Charge

Two hydrogen atoms meet. One says "I've lost my electron."
The other says "Are you sure?"
The first replies "Yes, I'm positive."

Basic Concepts of Electricity

- Voltage
- Current
- Resistance

Electric Fields

- An electric field applies a force to a charge
 - Force on positive charge is in direction of electric field, negative is opposite
- Charges move if they are mobile
- An electric field is produced by charges (positive and negative charges)
- Electric fields can be produced by time varying magnetic fields (generator, antenna radiation)

Voltage Difference

- Voltage difference is the difference in potential energy in an electric field
- \(E = \frac{V}{d} \)
- As you move closer to a positive charge the voltage increases

Current

- An electric current is produced by the flow of electric charges
- Current = rate of charge movement = amount of charge crossing a surface per unit time
- In conductors, current flow is due to electrons
- Conventional current is defined by the direction positive charges will flow
- Direction of electron flow is opposite to direction of conventional current

Resistance

- In materials electrons accelerate in an electric field
- Electrons lose energy when they hit atoms - lost energy appears as heat and light
- The result is that electrons drift with constant velocity (superimposed on random thermal motion)
- Resistance is the ratio Voltage/current
 \(R = \frac{V}{I} \)
Voltage, Current, and Resistance

- Flow = current
- Pressure = voltage

Material Conductivity
- Conductors - negligible resistance
- Insulators - extremely large resistance
- Semiconductors - some resistance
- Resistors - are devices designed to have constant resistance across a range of voltages

Resistor Combination

Series resistance

\[R_{1} + R_{2} = R_{1} + R_{2} \]

Parallel resistance

\[\frac{1}{R} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \]

Kirchoff’s Voltage Law

- Kirchoff’s voltage law (KVL)
 - The sum of voltage differences around any loop in a circuit equals 0
 - Equivalently, the voltage between two points is the same no matter what path is traversed

Voltage Divider

\[V_{2} = \frac{V \cdot R_{1}}{R_{1} + R_{2}} \]

Solution:
1. Goal: Find \(V_{2} \) given \(V \)
2. Find \(V_{2} \) in terms of \(I \)
3. Current through \(R_{2} \) in terms of \(I \)
4. Voltage across \(R_{1} \)
5. Find voltage across \(R_{1} \) and \(R_{2} \) using two different methods

Potentiometer (Variable Resistor)

- \(V_{X} = V \cdot \frac{\text{Distance AX}}{\text{Distance AB}} \)
- Linear potentiometer
- A trim pot is a small variable resistor mounted on a printed circuit board that can be adjusted by a small screwdriver to make semi-permanent adjustments to a circuit
Input Transducers
- These are devices that produce electric signals in accordance with changes in some physical effect e.g. convert temperature, light level to a voltage level or resistance
- e.g. microphones, strain gauge, photodetectors, ion-selective membranes, thermistors
- Sometimes the definition of transducer is that of a device that converts non-electrical energy to electrical energy

Output Transducers
- Devices which convert an electrical quantity into some other physical quantity or effect e.g. relay, loudspeaker, solenoid

Light Dependent Resistors (LDRs)
- Devices whose resistance changes (usually decreases) with light striking it
- (also called photocells, photoconductors)
- Light striking a semiconducting material can provide sufficient energy to cause electrons to break away from atoms.
- Free electrons and holes can be created which causes resistance to be reduced

LDRs
- Typical materials used are Cadmium Sulphide (CdS), Cadmium Selenide (CdSe), Lead Sulphide
- With no illumination, resistance can be greater than 1 MΩ (dark resistance).
- Resistance varies inversely proportional to light intensity.
- Reduces down to 10-100s ohms
- 100ms/10ms response time

Graph
- LDRs have a low energy gap
- Operate over a wide wavelengths (some, into infrared)
- Indium antimonide is good for IR. When cooled is very sensitive, used for thermal scanning of earth’s surface
Capacitors
- A component constructed from two conductors separated by an insulating material (dielectric) that stores electric charge (+Q, -Q)
- As a consequence there is a voltage difference across the capacitor, \(V \)
- Capacitance = \(C = \frac{Q}{V} \)
- The dielectric material operates to reduce the electric field between the conductors and so allow more charge to be stored for a given voltage

![Capacitors diagram](image)

Bucket analogy
- A small bucket (capacitor, \(C \)) holds less charge (\(Q \)) for given level (voltage \(V \)) than a large bucket

Charging a Capacitor
- The bucket analogy can be used to describe capacitor charging
- When current flows in at a constant rate the voltage increases linearly and vice versa for current flowing out

![Charging a Capacitor diagram](image)

Semiconductors
- Silicon is used as an example (other semiconductors include Germanium, Gallium Arsenide, Gallium phosphide, indium arsenide, indium phosphide)
- Pure silicon (intrinsic semiconductor)
 - Four valence electrons
 - Crystalline structure
 - Reasonably high resistance

![Semiconductors diagram](image)

Electrons and holes
- Due to thermal energy some electrons in the valance shell become free
- Create:
 - One free electron +
 - One hole in the valence band that can be filled by electrons from the valence band in an adjacent silicon atom
- Current in silicon can flow due to both movement of electrons and holes

![Electrons and holes diagram](image)

n-type silicon
- Add donor impurities (e.g. Phosphorus, arsenic, indium) with 5 electrons in the valance band
- As only four electrons can bond with neighbouring silicon atoms one free electron is left
- Increases concentration of free electrons
- Reduces concentration of holes (due to increased chance of recombination)
- Resistance reduced

