
1

CSE 466 - Autumn 2004 Interrupts 1

Interrupts

Fundamental concept in computation
Interrupt execution of a program to “handle” an event

Don’t have to rely on program relinquishing control
Can code program without worrying about others

Issues
What can interrupt and when?
Where is the code that knows what to do?
How long does it take to handle interruption?
Can an interruption be, in turn, interrupted?
How does the interrupt handling code communicate its results?
How is data shared between interrupt handlers and programs?

CSE 466 - Autumn 2004 Interrupts 2

What is an Interrupt?

Reaction to something in I/O (human, comm link)
Usually asynchronous to processor activities
“interrupt handler” or “interrupt service routine” (ISR)
invoked to take care of condition causing interrupt

Change value of internal variable (count)
Read a data value (sensor, receive)
Write a data value (actuator, send)

Main Program
Instruction 1
Instruction 2
Instruction 3
Instruction 4
…..

ISR
Save state
Instruction 1
Instruction 2
Instruction 3
…..
Restore state
Return from Interrupt

CSE 466 - Autumn 2004 Interrupts 3

Interrupts

Code sample that does not interrupt
char SPI_SlaveReceive(void)
{
/* Wait for reception complete */
while(!(SPSR & (1<<SPIF)))
;
/* Return data register */
return SPDR;
}

Instead of busy waiting until a byte is received the
processor can generate an interrupt when it sets SPIF

SIGNAL(SIG_SPI) {
RX_Byte = SPDR

}

CSE 466 - Autumn 2004 Interrupts 4

Saving and Restoring Context

Processor and compiler dependent

Where to find ISR code?
Different interrupts have separate ISRs

Who does dispatching?
Direct

Different address for each interrupt type
Supported directly by processor architecture

Indirect
One top-level ISR
Switch statement on interrupt type

A mix of these two extremes?

CSE 466 - Autumn 2004 Interrupts 5

Saving and Restoring Context

How much context to save?
Registers, flags, program counter, etc.
Save all or part?
Agreement needed between ISR and program

Where should it be saved?
Stack, special memory locations, shadow registers, etc.
How much room will be needed on the stack?
Nested interrupts may make stack reach its limit – what then?

Restore context when ISR completes

CSE 466 - Autumn 2004 Interrupts 6

Ignoring Interrupts

Can interrupts be ignored?
It depends on the cause of the interrupt
No, for nuclear power plant temperature warning
Yes, for keypad on cell phone (human timescale is long)

When servicing another interrupt
Ignore others until done
Can’t take too long – keep ISRs as short as possible

Just do a quick count, or read, or write – not a long computation

Interrupt disabling
Will ignored interrupt “stick”?

Rising edge sets a flip-flop
Or will it be gone when you get to it?

Level changes again and its as if it never happened
Don’t forget to re-enable

2

CSE 466 - Autumn 2004 Interrupts 7

Prioritizing Interrupts

When multiple interrupts happen simultaneously
Which is serviced first?
Fixed or flexible priority?

Priority interrupts
Higher priority can interrupt
Lower priority can’t

Maskable interrupts
“don’t bother me with that right now”
Not all interrupts are maskable, some are non-maskable

CSE 466 - Autumn 2004 Interrupts 8

Interrupts in the ATmega16

External interrupts
From I/O pins of microcontroller

Internal interrupts
Timers

Output compare
Input capture
Overflow

Communication units
Receiving something
Done sending

ADC
Completed conversion

CSE 466 - Autumn 2004 Interrupts 9

Interrupt Jump Vector Table

Fixed location
in memory to find
first instruction for
each type of
interrupt
Only room for one
instruction

JMP to location
of complete ISR

CSE 466 - Autumn 2004 Interrupts 10

Chain of Events on Interrupt

Finish executing current instruction
Disable all interrupts
Push program counter on to stack
Jump to interrupt vector table
Jump to start of complete ISR
Save any context that ISR may otherwise change

Registers and flags must be saved within ISR and restored before it
returns – this is very important!

