Preface

Preface

This manual explains how to use the RTX51 Tiny Rea-Time Operating System and gives
an overview of the functionality of RTX51 Full. The manual is not a detailed introduc-
tion to real-time applications and assumes that you are familiar with Keil C51, A51, the
related Utilities, the DOS operating system and the hardware and instruction set of the
8051 microcontrollers.

The following literature is recommended as an extensive introduction in the area of real-
time programming:

Deitel, H.M., Operating Systems, second edition,
Addison-Wesley Publishing Company, 1990

Ripps, David, A Guide to Rea-Time Programming, Englewood Cliffs, N.J,
Prentice Hall, 1988/

Allworth, S.T., Introduction to Real-Time Software Design,
Springer-Verlag Inc., New Y ork

This user’s guide contains 6 parts:

Part 1:

Part 2

Part 3:

Part 4.

Part 5:

Part 6:

Overview, describes the functionality of a the RTX51 real-time opeating
systems and discusses the basic features and differences of RTX51 Tiny and
RTX51 Full. Also included are the technical data of RTX51 Full and
RTX51 Tiny.

Requirements and Definitions, discusses the development tools and the
target system requirements of RTX51 Tiny, explains the terms used in the
the RTX51 Tiny manual and decribes the task definition.

Creating RTX51 Tiny Applicaitons, describes the steps necessary to cre-
ate RTX51 Tiny applications.

Library Functions, provides a reference for all RTX51 Tiny library rou-
tines.

System Debugging, describes the stack handling of RTX51 Tiny and con-
tains information about the system debugging.

Applications Examples, contains several examples using RTX51 Tiny and
describes the software development process. This information can be used
asaguideline for your real-time designs.

2 Contents

OVERVIEW .ot e e e e e e e e e e e e eaaeeeanns 7
INEFOTUCTION ...ttt r e nn s 7

SINGIE TASK PrOGIaM.....c.cciiiiiiitisieeieeieeeeie sttt be b s e e see e sbesae s 8

RoUN-RODIN Program.......c.cooii et 8

Round-Robin Scheduling With RTX51L.......ccoiiiiiieieee e 8

RTXSL EVENLS ..ottt s s 9

Compiling and Linking With RTX5L ..ot 11
REQUIREMENTS AND DEFINITIONSouiii e 15
Development TOOI REQUITEMENTS........c.ciieerieerie sttt ere e eeseesbeseesbesaeeneenee e eeeseeseesaeens 15
Target SYStEM REQUITEMENTS.cuiieiieieiteeieeeee sttt sttt e et se e besee e sbe e e eseeseebeseesbesseeneaneeneanseseeseeneas 15
INtErTUPE HANAITNG ...t 15

Reentrant FUNCLIONS..........cocciiiieiiee s 16

C51 Library FUNCHIONS........coiiiieieieiee et 16

Usage of Multiple Data Pointers and Arithmetic UNitScooeeeiienieiencnenccee, 16

REGISLEIDANKS. ... e e 17

TASK DEFINITION ...ttt bbbt b e bt bbbt b e et bt e e bbbt nn s 17
TASK IMBNAGEMENT ...ttt ettt e bt ehe et e st e e e besaesaeebeeaeeneeae e beseesbeebeeneeneeeanseseeseeneas 17
LIS 1S T 1 o PSSP 18

EVENES ..o e s 18

CREATING RTX51 TINY APPLICATIONS ..o 21
RTX51 TiNY CONFIQUIBLION........eitiiti ittt sttt see bt e e e e beseesbesaeeneene e e eneeseeseesaeens 21
Compiling RTX5L TiNY PrOgraMS.ccueeuieeeiereesesieseeeteseeeeseeseseesteseesseesesseeesseessessessessesneensessessessessens 23
Linking RTX5L TiNY PrOGIaIMScouieuiiieieieee ettt eteeee e seestestessesseseeseeseesseseesaessesneeneensansessessessens 23
Optimizing RTX5L TiNY PrOgIraMS.ccueeeeiereeresiesieeteeeeeeseesteseestesiesseeseeseessseessessessessessensessessessessens 23
RTX51 TINY SYSTEM FUNCTIONS 25
FUNCEION REFEIENCE ...ttt b et b e bbbt b e bt b e 26

1S = 0o IS o ! SRS 27

(oL e == =T o= SRR 28

Preface 3

(ol o (= (R = = S 29

(o 1S R0 S 1= (SR = = SRR 30

(oIS Ul a T gTo ['S S o PSS 31

(oIS gE= = g o = To 0 OSSPSR PP STRUP P 32

OS5 Wttt ettt ettt h bt b bt b e E et b e R e R R bR e R R e R R e bRt bRt bRt n e n et 34

OS5 WAITL ...ttt b bbbt b e R e e bR e e bR e R R e Rt R e bRt b bt bRt r e n e 36

OS5 WAITZ.. .ttt ettt bbbt b e b et b e e E e e Rt R e e bR e R R e Rt R e Rt Rt bRt bRt n e n e 37
SYSTEM DEBUGGING ... oot e e e e e e e e e ees 41
SEACK IM@NAGEIMIENEttt ettt be bt ebe e st e s e e e e beseeebeeaeeaeeae e e enseseeebesaesaeeneeneanseneens 41
Debugging With SCOPE-5L..... ..ottt et b et b st e e e e e b e seesaesbeeneene e e eneees 41
APPLICATION EXAMPLES ...t 45
RTX_EXZL: Your First RTX5L PrOgram......c.cocceouereireresesieeeeeeseeie e st ie e sseseeeeseesseseeseessesnesneenesnseses 45
RTX_EX2: A Simple RTX5L APPIICALTONcoueiiiiiiesie sttt s 47
TRAFFIC: A Traffic Light CONIOIENoieiieeeeeee ettt s ne e 49
Traffic Light Controller Commands..........cccceouererereneneneeee e 49

SOFIWAIE ...ttt bbbttt b et 49

Compiling and Linking TRAFFIC........ooiieeee e 62

Testing and Debugging TRAFFIC ..o 62

RTX Tiny

Notational Conventions

This manual uses the following format conventions:

Examples
BL51

Couri er

KEYS
ALT+<x>

CTRL+<x>

Description

Bold capital texts used for the names of executable programs, data files,

source files, environment variables, and other commands entered at the

DOS command prompt. This text usually represents commands that you
must type in literally. For example:

CLS DIR DS51.INI
C51 A51 SET

Note that you are not actually required to enter these commands using all
capital letters.

