Interrupts

Fundamental concept in computation
Interrupt execution of a program to “handle” an event

a

a

Don’t have to rely on program relinquishing control
Can code program without worrying about others

Issues

a

a

CSE 466

What can interrupt and when?

Where is the code that knows what to do?
How long does it take to handle interruption?
Can an interruption be, in turn, interrupted?

How does the interrupt handling code communicate its results?
How is data shared between interrupt handlers and programs?

Interrupts

What is an Interrupt?

Reaction to something in I/O (human, comm link)
Usually asynchronous to processor activities

“interrupt handler” or “interrupt service routine” (ISR)
invoked to take care of condition causing interrupt

Q

Q

Q

CSE 466

Change value of internal variable (count)
Read a data value (sensor, receive)
Write a data value (actuator, send)

Main Program

Instruction 1 / ISR

Instruction 2
Instruction 3
Instruction 4

Interrupts

Save state
Instruction 1
Instruction 2
Instruction 3
Restore state

Return from Interrupt

2

Interrupts

Code sample that does not interrupt
char SPI_SlaveReceive(void)

{
/* Wait for reception complete */
while(!/(SPSR & (1<<SPIF)))

/* Return data register */
return SPDR;
}

Instead of busy waiting until a byte is received the
processor can generate an interrupt when it sets SPIF
SIGNAL(SIG_SPI) {
RX_Byte = SPDR
}

CSE 466 Interrupts

Saving and Restoring Context

Processor and compiler dependent

Where to find ISR code?

o Different interrupts have separate ISRs

Who does dispatching?
o Direct
Different address for each interrupt type
Supported directly by processor architecture
o Indirect
One top-level ISR
Switch statement on interrupt type
o A mix of these two extremes?

CSE 466 Interrupts

Saving and Restoring Context

How much context to save?

o Registers, flags, program counter, etc.

o Save all or part?

o Agreement needed between ISR and program

Where should it be saved?

o Stack, special memory locations, shadow registers, etc.

o How much room will be needed on the stack?

o Nested interrupts may make stack reach its limit — what then?

Restore context when ISR completes

CSE 466 Interrupts 5

Ignoring Interrupts

Can interrupts be ignored?

o It depends on the cause of the interrupt

o No, for nuclear power plant temperature warning

o Yes, for keypad on cell phone (human timescale is long)

When servicing another interrupt
o Ignore others until done
o Can't take too long — keep ISRs as short as possible
Just do a quick count, or read, or write — not a long computation
Interrupt disabling
o Will ignored interrupt “stick”?
Rising edge sets a flip-flop
o Or will it be gone when you get to it?
Level changes again and its as if it never happened
o Don’t forget to re-enable

CSE 466 Interrupts 6

Prioritizing Interrupts

When multiple interrupts happen simultaneously
o Which is serviced first?

o Fixed or flexible priority?

Priority interrupts

o Higher priority can interrupt

o Lower priority can’t

Maskable interrupts

o “don’t bother me with that right now”

o Not all interrupts are maskable, some are non-maskable

CSE 466 Interrupts

Interrupts in the ATmegal6

External interrupts
o From I/O pins of microcontroller

Internal interrupts

o Timers
Output compare
Input capture
Overflow

o Communication units
Receiving something
Done sending

o ADC
Completed conversion

CSE 466 Interrupts

Interrupt Jump Vector Table

Address Labels Code Commenta
000 jmp RESET ; Eeset Handler
so02 jmp EXT_INTO ; IRQ0 Handler
§004 jmp EXT_INTL ; IRJL Handler
. . 5006 jmp TIM2_COME ; Timerz Compars Handler
leed |OCat|On F008 Jop TIMz:D'v'F 7 Timerz cwerflow Handler
. . 5008 jmp TIML_CRET ; Timerl Capturs Handler
in memory to find oo TO CwEA) Tisert Camareh Hamier
. . . 5008 jmp TIML_COMER ; Timerl ComparsE Handler
flrst Instructlon for 010 imp TIML_CVF ; Timerl cwerflow Handler
q012 imp TIMI_OVF ; Timerd Overflow Handler
eaCh type Of §014 jmp SPI_STC 1 8PI Transfer Complete Handler
. 5016 mp USART_RXC ; USART RX Cocmplete Handlsr
|nte rru pt 5018 jmp USART_ULRE ; UDR Empty Handler
401a imp USART_TXC ; USART TX Ccmplete Handler
O | f s01e iop ADC ; ADC Conversion Complete Handler
n y room or One §01E jmp EE_ROY ; EEPROM Ready Handler
H t t' §020 mp ANA_COME ; analog Comparator Handlsr
Instruction 5022 jmp TSI ; Two-wire Serial Interfacs Handler
. 5024 mp EXT_INT2 ; IRQZ Handler
2 JMP to location 20 Sl .
of Com plete ISR goz3 jmp SEM_RDY ; Stors Program Memory Ready Handler
oz RESET: 141 ris,high(RAMEND} ; Mailn program start
§0zE cut SPH, 1S ; Set Stack Fointer to top of RAM
gozc 1di r1s, low(RAMEND)
o020 out ZPL,rlé
§02E 221 ; Enable interrupts
402F <inatra xmx
CSE 466 Interrupts 9