![n-type silicon diagram](image)
p-type silicon

- p-type silicon is created by adding acceptor impurities which have three valance electrons (e.g. boron)
- This leaves an unbound valance electron in an adjacent silicon atom creating a hole
- Increases concentration of holes
- Reduces concentration of free electrons
- P-type silicon has lower resistance than pure silicon

Diodes

- If a piece of n-type silicon and p-type silicon are joined directly together a diode (di - electrode) device is created

```
<table>
<thead>
<tr>
<th>P</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode</td>
<td>Cathode</td>
</tr>
</tbody>
</table>
```

Macro-behaviour

- A diode is a device that allows current flow easily in one direction easily and allows hardly any current flow in the opposite direction

Forward bias

- Current flows easily if the P region is positive with respect to the N region

```
\begin{align*}
I &= I_D e^{\frac{V}{nV_T}} \\
\text{(Strictly } V_D + (1 + e^{\frac{V}{nV_T}}))
\end{align*}
```

Reverse bias

- Current hardly flows if the P region is negative with respect to the N region

Diode and resistor circuit

- Currents and voltages determined by:
 1. \(V_D \) related to \(I \) by diode equation
 2. Current in resistor and diode equal
 3. \(V_D = IR \)
 4. Voltage across diode and voltage resistor add up to voltage source \(V \)

 Short cut rule of thumb, \(V_D \) is approx 0.6-0.7 volts and \(V_R = V - 0.6 \)

 For LEDs \(V_D \) is about 1.8 - 4.0 V, depending on colour

Forward biased diode
Diode and resistor circuit

Assume no reverse-bias current flows (ideal case)
Therefore no voltage occurs across the resistor
Therefore the full supply voltage appears across the diode

Reverse biased diode

LEDs

- Light emitting diode
- When an electron moves down from the conduction band to the valence band it loses energy
- In silicon and germanium the energy-momentum relationships mean that this energy is lost heat
- In gallium arsenide it produces a photon

LEDs

- The light intensity is proportional to current
- Pure gallium arsenide produces infrared light
- GaAsP produces red or yellow light
- GaP produces red or green

Circuit design using LEDs

- LEDs behave just like normal diodes except that the forward bias voltages are greater (typically 1.8 - 4.0 V)
- A typical forward bias current of 10-20 mA is used.

Example

\[
I = \frac{9 - 2.0}{680} = 0.029 \text{ mA}
\]

Introduction to AVR

Atmel AVR Microcontroller
AVR Key Features

- High Performance 8-Bit MCU
- RISC Architecture
 - 32 Registers
 - 2-Address Instructions
 - Single Cycle Execution
- Low Power
- Large linear address spaces
- Efficient C Language Code Density
- On-chip in-system programmable memories

RISC Performance with CISC Code Density

AVR

ATmega16(L)

- 40/44 pin packages
- 16 KBytes ISP Flash, Self Programmable
- 512 Bytes ISP EEPROM
- 1 KBytes SRAM
- Full Duplex UART
- SPI – Serial Interface
- TWI – Serial Interface
- 8- and 16-bits Timer/Counters with PWM
- 2 External Interrupts
- 10-bit ADC with 8 Multiplexed Inputs
- RTC with Separate 32 kHz Oscillator
- Analog Comparator
- JTAG Interface with On-Chip Debugger

Typical Applications, ATmega16(L)

- Smart Battery
- Advanced Battery Charger
- Power Meter
- Temperature Logger
- Voltage Logger
- Tension Control
- Touch Screen Sensor
- Metering Applications
- UPS
- 3 Phase Motor Controller
- Industrial Control
- Power Management

I/O Ports General Features

- Push-Pull Drivers
- High Current Drive (sinks up to 40 mA)
- Pin-wise Controlled Pull-Up Resistors
- Pin-wise Controlled Data Direction
- Fully Synchronized Inputs
- Three Control/Status Bits per Bit/Pin
- Real Read-Modify-Write

3 Control/Status Bits per Pin

- DDX Data Direction Control Bit
- PORTx Output Data or Pull-Up Control Bit
- PINx Pin Level Bit
Default Configuration

Direction: INPUT
Pull-Up: OFF

Switch On Pull-Up

Direction: INPUT
Pull-Up: ON

Port is Output

Direction: OUTPUT
Pull-Up: OFF

General T/C Features
- Various Clock Prescaling Options
- Can Run at Undivided XTAL Frequency (High Resolution)
- Can be Set to Any Value at Any Time
- Can be Clocked Externally by Signals with Transition Periods down to XTAL/2
- Can be Clocked Externally on both Rising and Falling Edge
- The features vary from device to device, see datasheets for details

16 Bit Timer/Counter
- Prescaler
- Overflow Interrupt
- Output Compare Function with Interrupt
- Input Capture with Interrupt and Noise Canceler
- PWM

16 Bit T/C Block Diagram
Output Compare Features

- Compare match can control an external pin (Rise, Fall or Toggle) even if the Interrupt is disabled.
- As an option, the timer can be automatically cleared when a compare match occurs.

PWM Features

- Selectable 8, 9 or 10-Bit Resolution.
- Frequency @ 10 MHz (8-bit): 19 KHz
- Centered Pulses
- Glitch-Free Pulse Width Change
- Selectable Polarity

PWM Operation

Self Programming

- Dual memory areas
 - Application section
 - Boot section (optional)
- Read data from
 - Any communication interface
 - Application section
 - Boot section
- Write it to a page buffer
- Transfer the buffer to the Flash page in Application or Boot section

MegaLoad
AVR websites and mail

- ATMEL website www.atmel.com
 - Datasheets
 - Application Notes
 - FAQ
- Unofficial AVR websites
 www.avrfreaks.net
 www.avr-forum.com