Text in this typeface is used to represent the appearance of information
that would be displayed on the screen or printed on the printer.

This typeface is also used within the text when discussing or describing
items which appear on the command line.

Text in this typeface represents actual keys on the keyboard. For
example, “Press Ent er to Continue.”

Indicates an Alt key combination; the Al t and the <x> key must be
simultaneously pressed.

Indicates an control key combination; the Ct r| and the <x> key must be
simultaneously pressed.

RTX Tiny

Overview

RTX51 is a multitasking real- time operating system for the 8051 family of processors.
RTX51 simplifies software design of complex, time- critical projects.

There are two distinct versions of RTX51 available;

RTX51 Full Performs both round- robin and preemptive task switching using up
to four task priorities. RTX51 works in parallel with interrupt
functions. Signals and messages may be passed between tasks us-
ing a mailbox system. You can alocate and free memory from a
memory pool. You can force a task to wait for an interrupt, time-
out, or signal or message from another task or interrupt.

RTX51 Tiny Is a subset of RTX51 that will easily run on single-chip 8051 sys-
tems without any external data memory. RTX51 Tiny supports
many of the features found in RTX51 with the following excep-
tions: RTX51 Tiny only supports round- robin and the use of sig-
nals for task switching. Preemptive task switching is not sup-
ported. No message routines are included. No memory pool alo-
cation routines are available.

The remainder of this chapter uses RTX51 to refer to both variants. Differences between
the two are so stated in the text as their need becomes applicable.

Introduction

Many microcontroller applications require simultaneous execution of multiple jobs or
tasks. For such applications, areal- time operating system (RTOS) allows flexible sched-
uling of system resources (CPU, memory, etc.) to several tasks. RTX51 implements a
powerful RTOS which is easy to use. RTX51 works with all 8051 derivatives.

Y ou write and compile RTX51 programs using standard C constructs and compiling them
with C51. Only afew deviations from standard C are required in order to specify the task
ID and priority. RTX51 programs also require that you include the rea - time executive
header file and link using the BL51 Linker/Locator and the appropriate RTX51 library
file

8 RTX51 Real-Time Operating System

A standard C program starts execution with the main function. In an embedded applica-
tion, main is usually coded as an endless loop and can be thought of as a single task which
is executed continuously. For example:

1 Single Task Program

int counter;

void main (void) {
counter = 0;

while (1) { /* repeat forever */
count er ++; /* increnment counter */
}
}

Round- Robin Program

A more sophisticated C program may implement what is called a round- robin pseudo-
multitasking scheme without using a RTOS. In this scheme, tasks or functions are called
iteratively from within an endless loop. For example:

int counter;

void main (void) {
counter = O;

while (1) { /* repeat forever */
check_serial _io ();
process_serial _cmds (); /* process serial input */
check_kbd_io ();
process_kbd _cnds (); /* process keyboard input */
adjust _ctrlr_parns (); /* adjust the controller */
count er ++; /* increnent counter */

}
}

Round- Robin Scheduling With RTX51

RTX51 also performs round- robin multitasking which allows quasi- parallel execution of
several endless loops or tasks. Tasks are not executed concurrently but are time- sliced.
The available CPU time is divided into time dices and RTX51 assigns a time dlice to
every task. Each task is allowed to execute for a predetermined amount of time. Then,
RTX51 switches to another task that is ready to run and allows that task to execute for a
while. The time dlices are very short, usualy only a few milliseconds. For this reason, it
appears as though the tasks are executing simultaneously.

RTX Tiny

RTX51 uses a timing routine which is interrupt driven by one of the 8051 hardware tim-
ers. The periodic interrupt that is generated is used to drive the RTX51 clock.

RTX51 does not require you to have a main function in your program. It will automati-
cally begin executing task 0. If you do have a main function, you must manually start
RTX51 using the os create task function in RTX51 Tiny and the os start system
function in RTX51.

The following example shows a simple RTX51 application that uses only round- robin
task scheduling. The two tasks in this program are simple counter loops. RTX51 starts
executing task 0 which is the function names j ob0. This function adds another task
cadled jobl. After jobO executes for a while, RTX51 switches to j obl. After
j obl executesfor awhile, RTX51 switches back to j ob0. This processis repeated in-
definitely.

#i ncl ude <rtx51tny. h>

int counterO;
int counterl;

void jobO (void) _task_ 0 {

os_create (1); /* mark task 1 as ready */
while (1) { /* | oop forever */
count er 0++; /* update the counter */
}
}
void jobl (void) _task_ 1 {
while (1) { /* |l oop forever */
count er 1++; /* update the counter */
}
}

RTX51 Events

Rather than waiting for a tasks time dice to be up, you can use the os wait function to
signal RTX51 that it can let another task begin execution. This function suspends execu-
tion of the current task and waits for a specified event to occur. During this time, any
number of other tasks may be executing.

Using Time- outs with RTX51

The simplest event you can wait for with the os wait function is a time- out period in
RTX51 clock ticks. This type of event can be used in a task where a delay is required.
This could be used in code that polled a switch. In such a situation, the switch need only
be checked every 50ms or so.

The next example shows how you can use the os wait function to delay execution while
allowing other tasks to execute.

10 RTX51 Real-Time Operating System

#i ncl ude <rtx51tny. h>

int counterO;
int counterl;

void jobO (void) _task_ 0 {

os_create (1); /* mark task 1 as ready */
while (1) { /* | oop forever */
count er 0++; /* update the counter */
os_ wait (K. TMO 3); /* pause for 3 clock ticks */
}
}
void jobl (void) _task_ 1 {
while (1) { /* |l oop forever */
count er 1++; /* update the counter */
os_wait (K. TMD 5); /* pause for 5 clock ticks */
}
}

In the above example, j ob0 enables j obl as before. But now, after incrementing
counter0, jobO calsthe os wait function to pause for 3 clock ticks. At this time,
RTX51 switches to the next task, whichis j ob1. After j ob1l increments count er 1,
it too calls os wait to pause for 5 clock ticks. Now, RTX51 has no other tasks to exe-
cute, so it enters an idle loop waiting for 3 clock ticks to elapse before it can continue
executing j obO.

