Interfacing

= Connecting the computation capabilities of a
microcontroller to external signals
o Transforming variable values into voltages and vice-versa
o Digital and analog
= Issues
o How many signals can be controlled?
o How can digital and/or analog inputs be used to measure
different physical phenomena?
o How can digital and/or analog inputs be used to control different
physical phenomena?

CSE 466 Interfacing

Controlling and reacting to the environment

= To control or react to the environment we need to
interface the microcontroller to peripheral devices

o Microcontroller may contain specialized interfaces to sensors and
actuators

= Things we want to measure or control

o light, temperature, sound, pressure, velocity, position
= Sensors

o e.g., switches, photoresistors, accelerometers, compass, sonar
= Actuators

o e.g., motors, relays, LEDs, sonar, displays, buzzers

CSE 466 Tnterfacing z

Typical control system

physical
system

sensors actuators

controller

interfaces

CSE 466 Interfacing

Analog to digital conversion

= Map analog inputs to a range of binary values
o 8-bit A/D has outputs in range 0-255

= What if we need more information?
o linear vs. logarithmic mappings
o larger range of outputs (16-bit a/d)

1000 analog

A7\

L L A e

digital

analog

CSE 466 Interfacing 0

Logarithm of a signal

= Usually use an op-amp circuit
= Often found as a pre-amplifier to ADC circuitry
= Simple circuit to computer natural logarithm

Vin Vour =10ge (Viy)

CSE 466 Interfacing

Digital to analog conversion

= Map binary values to analog outputs (voltages)
= Most devices have a digital interface — use time to encode value
= Time-varying digital signals — almost arbitrary resolution

o pulse-code modulation (data = number or width of pulses)

o pulse-width modulation (data = duty-cycle of pulses)

o frequency modulation (data = rate at which pulses occur)

CSE 466 Interfacing 3

Pulse-width modulation

= Pulse a digital signal to get an average “analog” value
= The longer the pulse width, the higher the voltage

lOn

Pulse-width ratio = T i
average

value

Y,

. . t

toeriod

H

CSE 466 Tnterfacing

Why pulse-width modulation works

= Most mechanical systems are low-pass filters
a Consider frequency components of pulse-width modulated signal
o Low frequency components affect components
= They pass through
o High frequency components are too fast to fight inertia
= They are “filtered out”
= Electrical RC-networks are low-pass filters

o Time constant (t = RC) sets “cutoff” frequency
that separates low and high frequencies

CSE 466 Tnterfacing 8

Anti-lock brake system

= Rear wheel controller/anti-lock brake system
a Normal operation
= Regulate velocity of rear wheel
o Brake pressed
= Gradually increase amount of breaking

= [f skidding (front wheel is moving much faster than rear wheel)
then temporarily reduce amount of breaking

= Inputs
o Brake pedal
a Front wheel speed
o Rear wheel speed
= Outputs
o Pulse-width modulation rear wheel velocity
a Pulse-width modulation brake on/off

CSE 466 Interfacing 9

Rear wheel controller/anti-lock brake system

brake pedal pressed

brake on/off

front wheel velocity

move rear wheel

rear wheel velocity

CSE 466 Interfacing 0

Basic I/O ports (brakes)

= Check if brake pedal pressed — or interrupt
o brakePressed = read (brakePedalPort)

= Turn brake on/off
o write (brakePort, onOff)

= Move rear wheel
o write (rearWheel, onOff)

brake pedal pressed
brake on/off
front wheel velocity

rear wheel velocity

move rear wheel
- 7S

CSE 466 Tnterfacing 1

Polling vs. interrupts

= Software must repeatedly check
o Brake pedal port
o How often?
o Need to make sure not to forget to do so (use timer)

= Use automatic detection capability of processor
a Connect brake pedal to input capture or external interrupt pin
o Interrupt on level change
o Interrupt handler for brake pedal

brake pedal pressed

CSE 466 Tnterfacing 2

Pulse-width modulation for brakes

= To pump the brakes gradually increase the duty-cycle
(tyn) until car stops

Brake pump setup

= Use timer to turn brake on and off
o Apply brake
o Set timer to interrupt after “on” time
o Disengage brake
o Set time to interrupt after “off” time
o Repeat
= How do we tell which interrupt is which?

