TinyOS — an operating system for sensor nets

Embedded operating systems

o How do they differ from desktop operating systems?
Event-based programming model

o How is concurrency handled?

o How are resource conflicts managed?
Programming in TinyOS

o What new language constructs are useful?

CSE 466 Wircless Sensor Networks

Embedded Operating Systems

= Features of all operating systems
o Abstraction of system resources
o Managing of system resources
o Concurrency model
o Launch applications

= Desktop operating systems
o General-purpose — all features may be needed
o Large-scale resources — memory, disk, file systems

= Embedded operating systems
o Application-specific — just use features you need, save memory
o Small-scale resources — sensors, communication ports

CSE 466 Wircless Sensor Networks

System Resources on Motes

Timers

= Sensors

Serial port

Radio communications
Memory

Power management

CSE 466 Wircless Sensor Networks 3

Abstraction of System Resources

= Create virtual components
o E.g., multiple timers from one timer
= Allow them to be shared by multiple threads of execution
o E.g., two applications that want to share radio communication
= Device drivers provide interface for resource
o Encapsulate frequently used functions
o Save device state (if any)
o Manage interrupt handling

CSE 466 Wircless Sensor Networks

Very simple device driver

Turn LED on/off
Parameters:
o port pin

= API:

o on(port_pin) - specifies the port pin (e.g., port D pin 3)
a off(port_pin)

Interactions:

o only if other devices want to use the same port

CSE 466 Wircless Sensor Networks

Simple device driver

= Turning an LED on and off at a fixed rate
= Parameters:
o port pin
o rate at which to blink LED
= APL:
o on(port_pin, rate)
= specifies the port pin (e.g., port D pin 3)
= specifies the rate to use in setting up the timer (what scale?)
o off(port_pin)
= Internal state and functions:
o keep track of state (on or off for a particular pin) of each pin
o interrupt service routine to handle timer interrupt

CSE 466 Wircless Sensor Networks

Interesting interactions

What if other devices also need to use timer
(e.g., PWM device)?
o timer interrupts now need to be handled differently depending on
which device’s alarm is going off

Benefits of special-purpose output compare peripheral
o output compare pins used exclusively for one device
o output compare has a separate interrupt handling routine
What if we don’t have output compare capability or run
out of output compare units?

CSE 466

Sharing timers

Create a new device driver for the timer unit
o Allow other devices to ask for timer services
o Manage timer independently so that it can service multiple requests
Parameters:
o Time to wait, address to call when timer reaches that value
API:
o set_timer(time_to_wait, call_back_address)
Set call_back_address to correspond to time+time_to_wait
Compute next alarm to sound and set timer
Update in interrupt service routine for next alarm
Internal state and functions:
o How many alarms can the driver keep track of?
o How are they organized? FIFO? priority queue?

CSE 466

Concurrency

Multiple programs interleaved as if parallel
Each program requests access to devices/services
o e.g., timers, serial ports, etc.
Exclusive or concurrent access to devices
o allow only one program at a time to access a device (e.g., serial port)
o arbitrate multiple accesses (e.g., timer)
State and arbitration needed
o keep track of state of devices and concurrent programs using resource
o arbitrate their accesses (order, fairness, exclusivity)
o monitors/locks (supported by primitive operations in ISA - test-and-set)
Interrupts
o disabling may effect timing of programs
o keeping enabled may cause unwanted interactions

CSE 466 Wircless Sensor Networks 9

Handling concurrency

Traditional operating system

multiple threads or processes

file system

virtual memory and paging

input/output (buffering between CPU, memory, and I/O devices)
interrupt handling (mostly with I/O devices)
resource allocation and arbitration
command interface (execution of programs)
Embedded operating system

lightweight threads

input/output

interrupt handling

real-time guarantees

000000 OD

o

0o o

CSE 466 Wircless Sensor Networks 0

Embedded operating systems

Lightweight threads
o basic locks
o fast context-switches
Input/output
o API for talking to devices
o buffering
Interrupt handling (with I/O devices and Ul)
o translate interrupts into events to be handled by user code
o trigger new tasks to run (reactive)
Real-time issues
o guarantee task is called at a certain rate
o guarantee an interrupt will be handled within a certain time
o priority or deadline driven scheduling of tasks