The result of this example isthat count er 0 gets incremented every 3 timer ticks and
count er 1 getsincremented every 5 timer ticks.

Using Signals with RTX51

You can use the os wait function to pause a task while waiting for a signal (or binary
semaphore) from another task. This can be used for coordinating two or more tasks.
Waiting for a signal works as follows: If atask goes to wait for a signal, and the signal
flag is O, the task is suspended until the signal is sent. If the signal flag is already 1 when
the task queries the signal, the flag is cleared, and execution of the task continues. The
following example illustrates this:

#i ncl ude <rtx51tny. h>

int counterO;
int counterl;

void job0 (void) _task_ 0 {

os_create (1); /* mark task 1 as ready */
while (1) { /* | oop forever */
if (++tcounter0 == 0) /* update the counter */
os_send_signal (1); /* signal task 1 */
}

RTX Tiny

11

void jobl (void) _task_ 1 {

while (1) { /* |l oop forever */
os_ wait (K SIG 0, 0); /* wait for a signal */
count er 1++; /* update the counter */
}

}

In the above example, j ob1l waitsuntil it receives asignal from any other task. When it
does receive a signdl, it will increment count er 1 and again wait for another signal.
j ob0 continuoudly increments count er O until it overflowsto 0. When that happens,
j ob0 sendsasigna to j obl and RTX51 marks j obl asready for execution. j obl
will not be started until RTX51 getsits next timer tick.

Priorities and Preemption

One disadvantage of the above program exampleisthat j ob1 isnot started immediately
whenitissignaled by j ob0. In some circumstances, thisis unacceptable for timing rea-
sons. RTX51 allows you to assign priority levels to tasks. A task with a higher priority
will interrupt or pre-empt a lower priority task whenever it becomes available. This is
called preemptive multitasking or just preemption.

NOTE Preemption and priority levels are not supported by RTX51 Tiny.

Y ou can modify the above function declaration for j ob1 to giveit a higher priority than
j ob0. By default, all tasks are assigned a priority level of 0. Thisis the lowest priority
level. The priority level can be 0 through 3. The following example shows how to define
j obl with apriority level of 1.

void jobl (void) _task_ 1 _priority_ 1 {

while (1) { /* | oop forever */
os_ wait (K SIG 0, 0); /[* wait for a signal */
count er 1++; /* update the counter */
}

}
Now, whenever j ob0 sendsasignal to j ob1, j obl will start immediately.

Compiling and Linking with RTX51

RTX51 isfully integrated into the C51 programming language. This makes generation of
RTX51 applications very easy to master. The previous examples are executable RTX51
programs. Y ou do not need to write any 8051 assembly routines or functions. You only
have to compile your RTX51 programs with C51 and link them with the BL51
Linker/Locator. For example, you should use the following command lines if you are
using RTX51 Tiny.

C51 EXAMPLE. C

BL51 EXAMPLE. OBJ RTX51TI NY

Use the following command lines to compile and link using RTX51.

1

12 RTX51 Real-Time Operating System

C51 EXAMPLE. C
BL51 EXAVPLE. OBJ RTX51

Interrupts

RTX51 works in parallel with interrupt functions. Interrupt functions can communicate
with RTX51 and can send signals or messages to RTX51 tasks. RTX51 Full allows the
assignment of interruptsto atask.

Message Passing

RTX51 Full supports the exchange of messages between tasks with the functions: SEND
& RECEIVE MESSAGE and WAIT for MESSAGE. A message is a 16-bit value, which
can be interpreted as a number or as a pointer to a memory block. RTX51 Full supports
variable sized messages with a memory pool system.

CAN Communication

Controller Area Networks are easily implemented with RTX51/CAN. RTX51/CAN isa
CAN task integrated into RTX51 Full. A RTX51 CAN task implements message passing
via the CAN network. Other CAN stations can be configured either with or without
RTX51.

BITBUS Communication

RTX51 Full covers Master and Slave BITBUS tasks supporting message passing with the
Intel 8044.

Events

RTX51 supports the following events for the WAIT function:
Timeout: Suspends the running task for a defined amount of clock ticks.

Interval: (RTX51 Tiny only) is similar to timeout, but the software timer is not
reset to allow generation of periodic intervals (required for clocks).

Signal: For inter task coordination.
Message: (RTX51 Full only) for exchange of messages.
Interrupt: (RTX51 Full only) A task can wait for 8051 hardware interrupts.

Semaphore: (RTX51 Full only) binary semaphores for management of shared
System resources.

RTX51 Functions

The following table shows all RTX51 functions;, RTX51 Tiny supports only the functions
marked with (*). (Timings are measured with RTX51 Full)

Execution Time

Function Description

cycles
os_create (*) move a task to execution queue 302
os_delete (*) remove a task from execution queue 172

os_send_signal (*)

os_clear_signal (*)
isr_send_signal (*)
os_wait (*)

sage
os_attach_interrupt
os_detach_interrupt
os_disable_isr
os_enable_isr
os_send_message/
os_send_token

isr_send_message
isr_recv_message
os_create_pool
0s_get_block
os_free_block
os_set_slice

send a signal to a task (call from tasks)

delete a sent signal
send a signal to a task (call from interrupt)
wait for event

assign task to interrupt source

remove interrupt assignment

disable 8051 hardware interrupts

enable 8051 hardware interrupts

send a message or set a semaphore (call
from task)

send a message (call from interrupt)
receive a message (call from interrupt)
define a memory pool

get a block from a memory pool

return a block to a memory pool
define RTX51 system clock value

408 with task switch.

316 with fast task switch
71 without task switch

57

46

68 for pending signal
160 for pending mes-

119

96

81

80

443 with task switch
343 with fast task switch
94 without task switch
53

71 (with message)

644 (size 20 * 10 bytes)
148

160

67

Additiona DEBUG and SUPPORT functions. check mailboxes,
check_tasks, check_mail, check _pool, set_int_mask, reset_int_mask.

check_task,

CAN Functions (only available with RTX51 Full)

CAN controllers supported: Philips 82C200, 80C592 and Intel 82526 (more CAN con-
trollersin preparation).

