Interrupts

Fundamental concept in computation

Interrupt execution of a program to “handle” an event
o Don't have to rely on program relinquishing control

o Can code program without worrying about others

Issues

o What can interrupt and when?

Where is the code that knows what to do?

How long does it take to handle interruption?

Can an interruption be, in turn, interrupted?

How does the interrupt handling code communicate its results?
How is data shared between interrupt handlers and programs?

0O 00 D0 D

CSE 466 - Spring 2005 Interrupts

What is an Interrupt?

Reaction to something in I/O (human, comm link)
Usually asynchronous to processor activities
“interrupt handler” or “interrupt service routine” (ISR)
invoked to take care of condition causing interrupt

o Change value of internal variable (count)

o Read a data value (sensor, receive)

o Write a data value (actuator, send)

Main Program

Instruction 1
——
Instruction 2

Instruction 3 Instruction 1

Instruction 4 Instruction 2

. Instruction 3
Restore state

Return from Interrupt

> ISR
Save state

CSE 466 - Spring 2005 Interrupts

Interrupts

Code sample that does not interrupt
char SPI_SlaveReceive(void)
{
/* Wait for reception complete */
while(/(SPSR & (1<<SPIF)))

/* Return data register */
return SPDR;
}

Instead of busy waiting until a byte is received the
processor can generate an interrupt when it sets SPIF
SIGNAL(SIG_SPI) {
RX_Byte = SPDR
}

CSE 466 - Spring 2005 Interrupts

Saving and Restoring Context

Processor and compiler dependent

Where to find ISR code?
o Different interrupts have separate ISRs
Who does dispatching?
o Direct
Different address for each interrupt type
Supported directly by processor architecture
o Indirect
One top-level ISR
Switch statement on interrupt type
o A mix of these two extremes?

CSE 466 - Spri

Saving and Restoring Context

How much context to save?

o Registers, flags, program counter, etc.

o Save all or part?

o Agreement needed between ISR and program

Where should it be saved?

o Stack, special memory locations, shadow registers, etc.

o How much room will be needed on the stack?

o Nested interrupts may make stack reach its limit — what then?
Restore context when ISR completes

CSE 466 - Spring 2005 Interrupts

Ignoring Interrupts

Can interrupts be ignored?
o It depends on the cause of the interrupt
o No, for nuclear power plant temperature warning
o Yes, for keypad on cell phone (human timescale is long)
When servicing another interrupt
o Ignore others until done
o Can't take too long — keep ISRs as short as possible
Just do a quick count, or read, or write — not a long computation
Interrupt disabling
o Will ignored interrupt “stick”?
Rising edge sets a flip-flop
o Or will it be gone when you get to it?
Level changes again and its as if it never happened
o Don't forget to re-enable

CSE 466 - Spring 2005 Interrupts

Prioritizing Interrupts

When multiple interrupts happen simultaneously
o Which is serviced first?

o Fixed or flexible priority?

Priority interrupts

o Higher priority can interrupt

o Lower priority can’t

Maskable interrupts

o “don’t bother me with that right now”

o Not all interrupts are maskable, some are non-maskable

CSE 466 - Spring 2005 Interrupts

Interrupts in the ATmegal6

External interrupts
o From I/O pins of microcontroller

Internal interrupts

a Timers
Output compare
Input capture
Overflow

o Communication units
Receiving something
Done sending

a ADC
Completed conversion

CSE 466 - Spring 2005 Interrupts 8

Interrupt Jump Vector Table

Address Labele Cods

Fixed location woon J oo
)) o S e .
inmemory to find i TmGwm) Tisen coparen mndler
first instruction for = J o [
each type of i oo orr e P —
mterrupt so18 joe wsaRT_noRm ULR Epty Handler
o o vz 1 v iz Coplete Antis:
o = eorerion Somplata Resdler
Only room for one 3 S e ;
H 3 $020 Jmp A come Analog Comparat o =
instruction o= e Tvovioe serial Tatestase Bendler
o JMP to location qu26 Joo Tive_cone Tinero Compare Hadler
of complete ISR i e ey
== e
A6 Sprng 2008 e 5

Chain of Events on Interrupt

Finish executing current instruction
Disable all interrupts
Push program counter on to stack
Jump to interrupt vector table
Jump to start of complete ISR
Save any context that ISR may otherwise change

o Registers and flags must be saved within ISR and restgré

returns — this is very important!