ReRe--enable interrupts if nested interrupts are okenable interrupts if nested interrupts are ok
Complete ISR’s codeComplete ISR’s code
ReRe--enable interrupts upon returnenable interrupts upon return
Jump back to next instruction before interruptionJump back to next instruction before interruption

Automatic

RETI

Compiler

SEI

CLI

CSE 466 - Autumn 2004 Interrupts 11

Shared Data Problem

When you use interrupts you create the opportunity for
multiple sections of code to update a variable.
This might cause a problems in your logic if an interrupt
updates a variable between two lines of code that are
directly dependent on each other (e.g. if statement)
One solution is to create critical sections where you
disable the interrupts for a short period of time while you
complete your logic on the shared variable

cli();
…..critical section code goes here…..
sei();

CSE 466 - Autumn 2004 Interrupts 12

External Interrupts

Special pins: INT0, INT1, INT2
Can interrupt on edge or level

Can interrupt even if set to be output pins
Implements “software interrupts” by setting output

3

CSE 466 - Autumn 2004 Interrupts 13

Closer Look at a Timer/Counter

Timer0/Counter0
Clear timer on compare match (auto reload)
Prescaler (divide clock by up to 1024)
Overflow and compare
match interrupts
Registers

Configuration
Count value
Output compare value

CSE 466 - Autumn 2004 Interrupts 14

Timer/Counter Registers

Timer/Counter
Control Register
TCCR0

CSE 466 - Autumn 2004 Interrupts 15

Timer/Counter Registers (cont’d)

Timer/Counter
Control Register
TCCR0

CSE 466 - Autumn 2004 Interrupts 16

Timer/Counter Registers (cont’d)

Timer/Counter
Control Register
TCCR0

CSE 466 - Autumn 2004 Interrupts 17

Timer/Counter Registers (cont’d)

CSE 466 - Autumn 2004 Interrupts 18

Setting Register Values

Defined names for each register and bit
Set timer to clear on match
Set prescaler to 1024

TCCR0 = (1<<WGM01) | (1<<CS02) | (1<<CS00);

Set count value to compare against

OCR0 = 150;

Set timer to interrupt when it reaches count

TIMSK = (1<<OCIE0);

4

CSE 466 - Autumn 2004 Interrupts 19

Writing an Interrupt Handler in C

Set and clear interrupt enable
sei();
cli();

Interrupt handler
SIGNAL(SIG_OUTPUT_COMPARE0)

{
i++;

}

Setting I/O registers
TCCR0 = (1<<WGM01) | (1<<CS02) | (1<<CS00);

Enabling specific interrupts
TIMSK = (1<<OCIE0);

CSE 466 - Autumn 2004 Interrupts 20

Analog to digital conversion

Use charge-redistribution technique
no sample and hold circuitry needed
even with perfect circuits quantization error occurs

Basic capacitors
sum parallel capacitance

C C 2C C 2C 4C

C 3C 7C

CSE 466 - Autumn 2004 Interrupts 21

Analog to digital conversion (cont’d)

Two reference voltage
mark bottom and top end of range of analog values that can be
converted (VL and VH)
voltage to convert must be within these bounds (VX)

Successive approximation
most approaches to A/D conversion are based on this
8 to 16 bits of accuracy

Approach
sample value
hold it so it doesn’t change
successively approximate
report closest match

VX

VL

VH

CSE 466 - Autumn 2004 Interrupts 22

A-to-D – sample

During the sample time the top plate of all capacitors is
switched to reference low VL

Bottom plate is set to unknown analog input VX

Q = CV
QS = 16 (VX - VL)

VX

VL

VH

-
+

VI

VL

VX

8 4 2 1 1VL

CSE 466 - Autumn 2004 Interrupts 23

A-to-D – hold

Hold state using logically controlled analog switches
Top plates disconnected from VL

Bottom plates switched from VX to VL

QH = 16 (VL - VI)
conservation of charge QS = QH

16 (VX - VL) = 16 (VL - VI)
VX - VL = VL - VI (output of op-amp)

VX

VL

VH

-
+

VI

VL

8 4 2 1 1

VL

CSE 466 - Autumn 2004 Interrupts 24

A-to-D – successive approximation

Each capacitor successively switched from VL to VH
Largest capacitor corresponds to MSB

Output of comparator determines bottom plate
voltage of cap

> 0 : remain connected to VH
< 0 : return to VL -

+

VI

VL

8 4 2 1 1

VL

VH

MSB LSB

1111 0000

5

CSE 466 - Autumn 2004 Interrupts 25

A-to-D example - MSB

Suppose VX = 21/32 (VH - VL) and already sampled
Compare after shifting half of capacitance to VH

VI goes up by + 8/16 (VH-VI) - 8/16 (VL-VI) = + 8/16 (VH - VL)
original VL - VI goes down and becomes
VL - (VI + .5 (VH - VL)) = VL - VI - .5 (VH - VL)

Output > 0

VX

VL

VH

VI (next)

.5 (VH - VL)
-
+

VI

VLVL

VH
8

4 2 1 1

CSE 466 - Autumn 2004 Interrupts 26

A-to-D example - (MSB-1)