Chain of Events on Interrupt

Finish executing current instruction
Disable all interrupts
Push program counter on to stack

Jump to interrupt vector table
Jump to start of complete ISR
Save any context that ISR may otherwise change

o Registers and flags must be saved within ISR and restgréd before it
returns — this is very important!
Re-enable interrupts if nested interrupts are ok

Complete ISR’s code
Re-enable interrupts upon return
Jump back to next instruction before interruption

Compiler

CSE 466 Interrupts 10

Shared Data Problem

When you use interrupts you create the opportunity for
multiple sections of code to update a variable.

This might cause a problems in your logic if an interrupt
updates a variable between two lines of code that are
directly dependent on each other (e.g. if statement)

One solution is to create critical sections where you
disable the interrupts for a short period of time while you
complete your logic on the shared variable

cli();
..... critical section code goes here.....
sei();
CSE 466 Interrupts 11

External Interrupts

General Interrupt Control

Register - GICR Bt 7 & 5 4 3 2 1 u
w1 [weer [wee] o

ReadVirte ™ iy 3 T "

Il Ve 0 0 0 0 0 0 0 0

Special pins: INTO, INT1, INT2

o Can interrupt on edge or level

Can interrupt even if set to be output pins
o Implements “software interrupts” by setting output

MCU Control Register — The MCU Centrol Register contains control bits for interrupt sense control and general
MCUCR MCU functions.
Bit 7 [5 4 3 2 1 0
[sM2 | SE_| SM1 | SMO] ISC1i | ISC10_| ISCOT | ISC00] MCUCR
ReadWrite W R =] R G RN R RV
nitial Value [[0] a 0 0 0
ISC11 ISC10 Description
[u] 1] The low level of INT1 generates an interrupt request.
o 1 Any logical change on INT1 generates an interrupt request.
1 1] The falling edge of INT1 generates an interrupt request.
1 1 The rizing edge of INT1 generates an interrupt request.

CSE 466 Interrupts 12

Closer Look at a Timer/Counter

Timer0/Counter0Q

o Clear timer on compare match (auto reload)
o Prescaler (divide clock by up to 1024)
o Overflow and compare 4
match interrupts — > |
o Registers
Configuration e comottone —
Count value ‘—L ﬂ*_-—
Output compare value Yy ~—
| PR Lt —
% 0xFF Um';qew
CSE 466 Interrupts 13
Timer/Counter Registers

Timer/Counter
Control Register
TCCRO

* Bit 7 - FOCO: Force Output Compare

The FOCO bit is only active when the WGMOO bit specifies a non-PWM mode. However
for ensuring compatibility with future devices, this bit must be set to zero when TCCRO is
written when operating in PWM mode. When writing a logical one to the FOCO bit, an
immediate compare match is forced on the Waveform Generation unit. The OCO output
is changed according to its COMO01:0 bits setting. Note that the FOCO bit is implemented
as a strobe. Therefore it is the value present in the COMO01:0 bits that determines the
effect of the forced compare

A FOCO strobe will not generate any interrupt, nor will it clear the timer in CTC mode
using OCRO as TOP.

The FOCO bit is always read as zero.