CSE 466

Examples

Palm OS

o US Robotics Palm Pilot
o Motorola microcontrollers (68328 — Dragonball, migrating to Xscale)
o simple OS for PDAs

o only supports single threads embedded operating
Pocket PC systems typically
o PDA operating system reside in ROM (flash)

o spin-off of Windows NT
o portable to a wide variety of processors (e.g., Xscale)
o full-featured OS modularized to only include features as needed
Wind River Systems VxWorks
o one of the most popular embedded OS kernels
o highly portable to an even wider variety of processors (tiny to huge)
o modularized even further than the ones above (basic system under 50K)

CSE 466

TinyOS

= Open-source development environment

= Simple (and tiny) operating system — TinyOS
= Programming language and model — nesC

= Set of services

= Principal elements
o Scheduler/event model of concurrency
o Software components for efficient modularity
o Software encapsulation for resources of sensor networks

TinyOS History — www.tinyos.net

= Motivation — create Unix analog (circa 1969)
o Uniform programming language: C
o Uniform device abstractions
o Open source: grow with different developers/needs
o Support creation of many tools
= Created at UC Berkeley
o 1st version written by Jason Hill in 2000
o Large part of development moved to Intel Research Berkeley in 2001
— www.intel-research.net/berkeley
o Smart Dust, Inc. founded in 2002
= Large deployments
o Great Duck Island (GDI)
— http://www.greatduckisland.net/
o Center for Embedded Network Sensing (CENS)
— http://www.cens.ucla.edu/

CSE 466 Wircless Sensor Networks 3

CSE 466 Wircless Sensor Networks 4

TinyOS Design Goals

= Support networked embedded systems
a Asleep most of the time, but remain vigilant to stimuli
o Bursts of events and operations
= Support UCB mote hardware
a Power, sensing, computation, communication
a Easy to port to evolving platforms
= Support technological advances
o Keep scaling down
a Smaller, cheaper, lower power

TinyOS Design Options

= Can't use existing RTOS’s
o Microkernel architecture
= VxWorks, PocketPC, PalmOS
o Execution similar to desktop systems
= PDA's, cell phones, embedded PC’s
a More than a order of magnitude too heavyweight and slow
o Energy hogs

CSE 466 Wircless Sensor Networks 5

CSE 466 Wircless Sensor Networks 16

TinyOS Design Conclusion

= Similar to building networking interfaces
o Data driven execution
o Manage large # of concurrent data flows
o Manage large # of outstanding events
= Add: managing application data processing
= Conclusion: need a multi-threading engine
o Extremely efficient
o Extremely simple

TinyOS Kernel Design

= Two-level scheduling structure
o Events
= Small amount of processing to be done in a timely manner
= E.g.timer, ADC interrupts
= Can interrupt longer running tasks
o Tasks
= Not time critical
= Larger amount of processing
= E.g. computing the average of a set of readings in an array
= Run to completion with respect to other tasks
o Only need a single stack

CSE 466 Wircless Sensor Networks 17

CSE 466 Wircless Sensor Networks 18

TinyOS Concurrency Model

Tasks ! [
s e

FIFO queue

Interrupts
!I!I!I!I!I!I!I!

Two-level of concurrency: tasks and interrupts

TinyOS Concurrency Model (cont’d)

= Tasks
o FIFO queue
o Placed on queue by:
= Application
= Other tasks
= Self-queued
= Interrupt service routine
o Run-to-completion
= No other tasks can run until completed
= Interruptable, but any new tasks go to end of queue
= Interrupts
o Stop running task
o Post new tasks to queue

CSE 466 Wire

nsor Networks i)

CSE 466

nsor Networks 20

TinyOS Concurrency Model (cont’d)

= Two-levels of concurrency
o Possible conflicts between interrupts and tasks
= Atomic statements
atomic {
o
= Asynchronous service routines (as opposed to
synchronous tasks)
async result_t interface_name.cmd _or_event_name {
o
= Race conditions detected by compiler

o Can generated false positives — norace keyword to stop
warnings, but be careful

