What is SAMPLING?
Process by which an analog signal is measured, often millions of times per second for video, in order to convert the analog signal to digital.

Data Representation - Digital vs. Analog
- Digital: 1s and 0s, (1001 1011)₂
 - Advantages
 - Disadvantages
- Analog: 3.141592687..., 1/3
 - Advantages
 - Disadvantages

Digital Data Acquisition
- Data Representation - Digital vs. Analog
- Analog-to-Digital Conversion
- Number Systems
 - Binary Numbers
 - Binary Arithmetic
- Sampling & Aliasing
Analog-to-Digital Conversion

- Converts analog voltages to binary integers.

Sampling

Analog Voltage \(\xrightarrow{ADC} \) Binary Integers (0s & 1s)

Input Range

- Unipolar: \((0, V_{ADC MAX}) \)
- Bipolar: \((-V_{ADC MAX}, V_{ADC MAX}) \) (Nominal Range)
- Clipping:

 If \(|V_{IN}| > |V_{ADC MAX}| \), then \(|V_{OUT}| = |V_{ADC MAX}| \)

Quantization Interval (Q)

- \(n \) bit ADC, the input range is divided into \(2^n - 1 \) intervals.

3 bit ADC:

\[
Q = \frac{V_{ADC MAX} - V_{ADC min}}{2^n - 1}
\]
Analog-to-Digital Conversion

- **Voltage to Integer Code**
 - For a 3-bit ADC, we have:
 - \(V_{ADC\text{max}} \):
 - \(V_{ADC\text{min}} \):
 - \(V_{IN} \):
 - \(Q \):

 Positive Coding:
 \[
 \text{Code} = \text{Round} \left[\frac{V_{IN} - V_{ADC\text{min}}}{Q} \right]
 \]

 Positive and Negative Coding:
 \[
 \text{Code} = \text{Round} \left[\frac{V_{IN}}{Q} \right]
 \]

Analog-to-Digital Conversion

- **Convert Code to Estimated Voltage**
 - \(V_{ADC\text{max}} \):
 - \(V_{ADC\text{min}} \):
 - \(V_{IN} \):
 - \(Q \):
 - \(\text{Code} \):

 \[
 \hat{V}_{IN} = \text{Code} \times Q + V_{offset}
 \]

 \(V_{offset} \): voltage corresponding to code 0

Ex: 3 bit ADC, \(V_{ADC\text{min}} = -2 \) V and \(V_{ADC\text{max}} = 1.5 \) V
\(V_{IN} = 1.25 \) V

Q: Find the integer code for \(V_{IN} \) using only positive integers and using both positive and negative integers.

Ex: 3 bit ADC, \(V_{ADC\text{min}} = -2 \) V and \(V_{ADC\text{max}} = 1.5 \) V

Code = 2

Q: What is the estimated input voltage \(V_{IN} \)?

Ex: 3 bit ADC, \(V_{ADC\text{min}} = -2 \) V and \(V_{ADC\text{max}} = 1.5 \) V

Code = 2 (Bipolar Coding)

Q: What is the estimated input voltage \(V_{IN} \)?
Analog-to-Digital Conversion

- **Maximum Quantization Error**

 \[V_{\text{ADCmin}} \leq \bar{V}_n \leq V_{\text{ADCmax}} \]

 Any \(V_n \in \left[\frac{\bar{V}_n}{2}, \bar{V}_n + \frac{\bar{V}_n}{2} \right] \) will be coded to \(\bar{V}_n \)

- Maximum Quantization Error = \(Q/2 \)

Binary Numbers

- **Binary Representation of Integers**

 \[\frac{d_n \times 2^{n-1} + d_{n-1} \times 2^{n-2} + \ldots + d_1 \times 2 + d_0}{2} \]

 where \(d_i \) is 0 or 1.

 - \(n \) bits binary: represents \(2^n \) integers.

 Ex: 4 bit Binary: \(2^4 = 16 \) integers, (0, 1, 2, ..., 15).