* Bit 6, 3 - WGMO01:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum
(TOP) counter value, and what type of Waveform Generation to be used. Modes of
operation supported by the Timer/Counter unit are: Normal mode, Clear Timer on Com-
pare Match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes. See
Table 38 and “Modes of Operation” on page 74

Table 38. Waveform Generation Mode Bit Description”

WGMO01 | WGM00 | Timer/Counter Mode Update of | TOVO Flag
Mode | (CTCO) | (PWMO) | of Operation TOP OCRO Set-on
0 0 0 Normal OxFF Immediate | MAX
1 o 1 PWM, Phase Correct 0xFF TOP BOTTOM
2 1 0 CcTC OCRO | Immediate | MAX
3 1 1 Fast PWM OxFF | TOP MAX
Note: 1. The CTCO and PWMO bit definition names are now obsolete. Use the WGMO01:0 def-

initions. However, the functionality and location of these bits are compatible with
previous versions of the timer.

CSE 466 Interrupts

14

Timer/Counter Registers (cont’d)

Timer/Counter
Control Register
TCCRO
+ Bit 5:4 - COMO01:0: Compare Match Output Mode

These bits cantrol the Output Compare pin (OCO) behavior. If one or both of the
COMO1:0 bits are set, the OCD output overrides the normal port functionality of the /O
pin it is connected to. However, note that the Data Direction Register (DDR) bit corre-
sponding to the OCO pin must be set in order to enable the output driver.

When OCO is connected to the pin, the function of the COMO01:0 bits depends on the
WGMO1:0 bit setting. Table 39 shows the COMO1:0 bit functionality when the WGMO01:0
hits are set to a normal or CTC mode (non-PWM).

Table 39. Compare Qutput Mode, non-PWM Mode

cOoMo1 COMOo0o Description
0 0 Normal port operation, OCO disconnected.
0 1 Toggle OCO on compare match
1 0 Clear OCO on compare match
1 1 Set OCO on compare match

CSE 466 Interrupts 15

Timer/Counter Registers (cont’d)

Timer/Counter
Control Register
TCC RO + Bit 2:0 - CS02:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter
Table 42. Clock Select Bit Description

cso02 cso1 CS00 | Description

0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clkyo/(No prescaling)

0 1 0 clkyq/8 (From prescaler)

0 1 1 clk,/64 (From prescaler)

1 0 0 clky/256 (From prescaler)
0

1 1 clkyn/1024 (From prescaler)

1 1 0 External clock source on TO pin. Clock on falling edge.

1 1 1 External clock source on TO pin. Clock on rising edge.

If external pin modes are used for the Timer/CounterQ, transitions on the TO pin will
clock the counter even if the pin is configured as an output. This feature allows software
control of the counting

CSE 466 Interrupts 16

Timer/Counter Registers (cont’d)

Timer/Counter Register —

TCNTO Bit 7 6 5 4 3 2 1 0
TONTOLT 0] TCNTO
Read/Write RIW RIW AW RIW AW RV RIW RV
Initial Value 0 0 0 [0 [0 [

Output Compare Register —

OCRO Bit 7 6 5 4 3 2 1 0
GCROL7:0] OCRO
Read/Write RIW RV RV RIW AW RO RIW RO
Inifial Value 0 0 0 [0 [0 [

Timer/Counter Interrupt Mask
Register - TIMSK Bit

7 6 5 4 3 2 1 0
m ‘ TICIE1 OCIE1A | OCIE1B TOIE1 OCE] TOIED I TIMSK
Read/Write RW RIW RW RW RW RIW RW RAW
Initial Value] 0 0 0] 0] 0
Timer/Counter Interrupt Flag
Register - TIFR Bit 7 5 5 4 3 2 1 0
[[cc= o T e T ocria T ocris [Tovi T ocro] Tow TIFR
Read/Write RW RIW RIW RW RW RIW RiW RW
Initial Value o 0 0 0 0 0 0 0
CSE 466 Interrupts 17

Setting Register Values

Defined names for each register and bit
o Set timer to clear on match
o Set prescaler to 1024

TCCRO = (1<<WGMO01) | (1<<CS02) | (1<<CS00);
o Set count value to compare against

OCRO = 150;

o Set timer to interrupt when it reaches count

TIMSK = (1<<OCIEO);

CSE 466 Interrupts 18

Writing an Interrupt Handler in C

Set and clear interrupt enable

o sei();

o cli();

Interrupt handler

2 SIGNAL(SIG_OUTPUT_COMPAREO)
{

}
Setting I/O registers
2 TCCRO = (1<<WGMO01) | (1<<CS02) | (1<<CS00);
Enabling specific interrupts
o TIMSK = (1<<OCIE0);

i++;

CSE 466 Interrupts

Switch Debouncing

10

A Switch is Pressed, So What???