TinyOS Programming Model

= Separation of construction and composition

o Programs are built out of components

Specification of component behavior in terms of a set of interfaces

o Components specify interfaces they use and provide

= Components are statically wired to each other via their interfaces

o This increases runtime efficiency by enabling compiler optimizations

Finite-state-machine-like specifications

= Thread of control passes into a component through its interfaces to
another component

CSE 466 Wireless Sensor Networks 21

CSE 466 Wireless Sensor Networks 22

TinyOS Basic Constructs

= Commands
o Cause action to be initiated Application task
= Events A
o Notify action has occurred
o Generated by external interrupts
o Call back to provide results

command

event

. Component task
from previous command
= Tasks L commana
o Background computation event
o Not time critical
Hardware sk
Interface s

Flow of Events and Commands

= Fountain of events leading to commands and tasks (which in turn
issue may issue other commands that may cause other events, ...)

T<\/ i tasks
task to get
out of async \ \(\/lﬁ

CSE 466

nsor Networks 23

P commands

c \
o

>

o

? interrupts Software
| \, Hardware
CSE 46 mror Networks %

TinyOS File Types

main.nc

interfaceM.nc|

= Interfaces (xxx.nc)

~ Specifies functionality to outside world

» what commands can be called

~ what events need handling
= Module (xxxM.nc)

» Code implementation

~ Code for Interface functions
= Configuration (xxxC.nc)

a Wiring of components

a When top level app,

drop C from filename xxx.nc

interfaceM.nc

app.nc
(wires)
interfaceA.nc

interfaceA.nc

comp1C.nc
(wires)
interfaceB.nc|

comp2M.nc
(code)

interfaceB.nc|

comp3M.nc
(code)

CSE 466 Wircless Sensor Networks 2

The nesC Language

= nesC: networks of embedded sensors C
= Compiler for applications that run on UCB motes
o Built on top of avg-gcc
o nesC uses the filename extension ".nc*
= Static Language
o No dynamic memory (no malloc)
o No function pointers
o No heap
Influenced by Java
= Includes task FIFO scheduler
Designed to foster code reuse

Application &
TinyOS (C)

c

Commands

= Commands are issued with “call”

call Timer.start (TIMER_REPEAT, 1000);

= Cause action to be initiated
= Bounded amount of work
o Does not block
= Act similarly to a function call
o Execution of a command is immediate

CSE 466 Wircless Sensor Networks 27

= Modules per application range from 8 to 67, mean of 24*** \Compiler
= Average lines of code in a module only 120***
= Advantages of eliminating monolithic programs .
" pplication
o Code can be reused more easily
o Number of errors should decrease
TN Hotsy 1o Networkof David Gay, Phi Levis, Rob von Befen, Matt Welsh, Eio Brever,
Proceedings of P [1) 2003, June 2003
CSE 466 Wircless Seasor Networks %
Events

= Events are called with “signal”

signal ByteComm.txByteReady (SUCCESS) ;

= Used to notify a component an action has occurred
= Lowest-level events triggered by hardware interrupts
= Bounded amount of work

o Do not block

= Act similarly to a function call
o Execution of a event is immediate

CSE 466 Wircless Sensor Networks

Tasks

= Tasks are queued with “post”

post radioEncodeThread();

= Used for longer running operations
= Pre-empted by events
o Initiated by interrupts
= Tasks run to completion
= Not pre-empted by other tasks
= Example tasks
o High level — calculate aggregate of sensor readings
o Low level — encode radio packet for transmission, calculate CRC

CSE 466 Wircless Sensor Networks 29

Components

= Two types of components in nesC:
o Module
o Configuration
= A component provides and uses Interfaces

CSE 466 Wircless Sensor Networks

Module

= Provides application code
o Contains C-like code

= Must implement the ‘provides’ interfaces
o Implement the “commands” it provides
o Make sure to actually “signal”

= Must implement the ‘uses’ interfaces
o Implement the “events” that need to be handled
o “call” commands as needed

Configuration

+ A configuration is a component that "wires" other
components together.

+ Configurations are used to assemble other
components together

+ Connects interfaces used by components to
interfaces provided by others.