 - MSB: Most Significant Bit
 - LSB: Least Significant Bit

Binary Numbers - Coding

- **Positive Integers**
 - **Straight Binary**

<table>
<thead>
<tr>
<th>Decimal ((10^1 10^0))</th>
<th>Binary ((2^2 2^1 2^0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>0 1</td>
<td>0 0 0 1</td>
</tr>
<tr>
<td>0 2</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>0 3</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>0 4</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>0 5</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>0 6</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td>0 7</td>
<td>0 1 1 1</td>
</tr>
</tbody>
</table>

Binary Numbers - Coding

- **Straight Binary (cont.)**

<table>
<thead>
<tr>
<th>Decimal ((132)_{10})</th>
<th>Binary ((1011 0100)_{2})</th>
</tr>
</thead>
</table>
 | Q: What are the decimal integers represented by an \(n \) bit straight binary number?
Binary Number - Coding

- **Binary Coded Decimal (BCD)**
 - Used a lot in LED digital display.
 - Each digit of the decimal number is separately coded into binary number.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
</tr>
</tbody>
</table>

 Ex: \((364)_{10} = (0011\ 0110\ 0100)_{BCD}\)

Binary Numbers - Coding

- **2's Complement**
 - Positive Numbers:
 \((0 \ldots 2^{(n-1)} - 1)\)
 - Negative Numbers are represented by their 2's complements:
 \[6 \text{ (6 bit straight binary) } \rightarrow (0110),\]
 \[\text{(Reverse 0s and 1s)} \rightarrow (1001),\]
 \[\text{(Add 1)} \rightarrow (1010)\]
 \[\text{2's complement} \rightarrow -6\]

 Binary: \[1110\] Decimal: \[-2\]

 MSB (Sign Bit)

Binary Numbers - Coding

- **2's Complement (cont.)**
 - Number of bits is important.
 - \(n\) bit 2's complement numbers can represent integers from:

 \[-\left(2^{(n-1)}\right) \rightarrow 0 \rightarrow \left(2^{(n-1)} - 1\right)\]

 - Quick way of getting 2's complement numbers:
 \[8\text{ bit numbers: } -84 \rightarrow 84 = (0101\ 0100)_{2}\]

 \[Q:\text{What is the largest positive integer and the smallest negative integer that a 5 bit 2's complement number can represent?}\]

 \[Q:\text{What are the 8 bit 2's complement representations of } 81\text{ and } -102?\]
Binary Arithmetic

- Addition
 - $0 + 0 = 0$
 - $0 + 1 = 1, 1 + 0 = 1$
 - $1 + 1 = 0, \text{ carry 1}$

\[
\begin{array}{c}
4 \\
+ 6 \\
\hline
10 \\
= (1010)_2
\end{array}
\]

\[
\begin{array}{c}
\text{Ex: } 32 + 75 = \\
4 - 32 =
\end{array}
\]

Why A/D-conversion?

- Signals are analog by nature
- ADC necessary for DSP
- Digital signal processing provides:
 - Close to infinite SNR
 - Low system cost
 - Repetitive system

- ADC bottle necks:
 - Dynamic range
 - Conversion speed
 - Power consumption

A/D-converter basics

Quantization noise

N-bit converter: $\delta = \frac{V_{FSR}}{2^n}$
Quantization noise (2)

- Noise energy:
 \[V_{(RMS)}^{n} = \frac{1}{\sqrt{2\pi}} V_{(RMS)} \Delta f \, d\Delta f = \sqrt{\frac{\Delta f}{12}} \]

- Signal energy:
 \[V_{(RMS)}^{s} = \frac{\Delta f}{2\sqrt{2}} \]

\[SNR = 6.02 N + 176[dB] \]

Successive approximation ADC

- N clock cycles conversion
 \[E_{in} = E_{n} N \]

- High resolution (selfcalibration)

- Easy implementation
 - Distortion limited by component matching
 - Need high frequency clock

\[F_{convers} = N F_{e} \]

Low speed

4 Steps of Analog / Digital Conversion

- Antialiasing (filters)
- Sampling (MHz)
- Quantizing (bits)
- Encoding

Step 1: Antialiasing

- Sometimes an electronic signal will contain a range of frequencies that is greater than the range of frequencies contained in the information-bearing signal.