Re-enable interrupts if nested interrupts are ok
Complete ISR’s code

Re-enable interrupts upon return
Jump back to next instruction before interruption

CSE 466 - Spring 2005 Interrupts 0

-Automatwc

Shared Data Problem

When you use interrupts you create the opportunity for
multiple sections of code to update a variable.

This might cause a problems in your logic if an interrupt
updates a variable between two lines of code that are
directly dependent on each other (e.qg. if statement)
One solution is to create critical sections where you
disable the interrupts for a short period of time while you
complete your logic on the shared variable

cli();

..... critical section code goes here.....
sei();

CSE 466 - Spring 2005 Interrupts i1

External Interrupts

General Interrupt Control

Register — GICR 5 + 3 2 '
e acr

1 s s

WeE

0 o 0 0 [] 0 0

Special pins: INTO, INT1, INT2

o Can interrupt on edge or level

Can interrupt even if set to be output pins

o Implements “software interrupts” by setting output

MCU Control Register — The MCU Control Register contains control bits for interrupt sense control and general
MCUCR MCU functons
o T o s . PR . o
[st T o [sw [o Jcw [oo [ecw] woucs
AW AW RN AW AW
o o o I B
1SC11_| 1SC10_| Description
0 0 The low level of INT1 generates an inferupt request
0 1 Any logical change on INT1 generates an interrupt request
1 0 The falling edge of INT1 generates an interrupt request
1 1 The rising edae of INT1 generates an interrupt request.
CSE 466 - Spring 2005 Tntermupts 12

Closer Look at a Timer/Counter

= Timer0/Counter0
o Clear timer on compare match (auto reload)
o Prescaler (divide clock by up to 1024)
o Overflow and compare
match interrupts
o Registers
= Configuration
= Count value

L —

= Output compare value 3
CSE: 466 - Spring 2005 Tocermupts B

‘ Timer/Counter Registers

= Timer/Counter + Bit7— FOCD: Force Output Compare
Control Regist Tho FOCD bis any acvo shen o WGMGO bt spcifos non Wi oo, Howovar,
v s dovees, Sotowhen 10CR0 4
ontrol Register Wileh when operaing n PW fods. When withg a fogca on 1 e FOCO bi, an

irmaciat compars makh e o s Wavelorn Ganatalon . The OCD oo
TCCRO e accodng o 1 CONDT D s Setng Nor hat e FOCD bt mierentad
o om0, Tharlos 100 vl pesant i h GOV i ot dsermins ha
o compars.
A FOCO st wil o enerate any frrup,nar i e 1 evr I CTC oda
g 0GR 1 Y0P
The FOCDbis abays rad s 25t

+ Bit6, 3~ WGM01:0: Waveform Generation Mode
“These bits control the counting sequence of the countar, the source for the maximum
(TOP) counter value, and what type of Waveform Generation to be used. Modes of
operation supported by the Timer/Counter uni are: Normal mode, Clear Tmer on Com-
pare Match (CTC) mode, and two types of Pulse Width bodulation (PWH) modes. See.
able 38 and “Modes of Operalion” on page 74,

Table 38. Waveform Generation Mode Bt Descripton
WGHO1 | WGM00 | TimeriCounter Mode Updateof | TOVO Flag
Mode | (CTCO) | (PWMO) | of Operation Top | oCRO | Seton
0 0 0 | Nomal OFF_| immedate | MAX
T [| P, Phase Gomet | oxFe_| 10 BoTTom
2 1 0 | ‘OCRO | immedite | MAX
3 1 1| FastPumt oFF | Top Max

Nole: 1. The GTCO and PWID bt definion names are naw absclete. Use the WGHO' 0 def.
infions. Howete, the funcionalfy and location of these bis are compatie with
prevous versans of e mer

CSE 466 - Spring 2005 Interrupts 4

‘ Timer/Counter Registers (cont’d)

= Timer/Counter
Control Register
TCCRO
* Bit 5:4 - COM01:0: Compare Match Output Mode

These bits control the Output Compare pin (OCO) behavior. If one or both of the
COMO1:0 bits are set, the OCO output overrides the normal port functionality of the /0
pin it is connected to. However, note that the Data Direction Register (DDR) bit corre-
sponding to the OCO pin must be set in order to enable the output driver.