CAN Function Description

can_task_create

create the CAN communication task

can_hw_init CAN controller hardware initialization
can_def_obj define the communication objects

can_start / can_stop start and stop the CAN communication
can_send send an object over the CAN bus

can_write write new data to an object without sending it
can_read read an objects data direct

can_receive receive all not bound objects

can_bind_obj
can_unbind_obj
can_wait
can_request
can_get_status

bind an object to a task; task is started when object is received
untie the binding between task and object

wait for receiving of a bound object

send a remote frame for the specified object

get the actual CAN controller status

14 RTX51 Real-Time Operating System

Technical Data

Description RTX51 Full RTX51 Tiny

Number of tasks 256; max. 19 tasks active 16

RAM requirements 40 .. 46 bytes DATA 7 bytes DATA
20 .. 200 bytes IDATA (user stack) 3 * <task count> IDATA
min. 650 bytes XDATA

Code requirements 6KB .. 8KB 900 bytes

Hardware requirements timer O or timer 1 timer O

System clock 1000 .. 40000 cycles 1000 .. 65535 cycles

Interrupt latency < 50 cycles < 20 cycles

Context switch time 70 .. 100 cycles (fast task) 100 .. 700 cycles
180 .. 700 cycles (standard task) depends on stack load
depends on stack load

Mailbox system 8 mailboxes with 8 int entries each not available

Memory pool system up to 16 memory pools not available

Semaphores 8 * 1 bit not available

RTX Tiny

15

Requirements and Definitions

The following chapter describes the software and hardware requiremens of RTX51 Tiny
and defines the terms used within this manual. RTX51 Tiny uses a combination of system
cals as well as the _task_ keyword for the task definition which is built in to the C51
compiler. The task definition and the major features of RTX51 Tiny are also described
within this chapter.

Development Tool Requirements

The following software products are required to operate RTX51 Tiny:

C51 Compiler
BL51 Code Banking Linker
A51 Macro Assembler

The library file RTX51TNY.LIB must be stored in the library path specified with the
DOS envirionment variable C51LIB. Usually thisisthe directory C51\LIB.

The include file RTX51TNY.H must be stored in the include path specified with the
DOS envirionment variable C51INC. Usualy thisisthe directory C51\INC.

Target System Requirements

RTX51 Tiny can run on single-chip 8051 systems without any external data memory.
However the application can access externa memory. RTX51 Tiny can use al memory
models supported by C51. The selected memory model only influences the location of
application objects. The RTX51 Tiny system variables and the stack area of the applica-
tion are aways stored in internal 8051 memory (DATA or IDATA). Typicaly, RTX51
Tiny applications are implemented in the SMALL model.

RTX51 Tiny performs round-robin task switching only. Preemptive task switching and
task priorities are not supported. If your application needs preemptive task switching you
need to use the RTX51 Full Real-Time Executive.

RTX51 Tiny is not designed for use with bank switching programs. If you require
real-time multitasking in your code banking applications you need to use the RTX51 Full
Resal-Time Executive.

Interrupt Handling

RTX51 Tiny can operate parallel with interrupt functions. Similar to other 8051 applica-
tions, the interrupt source must be enabled in the 8051 hardware registersin order to trig-
ger for an interrupt. RTX51 Tiny does not contain any management for interrupts; for
this reason, the interrupt enable is sufficient to process interrupts.

16 Introduction to RTX51 Tiny

RTX51 Tiny uses the 8051 timer 0 and the timer O interrupt of the 8051. Globaly dis-
abling al interrupts (EA bit) or the timer O interrupt stops therefore the operation of
RTX51 Tiny. Except for afew 8051 instructions, the timer O interrupt should not be dis-
abled.

Reentrant Functions

It is not alowed to call non-reentrant C functions from several tasks or interrupt proce-
dures. Non-reentrant C51 functions store their parameters and automatic variables (local
data) in static memory segments; for this reason, this data is overwritten when multiple
function calls occur simultaneously. Therefore non-reentrant C functions can only be call
for several tasks, if the user can ensure that they are not caled recursive. Usally this
means that the Round-Robin task scheduling must be disabled and that such functions do
not call any RTX51 Tiny system functions.

2

C functions which are only using registers for parameter and automatic variables are in-
herently reentrant and can be called without any restrictions from different RTX51 Tiny
tasks.

The C51 Compiler provides also reentrant functions. Refer to the C51 User’s Manual for
more information. Reentrant functions store their parameters and local data variables on
a reentrant stack and the data are protected in this way against multiple calls. However,
RTX51 Tiny does not contain any management for the C51 reentrant stack. If you are
using reentrant functions in your application you must ensure that these functions do not
call any RTX51 Tiny system functions and that reentrant functions are not interrupted by
the Round-Robin task scheduling of RTX51 Tiny. The full version, RTX51 Full contains
a stack management for reentrant functions.

C51 Library Functions

All C51 library functions which are reentrant can be used in all tasks without any restric-
tions.

For C51 library functions which are non-reentrant the same restrictions apply as for non-
reentrant C functions. Refer to Reentrant Functions for more information.

Usage of Multiple Data Pointers and Arithmetic Units

The C51 compiler allows you to use Multiple Data Pointers and Arithmetic Units of vari-
ous 8051 derivatives. Since RTX51 Tiny does not contain any management for these
hardware components it is recommended that you are not using these components to-
gether with RTX51 Tiny. However you can use Multiple Data Pointers and Arithmetic
Units if you can ensure that there is no round-robin task during the execution of program
parts using such additional hardware components.

RTX Tiny

17

Registerbanks

RTX51 Tiny assigns al tasks to registerbank 0. For this reason, al task functions must
be compiled with the default setting of C51, REGISTERBANK (0). The interrupt func-
tions can use the remaining registerbanks. However, RTX51 Tiny requires 6 permanent
bytes in the registerbank area. The registerbank used by RTX51 Tiny for these bytes can
be defined with the configurarion variable INT_REGBANK. Refer to chapter 3, RTX51
Tiny configuration for more information.

Task Definition

Real-Time or multitasking applications are composed of one or more tasks that perform
specific operations. RTX51 Tiny allows for up to 16 tasks. Tasks are simply C functions
that have a void return type and a void argument list and are declared using the _task
function attribute using the following format

void func (void) _task_num

where num isatask |D number from 0 to 15.
Example:
void jobO (void) _task_ 0 {
while (1) {
count er 0++; /* increment counter */
}
}

defines the function jobO to be task number 0. All that this task does is increment a
counter and repeat. You should note that all tasks are implemented as endless loops in
this fashion.