5V V Problem: Switch Bounce
5 I
VS
0 — = t
Initial Finally
Connection Contact Closed
—— _ J
— e
Typically 10-20ms
CSE 466 Interrupts 21
Debouncing

When a switch (any type) changes state (on ->
off or off -> on), it presents a mechanical
bouncing which generates a signal similar to the
one shown at the right.

The resistor R is needed because the signal S
can not be left “floating” in an undefined state
when the switch changes from state 1 to 2.

Without debouncing the signal can generate
several interrupts (or status changes)
corresponding to just one action.

Debouncing consists in “Filtering” the signal S
so tha&a proper operation of the switch action is
sensed.

Debouncing can be done in hardware of
software

5V

Microcontroller

1NN

At .I Read Key (shouldé At 'I
R be stable) T

Techniques that can be used:

-If status loop: after first status change,
program timer and after elapsed time
read key status.

-If Interrupt: on first interrupt program
timer which will interrupt after elapsed
time. Then read key status.

CSE 466 Interrupts

22

11

Analog to Digital Conversion

Basic ADC circuits (1)

Simple ramp and comparator ADC

DAC +
u -
Comparaton 1E5Y
Wi
1000H=/50% 1 o
Unknown : i1z
== ref
a_nalog ==
input
start Binary output

Digitizing begins with a ‘start’ pulse

DAC is ramped up from zero

counter stopped by comparator when Vin = DAC out
ADC output is counter value

Tracking ADC

0O 0O 0 0 o

CSE 466 Interrupts

24

12

Basic ADC circuits (2)

= This ADC circuit is limited and rarely used

WHY -
o slow
o variable time to give result
o input signal can vary during digitising

= Successive Approximation ADC solves these problems -
using
o complex logic to test and retain each DAC bit
o a sample and hold circuit ahead of the comparator

CSE 466 Interrupts 25

Successive Approximation ADC

8-bit DAC

o Fast process - 1 -
100psecs N P
- el R
o Result always n clocks ’ aivers | L5,
after start

approximation

register
(SAR)

o Used extensively for 12-
16bit DAQ systems

start
conv

end of logic
nv

CSE 466 Interrupts 26

Vref
Flash ADC Flash
Half-Flash osk
|+
7
Vref ks [
wmse| >
4-bit [6
analo flash b 1.0k j::
input esss | . 74F 148
S - ,: \
.
1.0k cb—
— b+
latch — || 4
g—slale 1.0 b 3bit binary
buffers [output
— >
o]
1.0k
Ap—
| +:
4-bit 2
flash —
A‘:)sC 1.0k a
(4 LSBs)
> ‘:
1
o The fastest process <50nsecs oscg T
o Limited resolution typically 8 - 10bits anaiog = | o
o Half-flash technique is cheaper input L o
CSE 466 Interrupts 27
Offset Error Integral Non-linearity (INL)
Output Cods. Qutput Code,
----- Ideal ADC ----- ldeal ADC
Actual ADC -Actual ADC
-_‘:O'%SEI _
e Vagr InputVoltage Vags Input Voltage
Gain Error Differential Non-linearity (DNL)
Qutput Code. Gal My Output Code
Error’ 0x3FF
————— Ideal ADC
Actual ADC
'v"R;:—Inpul Voltage Vegr Input Voltage
CSE 466 Interrupts 28

14

ATmegal6 A-to-D Conversion

Needs a comparator

and a D-to-A

converter
Takes time to do

successive

approximation
Interrupt generated
when conversion is
completed

CSE 466

A-to-D Conversion on the ATmegal6

10-bit resolution (adjusted to 8 bits as needed)
65-260 usec conversion time
8 multiplexed input channels

Capability to do differential conversion
o Difference of two pins
o Optional gain on differential signal (amplifies difference)

Interrupt on completion of A-to-D conversion
0-V¢ input range
2*LSB accuracy (2 * 1/1024 = ~0.2%)

o Susceptible to noise — special analog supply pin (AVCC) and
capacitor connection for reference voltage (AREF)

CSE 466 Interrupts

30

15

A-to-D Conversion (cont’d)

ADC Multiplexer Selection

Register - ADMUX sit = 8 5 4 3 2 4 a
REFS1 | REFS0 | ADLAR | MUX4 | MUX3 | MUXZ | MUXI] MUX0]| ADMUX
B0 RO G R W B
Initial Valuz 0] 0] 0 0]]

+ Bit 7:6 - REF81:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table &3. If these bits
are changed during a conversion, the change will not go in effect until this conversion is
complete (ADIF in ADCSRA is set). The internal voltage reference options may not be
used if an external reference voltage is being applied to the AREF pin.