Let timer to go off at each edge

CSE 466 Interfacing

CSE 466 Tnterfacing 1

Brake pump setup (cont’d)

= Change value of “on” time to change analog average
o average output = (on + off) / (period)

= How do we decide on the period of the pulses?

= Using two timers
o One to set period (auto-reload)
o One to turn it off at the right duty cycle

L1 E R R
I I T T T T set timer to go off at each edge

Shaft encoders

= Need to determine the rear wheel velocity
o Use sensor to detect wheel moving
= Determine speed of a bicycle
o Attach baseball card so it pokes through spokes
o Number of spokes is known
o Count clicks per unit time to get velocity
= Baseball card sensor is a shaft encoder

e
baseball card — %‘(/

bike wheel

CSE 466 Interfacing

CSE 466 Interfacing 16

Shaft encoders

= Instead of spokes we’'ll use black and white segments
= Black segments absorb infrared light, white reflects
= Count pulses instead of clicks

wheel infrared
light
l— | emitter pulse
. ——— | detector

IR reflective patterns

= How many segments should be used?
o More segments give finer resolution
o Fewer segments require less processing
o Tradeoff resolution and processing

Ve N Sl
ZINE =" 7//1\\\

48 segments

N

///1

CSE 466 Interfacing

CSE 466 Tnterfacing 18

Interfacing shaft encoders

Use interrupt on GPIO pin

o Every interrupt, increment counter

Use timer to set period for counting

o When timer interrupts, read GPIO pin counter

o velocity = counter * “known distance per click” / “judiciously chosen period”

o Reset counter

Pulse accumulator function

a Common function

o Some microcontrollers have this in a single peripheral device

o Basically a counter controlled by an outside signal
Signal might enable counter to count at rate of internal clock — to measure time
Signal might be the counter’s clock — to measure pulses

ATmega16 has external clock source for timer/counter

o

CSE 466 Interfacing 19

General interfaces to microcontrollers

Microcontrollers come with built-in I/O devices

o Timers/counters

o GPIO

o ADC

o Ete.

Sometimes we need more . . .

Options

o Get a microcontroller with a different mix of I/O

o Get a microcontroller with expansion capability
Parallel memory bus (address and data) exposed to the outside world
Serial communication to the outside world

CSE 466 Interfacing 20

I/0 portts

The are never enough I/O ports
Techniques for creating more ports
o port sharing with simple glue logic
o decoders/multiplexors
o memory-mapped /O
0 port expansion units
Direction of ports is important
o single direction port easier to implement
o timing important for bidirectional ports

CSE 466 Interfacing 21

Port sharing

If signals all in same direction and have a separate
guard signal, then able to share without glue logic
Example: connect 5 LCD displays to microcontroller

a can share connections to RS, RW, and DB but not E

a changes on E affect display — must guarantee only one is active

=
&
£l
=1

]=
®
m

I
-
I |
FSRWDBE

CSE 466 Interfacing 22

Forced sharing

Conflict on device signals (e.g., one signal affects both)
o solution is to insert intervening registers that keep signals stable
o registers require enable signals which now need ports as well

_>
o s
g

ox

CSE 466 Interfacing

Decoders and multiplexors

Encode n single-bit device ports using log n bits of a
controller port
a enabled decoder: one-hot, input-only device ports
a registered decoder: input-only (but not one-hot) device ports
o multiplexor: output-only device ports

i

n one-hot uc fogm |
signals bits
n register

enable select lines

registered decoder

log(n)
bits

n signals

pcC

enable

enabled decoder

data n signals
uc

log(n; multiplexor

select bits

CSE 466 Interfacing 2

Memory-mapped 1/O

= Address bus selects device
= Data bus contains data

Device addr
addr = E
latch
data Da DI

CSE 466 Interfacing

Memory-mapped 1I/O

Partition the address space
= Assign memory-mapped locations
= Software
o loads read from the device
o stores write to the device
= Can exploit unused bits for device input-only ports