Task Management

Each task that you define for RTX51 Tiny can be in one of a number of different states.
The RTX51 Tiny Kernel maintains the proper state for each task. Following is a descrip-
tion of the different states.

State Description

RUNNING The task currently being executed is in the RUNNING State. Only one task can be
running at a time.

READY Tasks which are waiting to be executed are in the READY STATE. After the currently
running task has finished processing, RTX51 Tiny starts the next task that is ready.

WAITING Tasks which are waiting for an event are in the WAITING STATE. If the event occurs,
the task is placed into the READY STATE.

DELETED Tasks which are not started are in the DELETED STATE.

TIME-OUT Tasks which were interrupted by a round-robin time-out are placed in the TIME-OUT

STATE. This state is equivalent to the READY STATE.

18 Introduction to RTX51 Tiny

Task Switching

RTX51 Tiny performs round-robin multitasking which allows quasi-parallel execution of
several endless loops or tasks. Tasks are not executed concurrently but are time-sliced.
The available CPU time is divided into time slices and RTX51 Tiny assigns atime dlice
to every task. Each task is alowed to execute for a predetermined amount of time. Then,
RTX51 Tiny switches to another task that is ready to run and allows that task to execute
for awhile. The duration of atime dice can be defined with the configurarion variable
TIMESHARING. Refer to chapter 3, RTX51 Tiny configuration for more information.

Rather then wait for a tasks time dlice to expire, you can use the os_wait system function
to signal RTX51 Tiny that it can let another task begin execution. os wait suspends the
execution of the current task and waits for a specified event to occur. During this time,
any number of other tasks may be executing.

The section of RTX51 Tiny which assigns the processor to a task is called the scheduler.
The RTX51 Tiny scheduler defines which task is running according to the following
rules:

The currently running task isinterrupted if...

1. Thetask callsthe os wait function and the specified event has not occurred.
2. Thetask has executed for longer than the defined round-robin time-out.

Another task is started if...

1. No other task is running.
2. Thetask whichisto be started isin the READY or TIME-OUT State.

Events
The os_wait function of RTX51 Tiny supports the following event types:

SIGNAL: Bit for task communication. A signal can be set or cleared using RTX51
Tiny system functions. A task can wait for a signal to be set before con-
tinuing. If atask cals the os wait function to wait for a signal and if the
signal is not set, the task is suspended until the signal gets set. Then, the
task is returned to the READY State and can begin execution.

TIMEOUT: A time delay which is started by the os wait function. The duration of the
time delay is specified in timer ticks. The task who is calling the os_wait
funciton with a TIMEOUT value is suspended until the time delay is over.
Then, the task is returned to the READY State and can begin execution.

INTERVAL: A interval delay which is started by the os wait function. Theinterval delay
is also specified in in timer ticks. The difference to a timeout delay is that
the RTX51 timer is not reset. Therefore the event INTERVAL works with a
timer which is running permantly. An interval can be used if the task isto
be executed in synchronous intervals; a simple exampleis a clock.

RTX Tiny 19

Note: The event SIGNAL can be combined with the events TIMEOUT and so that
RTX51 Tiny waits for both a signal and a time period.

RTX Tiny 21

Creating RTX51 Tiny Applications

Writing RTX51 Tiny programs requires that you include the RTX51TNY.H header file
found in the \C51\INC\ subdirectory in your C program and that you declare your tasks
using the _task__function attribute.

RTX51 Tiny programs do not require a main C function. The linking process will in-
clude code that will cause execution to begin with task 0.

RTX51 Tiny Configuration

You can modify the RTX51 Tiny configuration file CONF_TNY.A51 found in the
\C51\LIB\ subdirectory. You can change the following parameters in this configuration
file.

B Register bank used for the system timer tick interrupt
Interval for the system timer

|

B Round-robin time-out value
B Internal datamemory size
|
A

Free stack size after RTX51 Tiny is started
portion of thisfileislisted below.

CONF_TNY. A51: This code allows configuration of the
'RTX51 tiny' Real Tine Operating System

To translate this file use A51 with the followi ng invocation:
A51 CONF_TNY. A51

To link the nodified CONF_TNY.OBJ file to your application use the follow ng
BL51 invocation:

BL51 <your object file |ist> CONF_TNY.OBJ <control s>

" RTX51 tiny' Hardware-Tinmer

Wth the following EQU statenents the initialization of the ' RTX51 tiny'
Har dwar e- Ti ner can be defined (' RTX51 tiny' uses the 8051 Tinmer O for
control ling RTX51 software tiners).

5 ; define the register bank used for the tiner interrupt.
| NT_REGBANK EQU 1 ; default is Registerbank 1

5 ; define Hardware-Tinmer Overflow in 8051 machine cycl es.
| NT_CLOCK EQU 10000 ; default is 10000 cycles

: ; define Round-Robin Tinmeout in Hardware-Tinmer Ticks.
TI MESHARI NG EQU 5 ; default is 5 ticks.

not e: Round- Robi n can be disabl ed by using val ue 0.

22 Creating RTX51 Tiny Applications

Not e: Round- Robi n Task Switching can be disabled by using '0" as
val ue for the TI MESHARI NG equat e.

"RTX51 tiny' Stack Space

The foll owi ng EQU statenents defines the size of the internal RAM used

; for stack area and the mininumfree space on the stack. A nmacro defines

; the code executed when the stack space i s exhausted.

; define the highest RAM address used for CPU stack
RAMTCP EQU OFFH ; default is address (256 - 1)

i:REE_STACK EQU 20 ; default is 20 bytes free space on stack
STACK_ERROR MACRO
CLR EA ; disable interrupts
SIMP $; endless loop if stack space is exhausted
ENDM

This configuration file defines a number of constants that may be modified to suit the re-
quirements of your particular application. These are described in the following table.

ariable Description

| NT_REGBANK indicates which register bank is to be used by RTX51 Tiny for the system
interrupt.
I NT_CLOCK defines the interval for the system clock. The system clock generates an

interrupt using this interval. The defined number specifies the number of
CPU cycles per interrupt.

Tl MESHARI NG defines the time-out for the round-robin task switching. The value
indicates the number of timer tick interrupts that must elapse before
RTX51 Tiny will switch to another task. If this value is 0, round-robin
multitasking is disabled.