Table 83. Voltage Reference Selections for ADC

REFS1 | REFS0 | Voltage Reference Selection
0 a AREF, Internal Vref turned off
0 1 AVCC with external capacitor at AREF pin
1 0 Reserved
1 1 Internal 2 56V Voltage Reference with external capacitor at AREF pin

* Bit 5- ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data
Register. Write one to ADLAR to left adjust the result. Otherwise, the result is right
adjusted. Changing the ADLAR bit will affect the ADC Data Register immediately.
regardless of any ongoing conversions. For a complete deseription of this bit, see “The
ADC Data Register - ADCL and ADCH" on page 218

CSE 466 Interrupts

. + Bits 4:0 - MUX4:0: Analog Channel and Gain Selection Bits
A_ tO _D ‘ onversion The value of these bits selects which combination of analog inputs are connected to the
ADC. These bits also seleet the gain for the differential channels. See Table 84 for

details. If these bits are changed during a conversion, the change will not go in sffect

5 until this conversion is complete (ADIF in ADGSRA is set).
(Cont d) Table 84. Input Channel and Gain Selections

Single Ended Positive Differential Negative Differential
MUX4.0 | Input Input Input Gain
00000 ADCO
00001 ADC1
Qo010 ADC2
Single-ended or differential CTR T
o 1 of 8 single-ended =
. 00111 ADCT
o ADCx — ADCH1 at 1x gain B Ao 7000 ™
01001 ADC1 ADCO 10x
] ADC{0,1} - ADCO at 1OX 01010 ADCO ADCO 200x
01011 ADC1 ADCO 200x
o ADC{0,1} — ADCO at 200x
01101 ADC3 ADCZ 10x
=) ADC{2 3} _ ADCZ at 1OX 011100 ADC2 ADC2 200x
’ 011141 ADC3 ADC2 200x
—_— 10000 ADCO ADC1 %
o ADC{2,3} — ADC3 at 200x 0
10010 N/A ADC2 ADC1 %
o ADC{0,1,2,3,4,5} — ADC2 at 1x L
10100 ADC4 ADC1 1
10101 ADC5 ADC1 1
10110 ADCE ADC1 hbS
10111 ADCT ADC1 hbS
11000 ADCO ADC2 X
11001 ADC1 ADC2 %
11010 ADC2 ADCZ 1%
11011 ADC3 ADCZ 1%

CSE 466 Interrupts 32

A-to-D Conversion (cont’d)

The ADC Data Register —
ADCL and ADCH

ADLAR=0
git 15 14 13 1 10 o 2
= = = = = ADCE] ADCE]| ADCH
ADCT | ADCS | ADCS | ADCZ | ADCE | ADCZ | ADCT | ADCO | ApcL
T g g) S E: T T
ReadMirite R = R " R = R "
R = R Gl R = R Gl
Initial Vaiuz 0 [0] 0 [0]
0 [0] 0 [0]
ADLAR =1
git 15 14 13 12 1 10 a 2
[Aoce | ADcs | AODCT | ADCG | ADCS | ADCA | ADC: | ADCZ | ADCH
| T I I I I N e
T g g) 3 2 1 T
R = R Gl R = R Gl
R = R Gl R = R Gl
Inifial Valuz 0 [0] 0 [0]
0 [0] 0 [0]
CSE 466 Interrupts 33

A-to-D Conversion (cont’d)

ADC Control and Status

Register A - ADCSRA st 7 8 5 4 a 2 4 I
I T L R
Vrite W B = 2] i

Inidial Vaiue 0 [0 0 [0]]

+ Bit 7 - ADEN: ADC Enable

Bit 6 — ADSC: ADC Start Conversion

Bit 5 - ADATE: ADC Auto Trigger Enable

Bit 4 - ADIF: ADC Interrupt Flag

Bit 3 - ADIE: ADC Interrupt Enable

Bits 2:0 - ADPS2:0: ADC Prescaler Select Bits

ADPS2 ADPS1 ADPSO Division Factor
o 0 0 2
0 1] 1 2
0 1 0 4
0 1 1]
1 1] 0 16
1 1] 32
1 1 0 B4
1 1 1 123
CSE 466 Interrupts 34