CSE 466 Wircless Sensor Networks 31

CSE 466 Wireless Sensor Networks 32

Interfaces

= Bi-directional multi-function interaction channel between two
components
= Allows a single interface to represent a complex event
o E.g., aregistration of some event, followed by a callback
o Critical for non-blocking operation
= “provides” interfaces
o Represent the functionality that the component provides to its user
o Service “commands” — implemented command functions
o Issue “events” — signal to user for passing data or signalling done
= ‘uses” interfaces
o Represent the functionality that the component needs from a provider
o Service “events” — implement event handling
o Issue “commands” — ask provider to do something

Application

= Consists of one or more components,
wired together to form a runnable program

= Single top-level configuration
that specifies the set of components in the application
and how they connect to one another

= Connection (wire) to main component to start execution
o Must implement init, start, and stop commands

CSE 466 Wircless Sensor Networks

CSE 466 Wircless Sensor Networks 34

Components/Witing

= Directed wire (an arrow: ‘->’) connects components
o Only 2 components at a time — point-to-point
o Connection is across compatible interfaces
o ‘A<-B'isequivalentto 'B-> A’
= [component using interface] -> [component providing interface]
o [interface] -> [implementation]
= ‘=’ can be used to wire a component directly to the top-level object’s
interfaces
o Typically used in a configuration file to use a sub-component directly
= Unused system components excluded from compilation

Blink Application

What the executable does: tos/system/Main.nc
1. Main initializes and starts the application
2. BlinkM initializes ClockC's rate at 1Hz

tos/interfaces/StdControl.nc

3. ClockC continuously signals BlinkM I

atarate of 1 Hz tos/interfaces/StdControl.nc

4. BlinkM commands LedsC red led
to toggle each time it receives
a signal from ClockC

BlinkM.nc
Note: The StdControl interface
is similar to state machines (init, fTimer.nc eds.nc
start, stop); used extensively
throughout TinyOS apps & libs
ms/mler'aces/Smg\eTlner.nc
tos/interfaces/Timer.nc tos/interfaces/Leds.nc

tos/system/TimerC.nc: tos/system/LedsC.nc

CSE 466 Wircless Sensor Networks 3

CSE 466 Wireless Sensor Networks 36

Blink.nc

configuration Blink {

}

implementation {
components Main, BlinkM, SingleTimer, LedsC;
Main.StdControl -> SingleTimer.StdControl;
Main.StdControl -> BlinkM.StdControl;
BlinkM.Timer —> SingleTimer.Timer;
BlinkM.Leds —> LedsC ;

StdControl.nc

interface
command
command
command

StdControl {

result_t init();
result_t start();
result_t stop();

CSE 466 Wircless Sensor Networks

CSE 466 Wircless Sensor Networks 3%

BlinkM.nc

BlinkM.nc module BlinkM {
provides {
interface StdControl;

}

uses { implementation {
interface Timer; command result_t StdControl.init() {
interface Leds; call Leds.init();

} return SUCCESS;

} }

command result_t StdControl.start() {

}

command result_t StdControl.stop() {
return call Timer.stop();

}

event result_t Timer.fired()

{
call Leds.redToggle();
return SUCCESS;

return call Timer.start (TIMER_REPEAT, 1000);

CSE 466 Wircless Sensor Networks

SingleTimer.nc (should have been SingleTimerC.nc)

= Parameterized interfaces
o allows a component to provide multiple instances of an interface that are
parameterized by a value
= Timer implements one level of indirection to actual timer functions
o Timer module supports many interfaces
o This module simply creates one unique timer interface and wires it up
o By wiring Timer to a separate instance of the Timer interface provided by TimerC,
each component can effectively get its own "private” timer
o Uses a compile-time constant function unique () to ensure index is unique

configuration SingleTimer {
provides interface Timer;
provides interface StdControl;

}

implementation {
components TimerC;

Timer = TimerC.Timer [unique ("Timer")];
StdControl = TimerC ;