Compare after shifting another part of cap. to VH
VI goes up by + 4/16 (VH-VI) - 4/16 (VL-VI) = + 4/16 (VH - VL)
original VL - VI goes down and becomes
VL - (VI + .25 (VH - VL)) = VL - VI - .25 (VH - VL)

Output < 0 (went too far)

VX

VL

VH

VI (prev)

.25 (VH - VL)

VI (next)

-
+

VI

VLVL

VH

8 4

2 1 1

CSE 466 - Autumn 2004 Interrupts 27

A-to-D example - (MSB-2)

Compare after shifting another part of cap. to VH
VI goes up by + 2/16 (VH-VI) - 2/16 (VL-VI) = + 2/16 (VH - VL)
original VL - VI goes down and becomes
VL - (VI + .125 (VH - VL)) = VL - VI - .125 (VH - VL)

Output > 0

VX

VL

VH

VI (prev)
.125 (VH - VL)

VI (next)

-
+

VI

VLVL

VH

8

4

2

1 1

CSE 466 - Autumn 2004 Interrupts 28

A-to-D example - LSB

Compare after shifting another part of cap. to VH
VI goes up by + 1/16 (VH-VI) - 1/16 (VL-VI) = + 1/16 (VH - VL)
original VL - VI goes down and becomes
VL - (VI + .0625 (VH - VL)) = VL - VI - .0625 (VH - VL)

Output < 0 (went too far again)

VX

VL

VH

.0625 (VH - VL)
-
+

VI

VLVL

VH

8

4

2 1

1

CSE 466 - Autumn 2004 Interrupts 29

A-to-D example final result

Input sample of 21/32
Gives result of 1010 or 10/16 = 20/32
3% error

-
+

VI

VLVL

VH

8

4

2

1 1

CSE 466 - Autumn 2004 Interrupts 30

A-to-D Conversion Errors

6

CSE 466 - Autumn 2004 Interrupts 31

Closer Look at A-to-D Conversion

Needs a comparator
and a D-to-A converter
Takes time to do
successive
approximation
Interrupt generated
when conversion is
completed

CSE 466 - Autumn 2004 Interrupts 32

A-to-D Conversion on the ATmega16

10-bit resolution (adjusted to 8 bits as needed)
65-260 usec conversion time
8 multiplexed input channels
Capability to do differential conversion

Difference of two pins
Optional gain on differential signal (amplifies difference)

Interrupt on completion of A-to-D conversion
0-VCC input range
2*LSB accuracy (2 * 1/1024 = ~0.2%)

Susceptible to noise – special analog supply pin (AVCC) and
capacitor connection for reference voltage (AREF)

CSE 466 - Autumn 2004 Interrupts 33

A-to-D Conversion (cont’d)

CSE 466 - Autumn 2004 Interrupts 34

A-to-D Conversion (cont’d)

Single-ended or differential
1 of 8 single-ended
ADCx – ADC1 at 1x gain
ADC{0,1} – ADC0 at 10x
ADC{0,1} – ADC0 at 200x
ADC{2,3} – ADC2 at 10x
ADC{2,3} – ADC3 at 200x
ADC{0,1,2,3,4,5} – ADC2 at 1x

CSE 466 - Autumn 2004 Interrupts 35

A-to-D Conversion (cont’d)

CSE 466 - Autumn 2004 Interrupts 36

A-to-D Conversion (cont’d)

7

CSE 466 - Autumn 2004 Interrupts 37

A-to-D Conversion (cont’d)

CSE 466 - Autumn 2004 Interrupts 38

A-to-D Conversion (cont’d)

CSE 466 - Autumn 2004 Interrupts 39

Writing an Interrupt Handler in C (again)

Ensure main program sets up all registers
Enable interrupts as needed
Enable global interrupts (SEI)
Write handler routine for each enabled interrupt

What if an interrupt occurs and a handler isn’t defined?

Make sure routine does not disrupt others
Data sharing problem
Save any state that might be changed (done by compiler)

Re-enable interrupts upon return
done by compiler with RETI

CSE 466 - Autumn 2004 Interrupts 40

Power modes

Processor can go to “sleep” and save power
Different modes put different sets of modules to sleep

Which one to use depends on which modules are needed to
wake up processor
Timers, external interrupts, ADC, serial communication lines, etc.

set_sleep_mode (mode);
sleep_mode ();

CSE 466 - Autumn 2004 Interrupts 41

Power modes (cont’d)

CSE 466 - Autumn 2004 Interrupts 42

Power modes (cont’d)

Wake up sources and active clocks