address
device select can be used as inputs

msb Isb

CSE 466 Interfacing 26

Port expansion units

= Problem of port shortage so common port expansion
chips exist

= Easily connect to the microprocessor
= Timing on ports may be slightly different
= May not support interrupts

addr newPortl

data port newPort2

uC .
expansion newPort3

ctrl

CSE 466 Interfacing 27

Connecting to the outside world

= Exploit specialized functions (e.g., UART, timers)

= Attempt to connect directly to a device port without adding interface
hardware (e.g., registers), try to share registers if possible but
beware of unwanted interactions if a signal goes to more than one
device

= If out of ports, must force sharing by adding hardware to make a
dedicated port sharable (e.g., adding registers and enable signals
for the registers)

= If still run out of ports, then most encode signals to increase
bandwidth (e.g., use decoders)

= If all else fails, then backup position is memory-mapped I/O, i.e.,
what we would have done if we had a bare microprocessor

CSE 466 Interfacing 24

64-bit General-purpose I/O port

= Suppose we wanted a 64-bit I/O port
= If EN is true, then we have an output pin
= If EN is false, then we have an input pin

all wires addr dec|
of addrbus 7| foren
b4
b4
one wire
of data bus n VO port pin

W
al wires laddr dec|
of addrbus 7 for out
rd

CSE 466 Interfacing

‘ 64-bit I/O port software

= We need 8 8-bit registers to store/write the 64 bits
o Select the EN addresses to be $...000 to $...007
o Select OUT addresses to be $...010 to $...017
= Read 15th bit
o load value at address $...011 (2nd set of OUT regs)
a logical AND with 0x80
a bit position 7 of result is 15th bit
= Write the 47th bit
read OUT register at $...015
set bit position 7 to desired value (or with 0x80)
store in $...015
load EN register at $...005
set bit to output
store value back to $...005

00U U0 o oo

CSE 466 Interfacing 30

External PWM Unit

= Design a system to control a digital
= Solution: design a PWM unit

“:‘57 Tegisterto hold

ue onfoff bit
Tegisterto hoid

highTime

Courter with
reset from FSM

L register to hold

peiiod

to motor

FSM
address cortraller
bus—! address
wr —# decoder || W]

CSE 466 Interfacing

External PWM FSM Controller

if (onOff == OFF)
nextState = MotorLow
reset counter

else if (period NOT Expired)
nextState = MotorLow

else if (period Expired)

nextState = MotorHigh

reset counter

Motor Low State

/

if (onOff == OFF)

nextState = MotorLow
else if (highTime Expired)
nextState = MotorLow

else if (highTime NOT Expired)

nextState = MotorHigh

Motor High State

CSE 466

External PWM software

// in initialization code
Write off to onOff register

// do some stuff
// set up PWM
Repeat for each motor
Write highTime and period registers
// turn motors on
Repeat for each motor

Write on to the onOFF register

// more stuff

CSE 466 Interfacing

Some example I/O devices

= Sonar range finder
= Compass

= IR proximity detector
= Accelerometer

= Bright LED

CSE 466

Sonar range finder

= Uses ultra-sound (not audible) to measure distance
= Time echo return
= Sound travels at approximately 343m/sec
o need at least a 34.3kHz timer for cm resolution
= One simple echo not enough
o many possible reflections
o want to take multiple readings for high accuracy

CSE 466 Interfacing

Polaroid 6500 sonar range finder

= Commonly found on old Polaroid cameras, now a frequently used

part in mobile robots
= Transducer (gold disc)

o charged up to high voltage

and “snapped”

o disc stays sentisized so it
can detect echo (acts as
microphone)

= Controller board

o high-voltage circuitry
to prepare disc for
transmitting and then
receiving

CSE 466

Polaroid 6500 sonar range finder (cont’d)

