LAST REVISED - 12/07/04 at 8:20pm
NOTE: Not all of the bird implementations need to be the same. The implementations must only meet the specifications outlined. Differences in bird behavior will not be penalized as long as the behavior is within the specifications contained in this document.
Flock Algorithm:

Within a single "bird", the flock algorithm that you will implement is as follows:

	A)
	INITIALIZATION STATE: (only used when bird is first turned on)

set SONG = Local # % 16

Wait to receive a packet of type AdjustGlobals then go to C
(optional: accept SingSongN, just keep the SONG = Local # % 16 instead of a random song)

	B)
	WAIT STATE

Wait to receive a packet of type AdjustGlobals or SingSongN

IF(AdjustGlobals)
set SONG = random song

On AdjustGlobals go to C

	IF(SingSongN)
set SONG = received in message

On SingSongN go to D

	C)
	CLEAR STATE

With radio off, clear FIFO data (all historical data)

Wait for random amount of time (1000- 4000 milliseconds)

	D)
	SING STATE

With radio off, sing birdsong(SONG),

If got to SING STATE from a SingSongN packet goto WAIT STATE after sending a SangSong message

	E)
	Start the radio and set listen timer for random t є [minListen, maxListen] milliseconds. Goto F (unless silent). Do not wait for listen timer to complete (done in state G.)

	F)
	Set a timer for minListen/2 milliseconds for sending a "I sang song" message when timer fired

	G)
	When listen timer runs out, decide next SONG (see below for algorithm.. You need to follow the specified algorithm)

	H)
	Repeat steps D through H.

Some Implementation Details:
The Atrium Group ID will be 122. Each mote will use the same group ID, and Node ID (TOS_LOCAL_ADDRESS) will be the number on your mote's label. Assume the label is a hexadecimal number. (e.g. 11, A1, A5, 55)

The first item in the data/payload section of a flock message is the address of the sender. There are two designators for the sender address in the message specifications: “Node0” and “TransmittingNodeNum”. The “Node0” designator is used to signify that a packet should only be processed if it was sent from the root node (address == 0). The “TransmittingNodeNum” designator signifies that packets should be accepted from any source.
There are 5 types of Active Messages your program must handle; they are as follows:

	AM #
	Flock Message / Packet

	50
	AdjustGlobals - A message from Node 0 containing global parameters for all birds.

uint16_t

Node0

uint16_t

Repetition

default 3

uint16_t

minListen

default 2000 millisec.

uint16_t

maxListen

default 15000 millisec.

uint16_t

Threshold

default 600

uint16_t

minThreshold

default 100

uint16_t

Probability

default 10

uint16_t

Silence

default 10

uint16_t

TransmitPower

default 1

uint16_t

StartledHopCount

default 1

	51
	StopandListen - A message from Node 0 telling you to stop and listen.

uint16_t

Node0

On receipt, go to B

	42
	SangSong - The "I sang song" message; a message from some other birdie indicating what song it sang.
 You also send this packet after singing.
Notes:

1) If you are sending this after a packet 52 SingSongN, set all data = 0 except your node num and song #.
2) The contents of a SangSong packet should be calculated when the song decision is made right before singing, NOT when the packet is sent.

uint16_t

TransmittingNodeNum

local # of node singing

uint16_t

SequenceNum

start at 1, increment each time you send this packet

uint16_t

songNum

song# that was sung

uint16_t

songWeight

usually same as Weightmax

uint16_t

WeightmaxSongNum

uint16_t

Weightmax

uint16_t

TopSong2Num

uint16_t

TopSong2Weight

runner-up weight

uint16_t

WeightminSongNum

uint16_t

Weightmin

uint16_t

TopNodeNum

Strongest node you've heard

uint16_t

TopNodeStrength

Highest TOS_msg_strength

	52
	SingSongN - A message from Node 0 telling you to sing song N immediately. Then Go To B

uint16_t

Node0

SingSongN immediately, then

uint16_t

SingSongN

send SangSong AM 42, then Go To B

	60
	Startled - a message from some other birdie indicating that they have been startled. Stop what you are doing and sing your startled message. After the startled message you should just continue the algorithm. Do NOT send a SangSong packet for the startle song. Instead send the startled message. Remember to decrement the HopCount when you send the message.

On reception, If (HopCount > 0) process message

 Else ignore message

uint16_t

TransmittingNodeNum

local # of startled node

uint16_t

HopCount

Number of hops remaining. If startled by radio message. Decrement value before sending.

uint16_t

StartledSeqNum

A randomly generated number that is stored to check to see if you have been startled by this startle packet before

While listening, collect the information on the surrounding songs being played (AM #42 type packets) in a 64-entry circular FIFO queue. Each queue entry should contain the following information:

	
	Uint16_t
	TransmittingNodeNum

	
	Uint16_t
	songNum

	
	Uint16_t
	TOS_msg_strength

Each entry writes over the oldest entry in the queue.

The algorithm for deciding the song to sing is as follows:

For all entries in our circular FIFO queue that stores the songs heard(up to 64 entries)
{
 // calculate weighti for songNum i == 0 to 15
 Weighti = sum of TOS_msg_strength in circular FIFO queue for each songNum
}
Find Weightmax == Largest Weight; WeightmaxSongNum is song with Weightmax
Find Weightmin == Smallest Weight (>0); WeightminSongNum is song with Weightmin

x = rand() % Probability
y = rand() % Silence

if (x == 0) SONG = WeightminSongNum
else if (y == 0) Silence… Don't sing a song-- go to E. Skip F.
else {
 if ((Weightmax < minThreshold) ||
 ((Weightmax > Threshold) &&
 (You have already sung WeightmaxSongNum more than Repetition times)))
 SONG = random song not among the last three songs
 you've sung more than Repetition times
 else
 SONG = WeightmaxSongNum
}

Method for determining when to startle a bird:

Use the ADC to trigger the bird being startled by detecting when there has been a change in the light level. A startled should be triggered when the 4 most significant bits of the ADC changes its value by 3 or more. You should be sampling the ADC approximately every second. If a startle occurs go immediately to SING_STATE and sing the startled song. After you finish singing the startled song then send a startled packet and return to the normal sing and listen, steps D through F. You do not send a SangSong packet for a startled.