17

A-to-D Conversion (cont’d)

Special FunctionlO Register —
SFIOR Bt 7 f

7 = 4 3 2 1 0

| R ADTS0 | =] ACME | FUD] PSRZ | PSR10 I SFIOR
Rasdwrie g gy i) = g gy Ea—
Iniial Ve [} o 0 o 0] o 0

+ Bit 7:5- ADTS2:0: ADC Auto Trigger Source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will
trigger an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no
effect. A conversion will be triggered by the rising edge of the selected Interrupt Flag
Note that switching from a trigger source that is cleared to a trigger source that is set,
will generate a positive edge on the trigger signal. If ADEN in ADCSRA is set, this will
start a conversion. Switching to Free Running mode (ADTS[2:0]=0) will not cause a trig-
ger event, even if the ADC Interrupt Flag is set.

Table 86. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTSO Trigger Source

0 0 0 Free Running mode

Analog Comparator

External Interrupt Reguest 0

Timer/Counter0 Compare Match

Timer/CounterQ Overflow

Timer/Counter Compare Match B

Timer/Counter1 Overflow

0
0
0
1
1
1
1

0
1
1
0
0
1
1

e S =T A PO

Timer/Counter1 Capture Event

+ Bit 4 - Res: Reserved Bit

This bit is reserved for future use. To ensure compatibility with future devices, this bit
must be written to zero when SFIOR is written

CSE 466 Interrupts 35
Writing an Interrupt Handler in C (again)
Ensure main program sets up all registers
Enable interrupts as needed
Enable global interrupts (SEI)
Write handler routine for each enabled interrupt
o What if an interrupt occurs and a handler isn’t defined?
Make sure routine does not disrupt others
o Data sharing problem
o Save any state that might be changed (done by compiler)
Re-enable interrupts upon return
o done by compiler with RETI
CSE 466 Interrupts 36

18

Sleep modes

Power modes

Processor can go to “sleep” and save power

Different modes put different sets of modules to sleep

o Which one to use depends on which modules are needed to
wake up processor

o Timers, external interrupts, ADC, serial communication lines, etc.

set_sleep_mode (mode);
sleep_mode ();

CSE 466 Interrupts

19

Power modes (cont’d)

MCU Control Register — The MCU Control Register contains control bits for power management.
REHEE ait 7 [5 4 3 2 1 [
[z] st | SM1 | SN mEskie il mEckie miclie] wCuck
"W RN & W W & AW AW
[} [0] [0] [

+ Bits 7, 5, 4 - SM2..0: Sleep Mode Select Bits 2, 1, and 0

These bits select between the six available sleep modes as shown in Table 13

Table 13. Sleep Mode Select

SM2 SM1 SMO Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 1] Reserved
1 0 1 Reserved
1 1 0 Standby'™
1 1 1 Extended Standby'"

Note 1. Standby mode and Extended Standby made are only available with external erystals
or resonators.

+ Bit 6 - SE: Sleep Enable

The SE bit must be written to logic cne to make the MCU enter the sleep mode when the
SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is
the programmers purpose, it is recommended to write the Sleep Enable (SE) bit to one
just befare the execution of the SLEEP instruction and to clear it immediately after wak-

ing up.
CSE 466 Interrupts 39
Power modes (cont’d)
Active Clock domains Oscillators Wake-up Sources
INT2 ™ SPM/

Sleep Main Clock Timer Osc. | INT1| Address | Timer(EEPROM Other

Mode lkgpy | ©lkznzn| €l | Clkupe | Clkayy [Source Enabled | Enabled | INTO[Match] Ready | ADC| 1O

Idle X X X X X X X X X X X

ADC

okl x| x X x@ [xs| o x X x X

Redu-

ction

Power &l

Down L b

o 3 2 @) 3

e X2l X X3 X X2l

Standby' " X X X

Exten- .

ded X2 X X2 X3 X X2

Standby'"

Notes: 1. External Crystal or resonator selected as clock source.

2. It AS2 bitin ASSR is set
3. Only INT2 or level interrupt INT1 and INTC.

CSE 466 Interrupts 40

20