= Only need to connect two pins to microcontroller
o INIT - start transmitting
a ECHO - return signal

= Some important information

from data sheet veer |

a INIT requires large
current (greater than Prp— [E—
microcontroller can
provide — add external moear (U0 e
buffer/amplifier) e

a ECHO requires a
pull-up resistor (determine
current that needs to flow e o)
into microcontroller pin
- size resistor so proper weews e —
voltage is on pin e

w1
CSE 466 Interfacing 37

Compass

= Four compass directions (each has three pins)

= One-hot/two-hot encoding
a one-hotfor N, E, S, W
a two-hot for NE, SE, SW, NW

12v

sme 2V

680Q “
inside compass

CSE 466 Interfacing

Compass (cont’d)

= Detecting a change in compass direction
a 4 bits change from 0001 to 0011 to 0010 to 0110 to 0100 ...
o Always alternating between one bit on and two bits on
= Parity tree can detect difference between one and two bits being
asserted
o XOR tree of four bits (one TTL SSI package)
a Output must change at least once for every change in orientation
o Use interrupts to detect changes

N :j eg.,

E NE > E - SE
D 1100 - 0100 > 0110

j 0-1-0

=n

CSE 466 Interfacing

IR proximity detector

= Oscillator must be set to match detector

IR emitters 1000

micro
controller

40 KHz osc

N\

IR detector *°
GP1U52X

IR frequency modulation

Signal from LED emitter P

| 600 microseconds | 600 microseconds |
Signal from detector

CSE 466 Interfacing

Proximity code

/turn on emitter

sleep for 600us timer goes off

val_on = read detector wake

turn off emitter

sleep for 600us timer goes off

val_off = read detector wake

\return (val on & ~val off) Mostly in main
(turn on emitter Using interrupt handlers
set timer

sleep timer goes off

val_on = read detector

turn off emitter

reset timer

sleep timer goes off (again)
val_off = read detector

return (val_ on & ~val_off) |wake

CSE 466 Interfacing 42

More integrated proximity detector

= Always sending out IR
= Detector drives LED (guaranteed to match frequency)

5| 53599

Target

CSE 466 Tnterfacing 5

Accelerometer

= Micro-electro-mechanical system that measures force

o F=ma (l. Newton)

o Measured as change
in capacitance
between moving
plates

o Designed for a
maximum g-force
(e.g., 2-109)

o 2-axis and 3-axis

Spring

" Stationary ;
versions solysiico S

. . fingers
o Used in airbags, S

laptop disk drives,
etc.

CSE 466 Interfacing

Accelerometer output

= Analog output too susceptible to noise

= Digital output requires many pins for precision
= Use pulse-width modulation

= What about gravity?

CSE 466 Interfacing

Analog Devices ADXI1.202

= 2-axis accelerometer
o Set 0g at 50% duty-cycle
o Positive acceleration
increases duty cycle
o Negative acceleration avTos28v
decreases duty cycle

o 12.5% perg
in either direction

CSE 466 Interfacing

Typical measurement for ADXI.202

= Noisy data — all forces are aggregated by accelerometer
= Sample trace at 250Hz

Walking down six

flights of stairs Elevator ride

CSE 466 Tnterfacing 7

Typical signal from ADXI.202

= Cause interrupts at Ta, Tb, and Tc from X-axis output

= 1. Look for rising edge, reset counter: Ta =0

= 2. Look for falling edge, record timer: Tb = positive duty cycle

= 3. Look for rising edge, record timer, reset counter: Tc = period
= Repeat from 2

= Same for Y-axis output (T2 is the same for both axes)

| |
(e |
[PELLESN
I i

|

N R
i i
Your ‘ |
S - ‘ ‘

- 1]

CSE 466 Interfacing

What to do about noise/jitter?