The startle detection mechanism should only detect one startle for a single movement. We want to avoid two startles being caused by the same movement. For example if someone puts their hand over the bird an edge transition will be detected as the light level is reduced (the bird becomes startled) and as the person takes his hand away the light level increases causing a second edge detection (second startle event). A person walking by a bird obscuring the light should also only cause one startle song to be played. You will need to come up with a solution to this problem so the bird is only startled once. You will need to keep the startle mechanism working the same so that the bird can still be startled by quickly increasing or decreasing the light level. Reasonableness should be used when designing your solution. If someone leaves their hand over the bird for 1 hour or even 10 seconds it is fine to count the hand decreasing the light level as one startle and the hand moving away as a second startle. The goal is to design a solution so that a reasonable movement will only be detected once.
If you bird receives the startled packet then your bird should check to see if 1) (HopCount > 0) and 2) (StartledSeqNum != previousStartledSeqNuM). Basically check if your bird has already been startled by this startled sequence so that a birdie is not continually startled by the same initial startle. If these two checks are true, then your bird should become startled. After you finish singing the startled song, decrement the HopCount, store the startledSeqNum, and send a startled packet if HopCount is > 0, then return to the normal sing and listen, steps D through F..
Method for causing songs to diverge:
We want to make sure our flock algorithm is not dominated by a single song. Basically, we want to keep track of the songs that have been popular so that we can force the flock to move to another song. The “Threshold” and “Repetition” values are meant to ensure that songs are allowed to propagate through the flock, but then die off after a while. This growth and die off is accomplished by limiting the number of song repetitions once the “Threshold” is reached. The repetition count allows a strong song to propagate to a large number of nodes, but then once a song has played for a while, it should die off.

You will need to create a FIFO list of 3 songs that will basically act as a do-not sing list. You will increment the count on this list each time a song is sung that has a weight greater than the threshold (i.e. Weightmax > Threshold) Once the bird has sung a song over the “Threshold” value “Repetition” times you should pick a new song. Basically, if weightMax is above the “Threshold” value and the song has been sung greater than Repetitions, you should sing a random song not on your last three Repetitions list. (NOTE: The entire list is reset in state C.) Once a new song is above the Threshold repetitions times it will push the oldest song off the do-not-sing list. You will cycle through other songs, until something changes. You can always sing something, because you track only the last three songs sung greater than Repetition times that means there are thirteen songs not on that list. The count of the number of times you've sung a song should be incremented only when you sing the weightMax song and the weight of that song is above the threshold value. This count is what you'll compare against Repetition to determine whether or not the song can no longer be sung. If the song count is greater than “Repetition” then you should no longer play the song and should NOT choose that song when choosing a random song. The do-not-sing list causes the strongest current songs to die off. [REMINDER: You may do more here to get the flock to diverge, but this is the minimum required.]

Bird Calls/Songs:
Make sure to turn EVERYTHING off (including the radio and timers) when having your bird sing. Call stop on the modules. Use the provided SongControl.nc interface to get HPLSongGeneration.nc to generate the birdie calls/songs. You will also need to download these header files songData.h , songConstants.h and cse466_progspace.h
The average bird song length is 2.845 seconds. Download birdsong clips.
The 16 bird songs in numbered order are:

	songNum
	Length (sec)
	Bird

	0
	1.995
	Black-throated Blue Warbler

	1
	2.045
	Blackpoll Warbler

	2
	2.34
	Brown Creeper

	3
	3.565
	Northern Cardinal

	4
	3.115
	Indigo Bunting

	5
	2.11
	Dark-eyed Junco

	6
	1.625
	Mourning Warbler

	7
	2.71
	Baltimore Oriole

	8
	1.885
	Osprey

	9
	3.335
	Ovenbird

	10
	4.815
	Song sparrow

	11
	4.905
	Rufous-sided Towhee

	12
	3.17
	Tufted Titmouse

	13
	3.705
	Veery

	14
	2.35
	White-throated Sparrow

	15
	1.85
	Wilson's Warbler

Important Notes:
TOS_Msg.strength is automatically updated with the packet strength during reception.

For the purposes of the final project assume that Timer.start() takes milliseconds. If we give you a time of 1 second assume if you set a timer to fire in 1000ms it will fire 1 second later. For the flock to be successful we all must use the same assumptions.

You can set the transmission power level using the function CC1000Control.SetRFPower(int) in component CC1000ControlM.

Use CSE466RandomLFSR.nc to generate the random numbers for the flock calculation instead of tos/system/RandomLFSR.nc. A possible problem with RandomLSFR.nc can occur if your other components use that module (such as the radio) and if you call init as you bring up the radio after singing it will cause RandomLFSR.nc to go back to its original seed. RandomLFSR is seeded from the node ID, so each mote will have a different number sequence:

/* Initialize the seed from the ID of the node */
async command result_t Random.init()

/* Return the next 16 bit random number */
async command uint16_t Random.rand()

When filling the message packets use the same “endian” as the Atmega.
Do NOT use dynamic memory allocations (such as malloc) on the Atmega.