RAMIOP indicates the highest memory location in the internal memory of the 8051
derivative. For the 8051, this value would be 7Fh. For the 8052, this value
would be OFFh.

FREE_STACK specifies the size of the free stack area in bytes. When switching tasks,
RTX51 Tiny verifies that the specified number of bytes is available in the
stack. If the stack is too small, RTX51 Tiny invokes the STACK_ERROR
macro. The default value for FREE_STACK is 20. Values O .. OFFH are
allowed.

STACK _ERROR is the macro that is executed when RTX51 Tiny detects a stack problem.
You may change this macro to perform whatever operations are necessary
for your application.

RTX Tiny

23

Compiling RTX51 Tiny Programs

RTX51 Tiny applications require no special compiler switches or settings. Y ou should be
able to compile your RTX51 Tiny source files just as you would ordinary C source files.

Linking RTX51 Tiny Programs

RTX51 Tiny applications must be linked using the BL51 code banking linker/locator.
The RTX51TINY directive must be specified on the command line after al object files.
Refer to the RTX51TINY directive in Utilities manual.

Optimizing RTX51 Tiny Programs
The following items should be noted when creating RTX51 applications.

B |If possible, disable round-robin multitasking. Tasks which use round-robin multi-
tasking require 13 bytes of stack space to store the task context (registers, etc.). This
context storage is not required if task switching is triggered by the os wait function.
The os wait function also produces an improved system reaction time since a task
which is waiting for execution does not have to wait for the entire duration of the
round-robin time-out.

B Do not set the timer tick interrupt rate too fast. Setting the tick rate to alow number
increases the number of timer ticks per second. There is about 100 to 200 CPU cy-
cles of overhead for each timer tick interrupt. Therefore, the timer tick rate should be
set high enough to minimize interrupt latency.

RTX Tiny

25

RTX51 Tiny System Functions

A number of routines are included in the RTX51 Tiny Library file RTX51TNY.LIB that
can be found in the \C51\L1B\ subdirectory. These routines allow you to create and de-
stroy tasks, send and receive signals from one task to another, and delay atask for a num-
ber of timer ticks.

These routines are summarized in the following table and described in detail in the func-
tion reference that follows.

Routine Description

isr_send_signal Sends a signal to a task from an interrupt
os_clear_signal Deletes a signal that was sent

os_create_task Moves a task to the execution queue

os_delete_task Removes a task from the execution queue
0s_running_task_id Returns the task ID of the task that is currently running
os_send_signal Sends a signal to a task from another task

0s_wait Waits for an event

0s_waitl Waits for an event

0s_wait2 Waits for an event

26 RTX51 Tiny Function Library

Function Reference

The following pages describe the RTX51 Tiny system functions. The system functions
are described here in alphabetical order and each is divided into several sections:

Summary: Briefly describes the routines effect, lists include file(s) containing
its declaration and prototype, illustrates the syntax, and describes
any arguments.

Description: Provides a detail ed description of the routine and how it is used.
Return Value: Describes the value returned by the routine.

See Also: Names related routines.

Example: Gives a function or program fragment demonstrating proper use of

the function.

RTX Tiny

27

Isr_send_signal

Summary:

Description:

Return Value:

See Also:

Example:

#include <rtx51tny.h>

char isr_send_signal (
unsigned char task_id); /* 1D of task to signal */

Theisr_send_signal function sends asignal to task task id. If the
specified task is already waiting for a signal, this function call will
ready the task for execution. Otherwise, the signal is stored in the
signal flag of the task.

The isr_send_signal function may be called only from interrupt
functions.

Theisr_send_signal function returns a value of 0 if successful and
-1 if the specified task does not exist.

os _clear_signal, os_send signal, os wait

#i ncl ude <rtx51tny. h>
void tst_isr_send_signal (void) interrupt 2

{

isr_send_si gnal (8); /* signal task #8 */

28 RTX51 Tiny Function Library

0os_clear_signal

Summary: #include <rtx51tny.h>

char os clear_signal (
unsigned char task_id); /* task 1D of signal to clear */

Description: The os clear_signal function clears the signa flag for the task
specified by task id.

Return Value: The os_clear_signal function returns a value of O if the signal flag
was successfully cleared. A value of -1 isreturned if the specified
task does not exist.

See Also: isr_send _signal, os_send_signal
Example: #i ncl ude <rtx51tny. h>
#i ncl ude <stdi o. h> [* for printf */

void tst_os_clear_signal (void) _task_ 8

{

6s_cl ear _signal (5);
/* clear signal flag in task 5 */

RTX Tiny

29

0S_create task

Summary:

Description:

Return Value:

See Also:

Example:

#include <rtx51tny.h>

char os create task (
unsigned char task_id); [* 1D of task to start */

The os_create task function starts the defined task function using
the task number specified by task id. The task is marked as ready
and is executed according to the rules specified for RTX51 Tiny.

The os create task function returns a value of 0 if the task was
successfully started. A value of -1 is returned if the task could not
be started or if no task was defined using the specified task number.

os_delete task 4

#i ncl ude <rtx51tny. h>
#i ncl ude <stdi o. h> [* for printf */

voi d new task (void) _task_ 2

{

}
void tst_os_create_task (void) _task_O

{

i.f (os_create_task (2))

{
printf ("Couldn't start task 2\n");
}

30 RTX51 Tiny Function Library

0S_delete task

Summary: #include <rtx51tny.h>

char os delete task (
unsigned char task_id); /* 1D of task to stop and delete */

Description: The os delete task function stops the task specified by the
task id argument. The specified task is removed from the task list.

Return Value: The os_delete task function returns a value of 0 if the task was
successfully stopped and deleted. A return value of -1 indicates the
specified task does not exist or had not been started.

See Also: 0s create task
Example: #i ncl ude <rtx51tny. h>
#i ncl ude <stdi o. h> [* for printf */

void tst_os_delete task (void) _task_ O
{
if (os_delete task (2))

{
printf ("Couldn't stop task 2\n");
}

RTX Tiny

31

0S_running_task id

Summary:

Description:

Return Value:

See Also:

Example:

#include <rtx51tny.h>

char os running_task_id (void);

The os running_task_id function determines the task id of the
currently executing task function.