When OCO i connected to the pin, the function of the COMO1:0 bits depends on the
WGMO1:0 bit setting. Table 39 shows the COMO1:0 bit functionality when the WGMO1:0
bits are set to a normal or CTC mode (non-PWM),

Table 39. Compare Output Mode, non-PWM Mode

como1 COM00 | Description
o) Normal port operation, OCO disconnected
0 1 Toggle OCO on compare match
1 0 Clear OCQ on compare match
1 1 Set OCO on compare match

CSEL 466 - Spring 2005 Tnterrupts

‘ Timer/Counter Registers (cont’d)

= Timer/Counter
Control Register
TCCRO + Bit 2:0 - CS02:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter.
Table 42. Clock Select Bit Description
cso2 | cso1 | cs00 [Description

[[0| No clock source (Timer/Counter stopped).
o o 1| clkyo/tNo prescaling)

[1 0 | clkyo/8 (From prescaler)

) 1 1| clkyo/s4 (From prescater)

1 0 0| cliyo/256 (From prescaer)

1 [1| clkyo/1024 (From prescaler)

1 1 0| External clock source on T0 pin. Clock on falling edge.
1 1 1| External clock source on T pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter0, transitions on the TO pin will
clock the counter even if the pin is configured as an output. This feature allows software
control of the counting

CSE 466 - Spring 2005 Tnterrupts 16

‘ Timer/Counter Registers (cont’d)

Timer/Counter Register -
TCNTO

[7 s s . 5 2 1 o
TenToTo] o
Reaomrte RN W W W AW AW
Iniel Vave o ° o o 0 o o o
Output Compare Register -
OCRo 1 7 s s . s 2 ' o
(R] ocro
Resanvria R RW RN W AW AW R W
Initel Vae o ° o o o o o o
Timer/Counter Interrupt Mask
Register - TIMSK s B 2 ' o
=55 o [er [ockin [ociers | ot] ocies | oo] mmesk
Resonwrie | RW L RW W WW AW AW R W
Inial Vae o ° o o o 0 o o
Timer/Counter Interrupt Flag
Register - TIFR s B - s N 5 2 5 o
=52 o o [ocra [ocrms [tow [oo [tow] TR
Resamie RN RT AR G
Intil Vaive o o o o o o o o

CSE 466 - Spring 2005 Interrupts 17

Setting Register Values

= Defined names for each register and bit
o Set timer to clear on match
o Set prescaler to 1024

TCCRO = (1<<WGMO1) | (1<<CS02) | (1<<CS00);

o Set count value to compare against
OCRO = 150;
o Set timer to interrupt when it reaches count
TIMSK = (1<<OCIE0);
CSE 466 - Spring 2005 Interrupts 18

Writing an Interrupt Handler in C

= Set and clear interrupt enable
o sei();
a cli();
= Interrupt handler
o SIGNAL(SIG_OUTPUT_COMPAREO)
{

}
= Setting I/O registers
a TCCRO = (1<<WGMO1) | (1<<CS02) | (1<<CS00);
= Enabling specific interrupts
o TIMSK = (1<<OCIE0);

i++;

Analog to digital conversion

= Use charge-redistribution technique
o no sample and hold circuitry needed
o even with perfect circuits quantization error occurs

= Basic capacitors
o sum parallel capacitance

ot T

C

C

CSE 466 - Spring 2005 Interrupts 19

CSE 466 - Spring 2005 Interrupts

Analog to digital conversion (cont’d)

= Two reference voltage

o mark bottom and top end of range of analog values that can be
converted (V_ and V)

o voltage to convert must be within these bounds (Vy)
= Successive approximation

o most approaches to A/D conversion are based on this

o 8to 16 bits of accuracy

A-to-D — sample

= During the sample time the top plate of all capacitors is
switched to reference low V|