CSE 466 Wircless Sensor Networks 0

Blink.nc without SingleTimer

configuration Blink {

}

implementation {
components Main, BlinkM, TimerC, LedsC;
Main.StdControl —-> TimerC.StdControl;
Main.StdControl -> BlinkM.StdControl;
BlinkM.Timer —> TimerC.Timer[unique ("Timer")];
BlinkM.Leds —> LedsC ;

CSE 466 Wircless Sensor Networks

Timer.nc

interface Timer {
command result_t start(char type, uint32_t interval);
command result_t stop();
event result_t fired();

}

CSE 466 Wircless Sensor Networks 42

TimerC.nc

= Implementation of multiple timer interfaces

to a single shared timer
= Each interface is named

= Each interface connects to one other module

CSE 466 Wircless Sensor Networks 43

| Leds.nc (partial)

interface Leds {

Jax

* Initialize the LEDs; among other things, initialization turns them all off.
=/

async command result_t init();

Jax
* Turn the red LED on.
*/

async command result_t redOn();

Jax
* Turn the red LED off.
*/

async command result_t redOff();

Jax

* Toggle the red LED. If it was on, turn it off.

* turn it on.
*/
async command result_t redToggle();

If it was off,

CSE 466 Wircless Sensor Networks

LedsC.nc (partial)

module LedsC {
provides interface Leds;

implementation
uint8_t ledson;

enum {
RED_BIT = 1,
GREEN_BIT = 2,
YELLOW_BIT = 4

async command result_t Leds.init() {
atomic (

ledson = 0;
dbg (DBG_BOOT, "LEDS: initialized.\n");
TOSH_MAKE_RED_LED_OUTPUT () ;
TOSH_MAKE_YELLOW_LED_OUTPUT () ;
TOSH_MAKE_GREEN_LED_OUTPUT () ;
TOSK_SET_RED_LED_PIN
TOSK_SET_YELLOW_LED_PIN() ;
TOSH_SET_GREEN_LED_PIN();

)
return SUCCESS;

async command result_t Leds.redOn() {
dbg (DBG_LED, "LEDS: Red on.\n");

atomic (
TOSH_CLR_RED_LED_PIN () ;
ledsOn |= RED_BIT;

return SUC
}

async command result_t Leds.redOff() {
dbg (DBG_LED, "LEDS: Red off.\n");
atomic (
TOSH_SET_RED_LED_PIN () ;
ledsOn &= ~RED_BIT;

return SUCCESS;

async command result_t Leds.redToggle() {
result_t rval;
atomic {
if (ledsOn & RED_BIT)
rval = call Leds.redOff();
else
rval = call Leds.redOn();

return rval;

CSE 466 Wireless Sensor Networks 5

Blink — Compiled

1K lines of C
(another 1K lines of comments)
5K bytes of assembly code

=]

CSE 466 Wireless Sensor Networks

Blink — Compiled — a small piece

static inline result_t LedsC$Leds$redToggle (void)

1 = LedsC$Leds$radon();

__nesc_atomic_end(__n
return rval;

)

inline static result_t BlinkMSleds$redToggle (void)

c_atonic); }

__nesc_atomic = _nesc_atomic_start();

ledson & LedsCSRED_BIT) { rval = LedsCSLeds$redoff();

unsigned char result;
t = LedsCsLeds$

atoggle();

1t;

static inline Lt_t BLinkM§Timer$fired (void)

TOSH

static inline result_t LedsC$Leds$redon (void)

esc_atomic = c_atomic_start ();

LR_RED_LED_PIN();

LedsCSledson |= LedsCSRED_BIT;

c_atonic); |

t_t LedsC$Leds§redOff (void)

__nesc_atomic = _nesc_atomic_start ();

TOSH_SET_RED_LED_PIN() ;
Leds: n

= TLedsCSRED_BIT;

c_atoni.

