
1

�����������	
������ ���	�����
�� �

��������� ������	����	�����������������

� Instructor:
� Bruce Hemingway

� CSE 464, Hours: MW 10:30-11:30
� bruceh@cs.washington.edu

� Teaching Assistants:
� Waylon Brunette

� CSE 003, Hours TTh 2:30-4:30
� wrb@cs.washington.edu

� Trevor Hamilton
� trevjh@cs.washington.edu
� CSE 003, Hours TTh 2:30-4:30

�����������	
������ ���	�����
��

��������� ������	����	�����������������

� Class Meeting Times and Location:
� Lectures: EE 045, MWF 9:30-10:20
� Lab: CSE 003, T – Section A, 2:30-5:20

Th – Section B, 2:30-5:20

� Exams
� I: Wednesday, 27 April, EE 045, 9:30-10:20
� II: Friday, 27 May, EE 045, 9:30-10:20
� Final demo: Wednesday, 8 June, CSE Atrium, 8:30-10:20

�����������	
������ ���	�����
��

����������������

�����������	
������ ���	�����
�� �

����������������� �	����!�����

� Definitions

� A device not independently programmable by the user.

� Specialized computing devices that are not deployed as general
purpose computers.

� A specialized computer system which is dedicated to a specific
task.

� An embedded system is preprogrammed to perform a narrow
range of functions with minimal end user or operator intervention.

�����������	
������ ���	�����
�� �

����������������� �	����!�����

� What it is made of

� Embedded systems range in size from a single processing board to systems with
operating systems.

� A combination of computer hardware and software, and perhaps additional
mechanical or other parts, designed to perform a dedicated function.

� In some cases, embedded systems are part of a larger system or product, as is
the case of an anti-lock braking system in a car.

� A specialized computer system that is part of a larger system or machine.

� Typically, an embedded system is housed on a single microprocessor board with
the programs stored in ROM.

� Some embedded systems include an operating system, but many are so small
and specialized that the entire logic can be implemented as a single program.

�����������	
������ ���	�����
�� �

����������������� �	����!�����

� Examples

� Virtually all appliances that have a digital interface -- watches,
microwaves, VCRs, cars -- utilize embedded systems.

� A computer system dedicated to controlling some non-computing
hardware, like a washing machine, a car engine or a missile.

� Examples of embedded systems are medical equipment and
manufacturing equipment.

� While most consumers aren't aware that they exist, they are
extremely common, ranging from industrial systems to VCRs and
many net devices.

2

�����������	
������ ���	�����
�� "

#!���
��������������������$

� Different than a desktop system
� Fixed or semi-fixed functionality (not user programmable)
� Different human interfaces than screen, keyboard, mouse, audio
� Usually has sensors and actuators for interface to physical world
� May have stringent real-time requirements

� It may:
� Replace discrete logic circuits
� Replace analog circuits
� Provide feature implementation path
� Make maintenance easier
� Protect intellectual property
� Improve mechanical performance

�����������	
������ ���	�����
�� %

#!�������!�����
���	������
��&�$

� Less emphasis on
� Graphical user interface
� Dynamic linking and loading
� Virtual memory, protection modes
� Disks and file systems
� Processes

� More emphasis on
� Real-time support, interrupts (very small OS, if we’re lucky)
� Tasks (threads)
� Task communication primitives
� General-purpose input/output
� Analog-digital/digital-analog converters
� Timers
� Event capture
� Pulse-width modulation
� Built-in communication protocols

�����������	
������ ���	�����
�� '

#!���
��������������������$�(����)�*

� Figures of merit for embedded systems

� Reliability – it should never crash
� Safety – controls things that move and can harm/kill a person
� Power consumption – may run on limited power supply
� Cost – engineering cost, manufacturing cost, schedule tradeoffs
� Product life cycle – maintainability, upgradeability, serviceability
� Performance – real-time requirements, power budget

�����������	
������ ���	�����
�� ��

�+���&�,��������	���	������	�&&�	

thermister

TACH (pwm)

SPEED (pwm)ADC0
INT0

AREF

PD6
PD0

PWM signal

Task: Tachometer (external interrupt)
now = getTime();
period = then - now; //overflow?
then = now;
return;

Task: FanPWM (periodic, hard constraint)
count++;
if (count == 0) PD6 = 1;
if (count > Thi) PD6 = 0;
return;

Task: TempControl (periodic, soft constraint)
if (Temp > setpoint) Thi++;
if (Temp < setpoint) Thi--;
if (period<min || period>max) PD0 = 1;

Task: Main
Thi = 0;
setup timer for 1ms interrupt;
setup timer for 100ms interrupt;
while (1) ;

�����������	
������ ���	�����
�� ��

�����
��

� Assume:
� 8 MHz processor @ one instruction/cycle
� Assume fan runs between 30Hz and 60Hz
� Assume 256ms period on speed control PWM, with 1ms resolution.