= Bottom plate is set to unknown analog input Vy
= Q=CV

= Qg=16 (Vy- V)

‘CSFL 466 - Spring 2005 Tnterrupts 3

= Approach Vi
o sample value
o hold it so it doesn’t change — Vg
o successively approximate
o report closest match
Vi
CSE 466 - Spring 2005 Interrupts 21
A-to-D — hold
= Hold state using logically controlled analog switches
o Top plates disconnected from V|
o Bottom plates switched from V, to V|
= Qu=16(V -V)
o conservation of charge Qg = Q, v
0 16 (Vy- V) =16 (V- V) H
a Vy-V_ =V, -V, (output of op-amp)
—— v><
— W

A-to-D — successive approximation

= Each capacitor successively switched from V_to V
o Largest capacitor corresponds to MSB

= Output of comparator determines bottom plate
voltage of cap
a > 0:remain connected to Vy

o <O0:returnto V.
8 |4 |2 1 |1
o—fm—fm?m$1lvl_
Vi

R
msel [TLss]

CSE 466 - Spring 2005 Interrupts

CSE 466 - Spring 2005 Interrupts 24

A-to-D example - MSB

= Suppose Vy =21/32 (V- V) and already sampled

= Compare after shifting half of capacitance to V
0V, goes up by + 8/16 (V,-V)) - 8/16 (V,-V)) = + 8/16 (V,,- V,)
o original V| - V| goes down and becomes
O V- (Vi+.5(Vy-V))=V -V-.5(Vy- V)Y

= Output >0

A-to-D example - (MSB-1)

= Compare after shifting another part of cap. to V,
0V, goes up by + 4/16 (V, V) - 4/16 (V,-V)) = + 4/16 (V,,- V,)
o original V| - V| goes down and becomes
0 V- (Vi+.25(Vy- V)) =V -V, -.25 (V- V)

= Output < 0 (went too far)

v, Vi
8
Vx
5 Vy-V)
V: (next)
—V
CSE 466 Spring 2005 rr—
A-to-D example - (MSB-2)
= Compare after shifting another part of cap. to V
oV goes up by +2/16 (V-V) - 2/16 (V-V)) = + 2/16 (V- V)
o original V|-V, goes down and becomes
a V- (Vi+.125 (V- V)) = V- V- 125 (V- V)
= Output >0
V
— Vy
125 (V- V)
E—U —< Vo (prev)
v, v, V: (next) —. v,
CSE 466 - Spring 2005 Interrupts 2

A-to-D example final result

= Input sample of 21/32
= Gives result of 1010 or 10/16 = 20/32
= 3% error

CSE 466 - Spring 2005 Interrupts

Vi Vi
—Vy
25 (Vi - V)
—54 Ve (prev)
— \%
V'I'(nex‘r)
CSE 466 - Spring 2005 Interrupts 26
A-to-D example - LSB
= Compare after shifting another part of cap. to V,
oV, goes up by + 116 (V,-V,) - 1/16 (V,-V)) = + 1/16 (V- V)
o original V|-V, goes down and becomes
o V- (V) +.0625 (V- V) =V, -V, -.0625 (V, - V)
= Output < 0 (went too far again)
— \/><
R A
——— VL
CSE 466 - Spring 2005 Interrupts 28
A-to-D Conversion Errors
Offset Error Integral Non-linearity (INL)
e Output Codel
1
————— Ideal ADC o g —---- Ideal ADC
—— hcuniaoe hcka A0G
| ey
e Vigr Input Voitage /rer Input Voltage
Gain Error Differential Non-linearity (DNL)
Oupit Code
o]
a0 i
1 g
] o>
0:000 |
Vage Input Voltage [Veer Input Voltage

CSE 466 - Spring 2005 Interrupts 30

Closer Look at A-to-D Conversion

= Needs a comparator

and a D-to-A converter
= Takes time to do
successive
approximation
Interrupt generated
when conversion is
completed