CSE 466 Wircless Sensor Networks ki

Concurrency Model

= Asynchronous Code (AC)

o Any code that is reachable from an interrupt handler

= Synchronous Code (SC)

o Any code that is ONLY reachable from a task

o Boot sequence
= Potential race conditions

o Asynchronous Code and Synchronous Code
o Asynchronous Code and Asynchronous Code
o Non-preemption eliminates data races among tasks
= nesC reports potential data races to the programmer at compile time

(new with version 1.1)

= Use atomic statement when needed

= async keyword is used to declare asynchronous code to compiler

CSE 466 Wircless Sensor Networks

Commands, Events, and Tasks

{

status = call CmdName (args)e

) command CmdName (args) {

return status;

¥

event EvtName) (args) {

return status;

Split Phase Operations

Component1

Phase |

« call command with parameters

«command either posts task to do
real work or signals busy and

Event or task
call command,
try again if not OK

Component2

Command

} {

® status - signal EvtName(args)

{

¥

post task and return

to try again later
OK, or return busy

Phase Il

« task completes and uses event
(with return parameters) to signal
completion

Task

post TskName () ;

task void TskName {

}

¥

CSE 466 Wircless Sensor Networks 49

« event handler checks for success
(may cause re-issue of
command if failed)

Event handler k/ task executes and

signals completion
with event

Check success flag
(OK, failed, etc.)

CSE 466 Wircless Sensor Networks 50

Naming Convention

= Use mixed case with the first letter of word capitalized
o Interfaces (Xxx.nc)
o Components
= Configuration (XxxC.nc)
= Module (XxxM.nc)
o Application —top level component (Xxx.nc)
= Commands, Events, & Tasks
o First letter lowercase
o Task names should start with the word “task”, commands with “cmd”,
events with “evt” or “event”
o If a command/event pair form a split-phase operation, event name should
be same as command name with the suffix “Done” or “Complete”

o Commands with “TOSH_” prefix indicate that they touch hardware directly
= Variables — first letter lowercase, caps on first letter of all sub-words
= Constants — all caps

CSE 466 Wircless Sensor Networks 51

Interfaces can fan-out and fan-in

= nesC allows interfaces to fan-out to and fan-in from multiple components
= One “provides” can be connected to many “uses” and vice versa
= Wiring fans-out, fan-in is done by a combine function that merges results

implementation ({
components Main, Counter, IntToleds, TimerC;

Main.StdControl -> IntToLeds.StdControl;
Main.StdControl -> Counter.StdControl;
Main.StdControl -> TimerC.StdControl;

Fan-out by wiring result_t okl, ok2, ok3;
okl = call UARTControl.init();
ok2 = call RadioControl.init ();
Fanin using rcombine | O%3 = call Leds.init();

- rcombine is just a simple 2
logical AND for most cases | return rcombine3(okl, ok2, ok3);

CSE 466 Wircless Sensor Networks 52

Example configuration CntToLeds {

}
implementation {
Main, Counter, IntToleds, TimerC;

component

Counter.Timer -> TimerC.Timer [unique ("Timer")];
Counter.IntOutput -> IntToLeds.IntOutput;
}

M ain.nc

StdControl.nc

StdControl.nc

Counter.nc
Timer.nc ‘ IntOutput.nc
[stdControlnc [Timerne | [intOutput.nc | staControlnc |
‘ TimerC.nc ‘ IntToLeds.nc

CSE 466 Wircless Sensor Networks 53

Exercise

= Which of the following goes inside the module you are implementing
if we assume you are the “user” of the interface?

o NOTE: Not all of these choices are exposed through an interface.
Assume those that are not exposed are implemented in your module.

o post taskA();
o call commandB(args);
o signal eventC(args);

o taskA implementation
o commandB implementation
o eventC implementation

CSE 466 Wircless Sensor Networks 54

‘ Sense Application sewetn

module SenseM {
provides {
interface StdControl;
¥
uses {
interface Timer;

Sense.nc interface ADC;

interface StdControl as ADCControl;
configuration Sense {
) interface Leds;
implementation !
(¥ cont’d

components Main, SenseM, LedsC, TimerC, DemoSensorC as Sensor;

Main.StdControl -> Sensor i
Main.StdControl -> TimerC i
Main.StdControl -> SenseM i

configuration DemoSensorC

provides interface ADC;
provides interface StdControlj;

SenseM.ADC -> Sensor H }
SenseM.ADCControl -> Senso: 7 implementation
SenseM.Leds -> LedsC i
SenseM.Timer —-> TimerC.Timer [unique ("Timer")]; components Photo as Sensor;
¥
stdControl = Sensor;
ADC = Sensor;
DemoSensorC.nc | }