For Example:
Step 1: Antialiasing
- Most information in a speech signal is contained in frequencies below 4 kHz, but noise and other factors may introduce frequency components greater than 4 kHz into an electronic speech signal.

Step 2: Sampling
- Value of the analog signal is read at evenly spaced time intervals.
- Sample rate (frequency) is measured in megahertz.
- 1 mHz = 1,000,000 cps.
- (Cycles per second).
Step 3: Quantization

- The digital signal is defined only at the points at which it is sampled.

The height of each vertical bar can take on only certain values, shown by horizontal dashed lines, which are sometimes higher and sometimes lower than the original signal, indicated by the dashed curve.

Step 3: Quantization

- If the graphic has 11 quantization levels, how many bits are needed to encode each sample?

- 4 bits… why?
- 1 bit would allow up to 2 levels
- 2 bits would allow up to 4 levels
- 3 bits would allow up to 8 levels
- 4 bits would allow up to 16 levels
Step 3: Quantization

- The difference between a quantized representation and an original analog signal is called the quantization noise.
- The more bits for quantization of a signal, the more closely the original signal is reproduced.

Step 3: Quantization

- Using higher sampling frequency and more bits for quantization will produce better quality digital video and audio.
- But for the same length of video and audio, the file size will be much larger than the low quality signal.

Step 3: Quantization

- The number of bits available to describe sampling values determines the resolution or accuracy of quantization.
- For example, if you have 8-bit analog to digital converters, the varying analog voltage must be quantized to 1 of 256 discrete values;
- a 16-bit converter has 65,536 values.

Step 4: Encoding

- Conversion of data into machine readable format.
Nyquist Theorem

- The sampling rate must be equal to, or greater than, twice the highest frequency component in the analog signal.

Nyquist Theorem

- Stated differently:
 - The highest frequency which can be accurately represented is one-half of the sampling rate.

Nyquist Theorem

- A theorem, developed by Harry Nyquist, which states that an analog signal waveform may be uniquely reconstructed, without error, from samples taken at equal time intervals.
Error
- Sampling an analog signal can introduce ERROR.
- ERROR is the difference between a computed, estimated, or measured value and the true, specified, or theoretically correct value.

Nyquist Theorem
- By sampling at TWICE the highest frequency:
 - One number can describe the positive transition, and...
 - One number can describe the negative transition of a single cycle.

Nyquist Theorem
The vertical lines are sample intervals, and the white dots are the crossing points - the actual samples taken by the conversion process.

Nyquist Theorem
The sampling rate was below the Nyquist frequency, so the reconstructed waveform does not accurately reproduce the original:
Nyquist Theorem

This under-sampling results in aliasing which shows up as noise in digitized sound. To correct the aliasing, A/D converters use lowpass filters to remove all signals above the Nyquist frequency. To eliminate aliasing and to get high-fidelity sound, use a high sample rate.

Frequency aliasing

- When the highest frequency of the signal F_{input} is greater than half the sampling ($F_{sampling}/2$).
- E.g. $F_{input} = 20$KHz, $F_{sampling}$ must be over 40KHz.
- Remedy: Use a low pass filter to cut off the input high frequency content before ADC sampling.

Method to reduce aliasing noise

To correct aliasing, A/D converters use low pass filters to remove high frequency before sampling.

- **Low Pass Filter:** $f_{corner}=20$KHz
- **ADC Sampling at 40$KHz**
- **Gain(dB)**: 0
- **3dB cut off**

Input voltage = V

output code = n

0110001
0100010
0100100
0101011
::
::

freq. [20KHz]

- e.g. Max freq $= 20$KHz

upper => sampling 6 times per cycle($fs=6f$);
middle => sampling 3 times per cycle($fs=3f$);
lower => sampling 6 times in 5 cycles, from[1]
AVR ADC Features
- Successive approximation w/ sample & hold
- Up to 8 single ended channels and up to 7 differential channels
- 10-Bit resolution
- Gain Stage
- Configurable conversion time
- Accuracy:
 - down to 65 ms conversion time: 10bits ± 0.5LSB
 - down to 12 ms conversion time: 8bits ± 0.5LSB
- Free-run and single conversion modes
- Interrupt on conversion complete
- CPU Turn-Off Noise Reduction