CSE 466 - Spring 2005 Interrupts 31

A-to-D Conversion on the ATmegal6

= 10-bit resolution (adjusted to 8 bits as needed)
= 65-260 usec conversion time
= 8 multiplexed input channels
= Capability to do differential conversion
o Difference of two pins
o Optional gain on differential signal (amplifies difference)
= Interrupt on completion of A-to-D conversion
= 0-Vc input range
= 2*LSB accuracy (2 * 1/1024 = ~0.2%)

o Susceptible to noise — special analog supply pin (AVCC) and
capacitor connection for reference voltage (AREF)

SE 466 - Spring 2005 Interrupts 2

A-to-D Conversion (cont’d)

ADC Multiplexer Selection
Register ~ ADMUX -

S R T
[Treres [rouee [wowe [| oo T woxs [] aowox

Resitiv | R T T

bavw 6 o o o o o o o

+ Bit 7:6 - REFS1:0: Reference Selection Bits
These bits select the voltage reference for the ADC, as shown in Table 83. If these bits
are changed during a conversion, the change will not go in effect unti this conversion is
complete (ADIF in ADCSRA is set). The internal voltage reference options may not be
used if an exteral reference voltage is being applied to the AREF pin.

Table 83. Voltage Reference Selections for ADC

REFS1 | REFSO | Voltage Reference Selection
o 0| AREF. Internal Vref med off
0 1| AVCG with external capacitor at AREF pin
1 0| Reservea
1 1| intemal 256V Voltage Reference with external capacitor at AREF pin

+ Bit5- ADLAR: ADC Left Adjust Result
The ADLAR bit affects the presentation of the ADC conversion resutt in the ADC Data
Register. Write one to ADLAR to left adjust the result. Otherwise, the result is right
adjusted. Changing the ADLAR bit wil affect the ADC Data Register immediately.
regardiess of any ongoing conversions. For a complete description of this bit, see “The
ADC Data Register ~ ADCL and ADCH" on page 218

‘CSE 466 - Spring 2005 Tnterrupts 3

+ Bits 40 - MUX&:0: Analog Channel and Gain Selection Bits

A-to-D Conversion (cotkgmiammanmenmeon.

detais. I these bits are changed duing a conversion, the change wil ol go in sffect
untl tis conversion 5 complels (ADIF in ADCSRA ' sa).

A-to-D Conversion (cont’d)

The ADC Data Register -
ADCL and ADCH

ADLAR=0
M B w o w ww o e
I I I I B N .52 sock
O O O L N e e [
B e e e S B R
O
R " R =R R =R R =
wave 0 0 o o o o o o
s o s o o o s o
ADLAR=1
w W ww ww o s
B A N] ook
T L N N B e s S
T
wmis R R R R R R R &
R R R AR A R oa
¢ o o 0 o 0 o o
¢ o o 0 o 0 o o

CSE 466 - Spring 2005 Interrupts 3

= Single-ended or differential [w
a 1 of 8 single-ended
o ADCx —ADCH1 at 1x gain
o ADC{0,1} — ADCO at 10x — — -
o ADC({0,1} — ADCO at 200x oot = 2o
o ADC{2,3} — ADC2 at 10x
o ADC{2,3} — ADC3 at 200x wocs wosz e
o ADC{0,1,2,3,4,5} — ADC2 at 1x e = I
CSE 466 - Spring 2005 Interrupts 34
M >
A-to-D Conversion (cont’d)
/ADC Control and Status
Register A - ADCSRA
+ Bit7 - ADEN: ADC Enable
+ Bit 6~ ADSC: ADC Start Conversion
+ Bit 5 - ADATE: ADC Auto Trigger Enable
+ Bit4 - ADIF: ADC Interrupt Flag
+ Bit 3 - ADIE: ADC Interrupt Enable
*+ Bits 2:0 - ADPS2:0: ADC Prescaler Select Bits
Horsz Fopst Hopst Do Facor
o o o 2
g i >
5 : v .
: p p ®
; B i B
; i v o
: i i >
S 466 ~Sprng 2005 Tovermps %

A-to-D Conversion (cont’d)