Average over time — smoothing
o Software filter — like switch debouncing
= Take several readings
o use average for Tb and Tc or their ratio
Running average so that a reading is available at all
times
o e.g., update running average of 4 readings
current average = % * current average + 4 * new reading
Take readings of both Tb and Tc to be extra careful
o Tc changes with temperature
o Usually can do Tc just once

CSE 466 Interfacing 9

Built-in filter

= Filter capacitors limited noise frequency
o bandwidth limiting

FERRITE BEAD

Voo —e Voo Xourf——
Coc & ADXL202E
oM Yo
Capacitor
. w1, . Bandwidth Value
2 varl y 10 Hz 0.47 uF
Rsni_ Ver 50 Hz 0.10 uF
v 100 Hz 0.05 uF
200 Hz 0.027 yF
500 Hz 0.01 uF
5 kHz 0.001 yF

CSE 466 Interfacing 50

ADXIL.202 Output

= Accelerometer i T2 i
duty cycle
varies with force F ™ :| |
= 12.5% for each g A(g) = (T1/T2 - 0.5)12.5%
= Rggr determines 0g =50% DUTY CYCLE
duration of period T2(s) = Rggr(Q)/125MQ
= At 1g duty-cycle
will be 62.5% (37.5%) = -
1 ms 125 kQ
2 ms 250 kQ
5 ms 625 kQ
10 ms 1.25 MQ

CSE 466 Interfacing 51

ADXI.202 Orientation

= Sensitivity (maximum duty cycle change per degree) is
highest when accelerometer is perpendicular to gravity

PWM Calculations

How big a counter do you need?

Assume 7.37MHz clock

1ms period yields a count of 7370

o This fits in a 16-bit timer/counter

Should you use a prescaler for the counter?
Bit precision issues

unsigned int positive;
unsigned int period;
unsigned int pos_duty_cycle;

BAD:
pos_duty_cycle = positive/period;
BAD:
pos_duty_cycle = (positive * 1000) / period;
OKAY:
pos_duty_cycle = ((long) positive * 1000) / period;

CSE 466 Interfacing 53

x +90°
EUd
SKR= |
[1 l =
. |
BOTTOM VIEW S
o o
- I
e et
to Horizon (°) X Output (g) Tilt (mg) Y Output (g) Tilt (mg)
= 5 =5 T
& = o R
s e & e
s £ e ool
= e e i e
= e e e i
6 i e i i
i o i ol
o e e ol <
o e 5 e
. i & || S
e s . ono I <
& [i e
CSE 466 Interfacing. 52
Bright LED

= Easy to control intensity of light through pulse-width
modulation

= Duty-cycle is averaged by human eye
o Light is really turning on and off each period
o Too quickly for human retina (or most video cameras)
o Period must be short enough (< 1ms is a sure bet)

= LED output is low to turn on light, high to turn it off
o Active low output

CSE 466 Interfacing 54

)]

Sample code for LED

= Varying PWM output

volatile uint8_t width;

/* positive pusle width */
volatile uint8_t delay;

/* used to slow the pulse width changing */
SIGNAL (SIG_OVERFLOW2)
{

1if (delay++

20) { OCR2 = width++; delay = 0; }

int main (void)

/* must make OC2 pin an output for the PWM to visible */

DDRD = _BV(DDD7);

/* use Timer 2 FastPWM and the overflow interrupt to update duty-cycle
TCCR2 = _BV (WGM21) | _BV (WGM20) | _BV (COM21) | _BV(COM20) | _BV(CS21) |
TIMSK = _BV (TOIE2);

/* setup initial conditions */

delay = 0;

/* enable interrupts */

sei ()

for (i;)

{ ; /* LOOP FOREVER as the interrupt will make necessary adjustment */ }
return (0);

_BV(C520);

OCn

CSE 466 Interfacing

| Fast PWM

OCRN Interrupt Flag Set

P—
e —

P
-

TCNTn

OCn

[

ST N R RS P A R

OCRn Update and
TOVn Interrupt Flag Set

(COMN1:0=2)

(COMN1:0=3)

CSE 466 Interfacing

10