CSE 466 Wireless Sensor Networks 55

‘ SenseM.nc

cont’d
implementation {
/* Module scoped method. Displays the lowest 3 bits to the LEDs, with RED

being the most signficant and YELLOW being the least significant */

result_t display(uintl6_t value)

if (value &1) call Leds.yellowOn(); else call Leds.yellowOff();
if (value &2) call Leds.greenOn(); else call Leds.greenOff();
if (value &4) call Leds.redOn(); else call Leds.redOff();

return SUCCESS;
}

command result_t StdControl.init() { return call Leds.init(); }

command result_t StdControl.start() { return call Timer.start (TIMER_REPEAT, 500); }
command result_t StdControl.stop() { return call Timer.stop(); }

event result_t Timer.fired() { return call ADC.getData(); }

async event result_t ADC.dataReady (uint16_t data) {
display (7-((data>>7) &0x7));
return SUCCESS;

CSE 466

Sensor Networks 56

‘ Sense Application Using Task

SenseM.nc

module SenseTaskM {
provides {
interface StdControl;
¥
uses {
interface Timer;
interface ADC;
(interface Leds;

SenseTask.nc

configuration SenseTask

implementation } cont’d

{

components Main, SenseTaskM, LedsC, TimerC, DemoSensorC as Sensor;

Main.StdControl -> TimerC;
Main.StdControl -> Sensor;
Main.StdControl -> SenseTaskM;

senseTaskM.Timer —> TimerC.Timer [unique ("Timer")];
SenseTaskM.ADC -> Sensor;
senseTaskM.Leds -> LedsC;

Wireless Sensor Networks 57

‘ SenseTaskM.nc
task void proce:

Data ()
implementation ({

enum { int16_t i, sum=0;
logzsize = 3, // 1og2 of buffer| atomic {
size=1 << log2size, // circular buffe for (i=0; i<size; it+)
sizemask=size - 1, // bit mask sum 4= (rdata(i] >> 7);
b
int8_t head; // head index display(sum >> log2size);
intl6_t rdatalsize); // circular buffel

command result_t StdControl.init() {
atomic head = 0
return call Leds.init();

inline void putdata(intl6_t val)
{

intl6_t p;

atomic (command result_t StdControl.start() {
P = head; return call Timer.start (TIMER_REPEAT, 500);
head = (p+l1) & sizemask;)

rdatalp] = val; command result_t StdControl.stop() {
] return call Timer.stop();
) y

result_t display(uintl6_t value)
(

event
ret

sult_t Time
call ADC

fired() |
getData();

if (value &1) call Leds.yellowon();|
else call Leds.yellowOff(); async event result_t ADC.dataReady(uintl6_t data)
if (value §2) call Leds.greenOn(); {
else call Leds.greenOff();
if (value &4) call Leds.redon();
else call Leds.redOff();
return SUCCESS;)
i)

putdata (data);
post processbata();
return SUCCESS;

Wireless Sensor Networks 58

‘ A More Extensive Application

c
.l?; Route map Router Sensor Application
8
EITUT 0
&
: !
kel
] Temp 0
Tx sw
I HW
2
S lﬂ
B Ay
= Clocks
3
NOTE: This is NOT the radio stack we will be using
CSE 466 Wircless Sensor Networks 5

Tips

= Make liberal use of “grep” or “find in files”

= Look at example applications in the /apps directory
= All interfaces are in /interfaces directory
= Ultilities are in /system, /lib, /platform, or /sensorboards

= Try to keep commands and events very short
o Avoid loops, use queues and callbacks

CSE 466

nsor Networks G0

10

Debugging

Cover in more detail in later lectures

Applications can be built to run on the PC (TOSSIM)
o Good to debug

o Does not perfectly simulate the hardware

Toggling LEDs

o Can only get so much information from 1 LED

o Useful for indicating specific events (will LED be on long enough?):

Radio packet transmit/receive
Timer fired
Sensor activation

CSE 466 Wircless Sensor Networks 61

11

