces can fan-out and fan-in

nesC allows interfaces to fan-out to and fan-in from multiple components
One “provides” can be connected to many “uses” and vice versa
Wiring fans-out, fan-in is done by a combine function that merges results

implementation {
components Main, Counter, IntToLeds, TimerC;

Main.StdControl -> IntToLeds.StdControl;
Main.StdControl -> Counter.StdControl;
Main.StdControl -> TimerC.StdControl;

Fan-out by wiring result_t okl, ok2, ok3;
okl = call UARTControl.init(Q);
ok2 = call RadioControl.init();
ok3 = call Leds.init();

Fan-in using rcombine
- rcombine is just a simple | - }
logical AND for most cases | return rcombine3(okl, ok2, ok3);

CSE 466 - Winter 2006 Wireless Sensor Networks 53

Example ;onfiguration CntToLeds {

implementation {
components Main, Counter, IntToLeds, TimerC;

Main.StdControl -> IntToLeds.StdControl;
Main.StdControl -> Counter.StdControl;
Main.StdControl -> TimerC.StdControl;
Counter.Timer -> TimerC.Timer[unique("Timer)];
Counter. IntOutput -> IntToLeds. IntOutput;

M ain.nc

StdControl.nc
A

\ 4
StdControl.nc

Counter.nc

Timer.nc ‘ IntOutput.nc

% \

StdControl.nc ‘ Timer.nc IntOutput.nc ‘ StdControl.nc

TimerC.nc IntToLeds.nc

CSE 466 - Winter 2006 Wireless Sensor Networks 54

Exercise

Which of the following goes inside the module you are implementing
if we assume you are the “user” of the interface?

o NOTE: Not all of these choices are exposed through an interface.
Assume those that are not exposed are implemented in your module.

o post taskA();
o call commandB(args);
o signal eventC(args);

o taskA implementation
o commandB implementation
o eventC implementation

CSE 466 - Winter 2006 Wireless Sensor Networks 55

SCHSC ApphCﬂthIl SenseM.nc

module SenseM {
provides {
interface StdControl;
3
uses {
interface Timer;
Sense.nc interface ADC;

interface StdControl as ADCControl;

configuration Sense { interface Leds-

implemen ion }

; plementatio } cont~d
components Main, SenseM, LedsC, TimerC, DemoSensorC as Sensor;
Main.StdControl -> Sensor : configuration DemoSensorC
Main.StdControl -> TimerC : {))

Main.StdControl -> SenseM ; provides interface ADC;
provides interface StdControl;

SenseM.ADC -> Sensor ; })

SenseM.ADCControl -> Sensor : implementation

SenseM.Leds -> LedsC : {

SenseM.Timer -> TimerC.Timer[unique(" 'Timer")]; components Photo as Sensor;

3

StdControl = Sensor;
ADC = Sensor;

DemoSensorC.nc | }

CSE 466 - Winter 2006 Wireless Sensor Networks 56

28

SenseM.nc

cont’d

implementation {
/* Module scoped method. Displays the lowest 3 bits to the LEDs, with RED
being the most signficant and YELLOW being the least significant */

result_t display(uintl6_t value) {
if (value &1) call Leds.yellowOn(); else call Leds.yellowOff();
if (value &2) call Leds.greenOn(); else call Leds.greenOff(Q);
if (value &4) call Leds.redon(); else call Leds.redoffQ);
return SUCCESS;
}

command result_t StdControl.init() { return call Leds.initQ); }
command result_t StdControl.start() { return call Timer.start(TIMER_REPEAT, 500); }
command result_t StdControl.stop() { return call Timer.stop(); }

event result_t Timer.fired() { return call ADC.getData(); }

async event result_t ADC.dataReady(uintl6_t data) {
display(7-((data>>7) &0x7));
return SUCCESS;
}
3

CSE 466 - Winter 2006 Wireless Sensor Networks 57

Sense Application Using Task

SenseM.nc
module SenseTaskM {
provides {
interface StdControl;
¥
uses {
interface Timer;
SenseTask.nc interface ADC;
configuration SenseTask { } interface Leds;
} ,
implementation 3 cont”d
{

components Main, SenseTaskM, LedsC, TimerC, DemoSensorC as Sensor;

Main.StdControl -> TimerC;
Main.StdControl -> Sensor;
Main.StdControl -> SenseTaskM;

SenseTaskM.Timer -> TimerC.Timer[unique("Timer™)];
SenseTaskM.ADC -> Sensor;
SenseTaskM.Leds -> LedsC;

CSE 466 - Winter 2006 Wireless Sensor Networks 58

29

‘ SenseTaskM.nc

implementation {

enum {

¥
i
i

n
n

log2size = 3,

// log2 of buffer

size=1 << log2size, // circular buffe
sizemask=size - 1, // bit mask

t8_t head;

// head index

tl16_t rdata[size]; // circular buffe

inline void putdata(intlé_t val)

intlé_t p;
atomic {

p = head;
head = (p+1) & sizemask;
rdata[p] = val;

3

H
result_t display(uintlé_t value)

task void processData()

intlé_t i, sum=0;
atomic {

for (i=0; i<size; i++)

sum += (rdata[i] >> 7);

3
display(sum >> log2size);
command result_t StdControl.init() {

atomic head = 0;

return call Leds.init();
3
command result_t StdControl.start() {

return call Timer.start(TIMER_REPEAT, 500);
3

command result_t StdControl.stop() {
return call Timer.stop();
3

event result_t Timer.fired() {

{ return call ADC.getData();
if (value &1) call Leds.yellowOnQ); h
else call Leds.yellow0ff(); async event result_t ADC.dataReady(uintl6_t data)
if (value &2) call Leds.greenOn();
else call Leds.greenOff(); putdata(data);
it (value &4) call Leds.redOn(); post processData();
else call Leds.redOff(); return SUCCESS;
return SUCCESS; 3

3 }

CSE 466 - Winter 2006 Wireless Sensor Networks 59

‘ A More Extensive Application

c
% Route map Router Sensor Application
(s}
=
o
sl rr
Active Messages
1]
é Radio Packet| [Serial Packet Temp | | Photo
o
Lu TT [[Tt 114 Sw
W o
i% Radio Byte UART ADC
= REM Clocks
NOTE: This is NOT the radio stack we will be using
CSE 466 - Winter 2006 Wireless Sensor Networks 60

30

Tips

Make liberal use of “grep” or “find in files”

Look at example applications in the /apps directory
All interfaces are in /interfaces directory
Utilities are in /system, /lib, /platform, or /sensorboards

Try to keep commands and events very short
o Avoid loops, use queues and callbacks

CSE 466 - Winter 2006 Wireless Sensor Networks 61

Debugging

Covered in more detail in later lectures

Applications can be built to run on the PC (TOSSIM)

o Good to debug

o Does not perfectly simulate the hardware

Toggling LEDs

o Can only get so much information from 1 LED

o Useful for indicating specific events (will LED be on long enough?)
Radio packet transmit/receive

Timer fired
Sensor activation

CSE 466 - Winter 2006 Wireless Sensor Networks 62