� What percent of the the available cycles are used for the
temperature controller?
� [total instructions in one second] / (8MInstr/sec)

� How much RAM do you need?

� How much ROM?

�����������	
������ ���	�����
�� �

-����	������&��
��������������	�&&�	

10 * 2 = 201 (THI)~10TempControl

8 * 1000 = 80001 (count)~8FanPWM

4 * 60 = 2402 (period, then)~4Tach

Instructions/SecRAMROMTask

Total Instructions/Sec = 8260, at 8MIPS, that’s only 0.1% utilization!
Other resources? local variables, stack

Task: Tachometer (external interrupt)
now = getTime();
period = then - now; //overflow?
then = now;
return;

Task: FanPWM (periodic, hard constraint)
count++;
if (count == 0) GP0 = 1;
if (count > Thi) GP0 = 0;
return;

Task: TempControl (periodic, soft constraint)
if (Temp > setpoint) Thi++;
if (Temp < setpoint) Thi--;
if (period<min || period>max) GP4 = 1;

Task: Main
Thi = 0;
setup timer for 1ms interrupt;
setup timer for 100ms interrupt;
while (1) ;

3

�����������	
������ ���	�����
�� �

�&����&��
��
���� �������	������

� http://www.cs.washington.edu/education/courses/cse466/05sp/
� Class structure
� Business matters
� Grading
� Syllabus
� What we’ll be doing

�����������	
������ ���	�����
�� ��

�&������	����	�

� Lecture
� Closely linked to laboratory assignments
� Cover main concepts, introduced laboratory problems

� Lab
� Implementation of two projects
� Lab reports due prior with 30 minutes of start of next lab section

� Exams
� Two, based on lecture, lab, and reading

� Final demo
� During scheduled final time – participation required

� Reading and textbook
� Title: Embedded Systems Architecture : A Comprehensive Guide

for Engineers and Programmers Author:Tammy Noergaard
� CoursePak: CSE466 --Communications bldg, Rm B-042

�����������	
������ ���	�����
�� ��

.��
�����/����	�

� Lecture slides will be on line after class (links in several places)

� Get the CoursePak for CSE466 ($30.90, Communications B-042)

� Random lab partner assignments, changed mid-quarter

� Sign up for CSE466 mailing list

�����������	
������ ���	�����
�� ��

0	��
��

� Lab reports:
� Demonstration(s) required
� Brief answers to questions embedded in assignment
� Sometimes hand-in code
� Do with your partner

� Distribution:
� Labs: 40%
� Exams: 30% (27 April and 27 May)
� Demo: 10%
� Class Participation: 20%

�����������	
������ ���	�����
�� �"

�������1���2	�3����

� Two multi-week projects
� Four lab assignments each
� Different lab partners

� First project
� Familiarize with microcontroller
� Learn how to interface various devices
� Testing and debugging
� Basic communication between chips and between chip and PC

� Second project
� Wireless communication
� Embedded operating system
� Real-time issues
� Testing and debugging
� Emergent behavior of a collection of devices

�����������	
������ ���	�����
�� �%

�������1���2	�3�����(����)�*

� Project 1 – USB device
� Platform: ATmega16 AVR microcontroller
� Accelerometer and push-button used to control a tri-color LED
� Connects sensor and actuator to PC through USB port
� Color Controller

� Tilt the controller to change color mix
� Accelerometer senses movement of ball – tilting
� Push button activates sensing

4

�����������	
������ ���	�����
�� �'

�������1���2	�3�����(����)�*

� Project 2 – Ad hoc wireless network (“flock”)
� Platform: UC Berkeley wireless sensor nodes (UCB “motes”)
� Sound generation coordinated with neighbors and time of day
� Emergent behavior between different nodes
� Flock-III

� Install in Allen Center atrium
for pleasing auditory display

� Modify birdsong using techniques
from Evolutionary Computation

� Generate sound using Yamaha
FM synthesis Ring-tone IC

� Birds sing, have color, sense light