Special FunctionlO Register -
SFIOR @

Resamire W

S R S ST U
I N N O = i
e T

* Bit 7:5- ADTS2:0: ADC Auto Trigger Source
If ADATE in ADCSRA is written to one, the value of these bits selects which source wil
trigger an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no
effect. A conversion will be triggered by the rising edge of the selected Interrupt Flag.
Note that switching from a trigger source that s cleared to a trigger source that is set
will generate a positive edge on the trigger signal. If ADEN in ADCSRA is set, this will
starta conversion. Switching to Free Running mode (ADTS2:01=0) will not cause a trig-
ger event, even if the ADC Interrupt Flag is set

Table 86. ADC Auto Trigger Source Selections

ADTSz | ADTST | ADTs0 | Trigger Source
o 0 0 Free Running mode
o o 1 ‘Analog Comparator
0 1 o External Intrmupt Reauest 0
0 1 1 Timer/Counterd Compare Match
1 o 0| TmenCounterd Overlow
1 o 1 Timer/Counter Compare Match B
1 1 0| TmenGountert Overiow
1 1 1 Timer/Counter1 Capture Event

* Bit 4 - Res: Reserved Bit

This bit is reserved for future use. To ensure compatibility with future devices, this bit
must be wiitten to zero when SFIOR is writien.

Writing an Interrupt Handler in C (again)

Ensure main program sets up all registers

|
= Enable interrupts as needed
= Enable global interrupts (SEI)

= Write handler routine for each enabled interrupt
o What if an interrupt occurs and a handler isn’t defined?

Make sure routine does not disrupt others

CSE 466 - Spring 2005 Interrupts

|}
o Data sharing problem
o Save any state that might be changed (done by compiler)
= Re-enable interrupts upon return
o done by compiler with RETI
CSE 466 - Spring 2005 Torceraprs %

Power modes

= Processor can go to “sleep” and save power
= Different modes put different sets of modules to sleep

o Which one to use depends on which modules are needed to
wake up processor

o Timers, external interrupts, ADC, serial communication lines, etc.

= set_sleep_mode (mode);
= sleep_mode ();

Power modes (cont’d)

MCU Control Register — The MCU Control Register contains control bits for power management
MCUCR it 7 o 5 4 3 2 1 0
N S L S0 B e o R
Rt AR T

© o o o o o o o

i Vave
* Bits 7,5,4 - SM2..0: Sleep Mode Select Bits 2,1, and 0
These bits select between the six avaiable sleep modes as shown in Table 13.

Table 13. Sleep Mode Select
Mz w1 SM0__ | Sleep Mode.

ide

ADC Nosse Reduction
Power-down

Reserved

Reserved

o
1
o
1 Power-save
0
1
o

Standby"

o o
0 0
0 1
0 1
1 o
1)
1 1
0

1 1 Extended Standby”

Note: 1. Standby mode and Extended Standby mode are only avalabie with external crystals
s

* Bit 6 - SE: Sleep Enable
The SE bit must be written to logic one to make the MCU enter the sleep mode when the
SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is
the programmers purpose, it s recommended to write the Sleep Enable (SE) bit to one
just before the execution of the SLEEP instruction and to clear it immediately after wak-
ing up.

CSE 466 -5,

Interrupts

CSE 466 -5 Tnterrupts)

Power modes (cont’d)

= Wake up sources and active clocks

‘Active Clock domains. Oscillators Wake-up Sources
wr2[W sem/
Steep Main Clock | Timer Osc. INT1| Address | Timer| EEPROM Other|
Mode | ks, | okuuga ek | cluoo | ey | Source Enabled | Enablea | mTo| “Waich | 2 | Ready |apc| 10
e x [x| x X X X X x X x| x
ADC
Noise " -
b x| x x x x X x x x
ction
Foner
Down =
Power @ @ @ @
Fices X x x x X
Standoy") X o] x
Exten-
Ged X I @ x| x X
Standby"
Notes: 1. External Crystalof resonator selected as clock source

2. I1AS2 bitin ASSR s set
3. Only INT2 oflevel interrupt INT1 and INTO.

CSE 466 - Spring 2005 Interrupts