The os_running_task_id function returns the task ID of the cur-
rently executing task. Thisvalueisanumber in the range 0 to 15.

0s _create task, os_delete task

#i ncl ude <rtx51tny. h>
#i ncl ude <stdi o. h> [* for printf */

void tst_os_running task (void) _task_ 3
{

unsi gned char tid;

tid = os_running_task_id ();

[* tid = 3 */

}

A

32 RTX51 Tiny Function Library

0s_send_signal

Summary: #include <rtx51tny.h>
char os send_signal (
unsigned char task_id); /* 1D of task to signal */
Description: The os_send_signal function sends asignal to task task id. If the

specified task is already waiting for a signal, this function call
readies the task for execution. Otherwise, the signal is stored in the
signal flag of the task.

The os_send_signal function may be called only from task func-
tions.

Return Value: The os_send_signal function returns a value of 0 if successful and
1 -1 if the specified task does not exist.

See Also: isr_send_signal, os _clear_signal, os wait

RTX Tiny

33

Example:

#i ncl ude <rtx51tny. h>
#i ncl ude <stdi o. h> [* for printf */

voi d signal _func (void) _task_ 2

{

6s_send_signal (8); /* signal task #8 */
}

voi d tst_os_send_signal (void) _task_ 8

{

6s_send_signal (2); /* signal task #2 */

34 RTX51 Tiny Function Library

0sS_wait
Summary: #include <rtx51tny.h>

char os wait (
unsigned char event_sel, [* eventsto wait for */
unsigned char ticks, /* timer ticks to wait */
unsigned int dummy); /* unused argument */

Description: The os wait function halts the current task and waits for one or
several events such as a time interval, atime-out, or a signal from
another task or interrupt. The event sel argument specifies the
event or events to wait for and can be any combination of the fol-
lowing manifest constants:

Event constant Description

K_IVL Wait for a timer tick interval.
K_SIG Wait for a signal.
K_TMO Wait for a time-out.

The above events can be logically ORed using the vertical bar
character (). For example, K_TMO | K_SIG, specifies that the
task wait for atime-out or for asignal.

The ticks argument specifies the number of timer ticks to wait for
aninterval event (K_IVL) or atime-out event (K_TMO).

The dummy argument is provided for compatibility with RTX51
and isnot used in RTX51 Tiny.

Return Value: When one of the specified events occurs, the task is enabled for
execution. Execution is restored and a manifest constant that iden-
tifies the event that restarted the task is returned by the os wait
function. Possible return values are:

Return Value Description

SIG_EVENT A signal was received.

TMO_EVENT A time-out has completed or an interval has expired.
NOT_OK The value of the event_sel argument is invalid.

See Also: 0s waitl, os wait2

Example: #i ncl ude <rtx51tny. h>

RTX Tiny 35

36 RTX51 Tiny Function Library

os_waitl
Summary: #include <rtx51tny.h>

char os wait1 (
unsigned char event_sel); /* eventsto wait for */

Description: The os_waitl function halts the current task and waits for an event
to occur. The os waitl function is a subset of the os wait func-
tion and does not alow al of the events that os wait offers. The
event_sel argument specifies the event to wait for and can have
only the value K_SI G which will wait for asignal.

Return Value: When the signal events occurs, the task is enabled for execution.
Execution is restored and a manifest constant that identifies the

4 event that restarted the task is returned by the os wait1 function.
Possible return values are:

Return Value Description

SIG_EVENT A signal was received.
NOT_OK The value of the event_sel argument is invalid.

See Also: 0s wait, os wait2

Example: See 0s_wait.

RTX Tiny

37

0S_wait2

Summary:

Description:

Return Value:

#include <rtx51tny.h>

char os wait2 (
unsigned char event_sel, [* eventsto wait for */
unsigned char ticks); /* timer ticks to wait */

The os wait2 function halts the current task and waits for one or
several events such as a time interval, atime-out, or a signal from
another task or interrupt. The event sel argument specifies the
event or events to wait for and can be any combination of the fol-
lowing manifest constants:

Event constant Description

K_IVL Wait for a timer tick interval.
K_SIG Wait for a signal.
K_TMO Wait for a time-out.

The above events can be logically ORed using the vertical bar
character (|). For example, K_TMO | K_SIG, specifies that the
task wait for atime-out or for asignal.

The ticks argument specifies the number of timer ticks to wait for
aninterval event (K_IVL) or atime-out event (K_TMO).

When one of the specified events occurs, the task is enabled for
execution. Execution is restored and the manifest constant that
identifies the event that restarted the task is returned by the
0s wait2 function. Possible return values are:

38

RTX51 Tiny Function Library

See Also:

Example:

Return Value Description

SIG_EVENT A signal was received.

TMO_EVENT A time-out has completed or an interval has expired.
NOT_OK The value of the event_sel argument is invalid.

0s wait, os waitl

See 0s wait.

RTX Tiny 39

RTX Tiny 41

System Debugging

This chapter contains additonal information about the stack handling and the system de-
bugging with dScope-51.

Stack Management

RTX51 Tiny reserves an individual stack areafor each task. Due to the design of RTX51
Tiny which uses only the on-chip memory resources of the 8051, the entire stack is man-
age in the internal memory (IDATA) of the 8051. To allocate the largest available stack
space to the current running task, the stack space used by other not running tasks is
moved. The following figure illustrates the stack assignment of the individual tasks.

RAMTOP RAMTOP RAMTOP
OFFH OFFH OFFH
Stack Area Stack Area
for Task 2 for Task 2
OF8H OF8H
?tack Alzea Stack Area
or Task 1 for Task 2
OFOH
Stack Area
for Task 1
60H
Stack Area Stack Area
for Task O for Task 1
58H 58H
Stack Area Stack Area
bSTACK forTask0 |, orack forTask0 |, orack
(50H) (50H) (50H)
Stack Assignment for Stack Assignment for Stack Assignment for

TaskO = Running Task Taskl = Running Task Task2 = Running Task

The figure illustrates that RTX51 Tiny always allocates the entiere free memory as a
stacka area for thye currently running task. The memory used for the stack starts at the
symbol ?STACK which denotes the start address of the ?STACK segment. The ?STACK
symbol reserves the first unassigned byte in the internal memory.

Debugging with dScope-51

A RTX51 Tiny application can be tested using the dScope-51 Source-Level Debugger.
The RTX51 system status is displayed using a debug function. The use of this debug
function is explained in the following.

42 RTX51 Tiny Specifications

The debug function is defined in the file DBG_TINY.INC (for Windows dScope the file
name is DBG_TINY.DSW) and is loaded within dScope-51 by entering the following
commands. The RTX51 Tiny application must be loaded prior to defining this debug
function. The debug function is activated by pressing the F3- KEY and displays then the
status of RTX51 Tiny. In addition every task switch is displayed with a message.

Example:

DS51 TRAFFI C
>| NCLUDE DBG _TI NY. | NC

>G

<F3- KEY>
S +
{ Task ID | Start | State i Wit for Event i Signal | Tinmer | Stack |
b hoioioioio - Foloioioim o e oioioio e hoioioioim - hoioioioim - 0
i 0 | 0026H | DELETED | i 0 i 131 | 84H |
i 1 i 00D1H | WAITING | SIGNAL i 0 i 131 | 84H |
i 2 i 0043H | WAITING | TI MEOUT i 0 i 5 | 86H |
i 3 | 0278H | DELETED | i 0 i 131 | 88H |
i 4 | 02ACH | WAITING | SIGNAL & TI MEQUT | 0 i 220 | 88H |
i 5 i 032BH | WAITING | TI MEOUT i 0 i i | 8AH |
i 6 i 000EH | WAITING | SIGNAL i 0 i 131 | FBH |

RTX Tiny 43

I nter pretation of the debug output:

Task ID Indicates the task number which is used in the task definition within
the task keyword of the C51 Compiler.

Start Indicates the start address of the task function.
State Indicates the state of the task. State can be one of the following:
RUNNING The task currently being executed is in the RUNNING State.

Only one task can be running at a time.

READY Tasks which are waiting to be executed are in the READY
STATE. After the currently running task has finished
processing, RTX51 Tiny starts the next task that is ready.

WAITING Tasks which are waiting for an event are in the WAITING
STATE. If the event occurs, the task is placed into the READY
STATE.

DELETED Tasks which are not started are in the DELETED STATE.

TIME-OUT Tasks which were interrupted by a round-robin time-out are

placed in the TIME-OUT STATE. This state is equivalent to the
READY STATE.

Wait for Event Indicates which eventsthe task is currently waiting for. The events
can be a combination of the following:

Description

TIMEOUT The task is in the state WAITING until the Timer reaches the
value 0. This event is displayed when the os_wait function is
called with the K_TMO or K_IVL event selector.

SIGNAL The task is in the state WAITING until the signal flag goes to
one. This event is displayed when the os_wait function is
called with the K_SIG event selector.

Signal Indicates the state of the signal flag: 1 for signal set, O for signal reset.

Timer Indicates the number of timer ticks which are required for atimeout.
It should be noted that the Timer is free running and only set to the
timeout value when the os_wait function is called withaK_TMO ar-
gument.

Stack Indicates the start address of the local task stack in the IDATA area.
The layout of the RTX-51 tasks is described under Stack Management
earlier in this chapter.

44 RTX51 Tiny Specifications

RTX TINY 45

Application Examples

RTX_EX1: Your First RTX51 Program

The program RTX_EX1 demonstrates round- robin multitasking using RTX51 Tiny.
This program is composed of only one source file RTX_EX1.C located in the
\C51lVARTX_TINY\RTX_EX1 or \CDEMO\SN\RTX_TINY\RTX_EX1 directory. The
contentsof RTX_EX1.C islisted below.

[HR KKk K Kk KKK Kk KA K KKK KA KR KKK KA KA KKK KKK KK IR A KKK KKK KA KKK KKK KKK I KKK KKKk kA hx KK [

/* */
/* RTX_EX1.C. The first RTX51 Program */
/* */

[RA KKK Kk Rk K KK Kk kK KKK R KKK KKK KKK KKK KKK KA IR KKK KKK A KR K I R AR A KKK IR KKK KKKk kA hx Kk [

#pragma CODE DEBUG OBJECTEXTEND

#include <rtx51tny. h> /* RTX51 tiny functions & defines */
int counterO; /* counter for task O */
int counterl; /* counter for task 1 */
int counter2; /* counter for task 2 */

[RA KKk kR kK KK Kk kKK KKK KKK K KK KA KKK KKK KK KK IR KKK KKK KA KR KKK A KKK IR KKK KKKk kA Kk x Kk [

/* Task O 'jobO': RTX51 tiny starts execution with task 0 */

[RA KKK Kk Rk K KK Kk A KK KKK R KKK KKK KKK KKK KKK KA IR KKK KKK KA KR K I R KA KKK IR KKK KKKk kA hx Kk [

job0 () _task_ 0 {

os_create_task (1); /* start task 1 */
os_create_task (2); /* start task 2 */
while (1) { /* endl ess | oop */

count er 0++; /* increnent counter 0 */

}

[HA KKK Kk Rk K KK Kk A A K KKK KA KA K KK KKK KKK KKK KA IR KKK KKK KA KK IR KKK KA IR KKK KKKk kA hx Kk [

/* Task 1 '"jobl': RTX51 tiny starts this task with os_create_task (1) */

[RA KK Kk Rk K KK KK A K KKK R KKK KKK KKK KKK KKK KA IR KKK KKK A IR KKK KA KKK IR KKK KKKk h Kk hx Kk [

jobl () _task_ 1 {
while (1) { /* endl ess | oop */
count er 1++; /* increment counter 1 */

}

[RA KKk kR kK KK Kk kK KKK KA KKK K KKK KKK KKK KA IR KKK KKK KA KR KKK A KKK IR KKK KKKk kA Kk x Kk [

/* Task 2 'job2': RTX51 tiny starts this task with os_create_task (2) */

[RA KKk kR kK KK Kk kKKK KR KKK KKK KKK KKK KA KKK IR KKK KKK A KR KKK KA KKK IR KKK KKKk kA hx Kk [

job2 () _task_ 2 {

while (1) { /* endl ess | oop */
count er 2++; /* increnent counter 2 */
}
To compile and link RTX_EX1, type the following commands at the DOS command
prompt.

C51 RTX_EX1. C DEBUG OBJECTEXTEND
BL51 RTX_EX1.OBJ RTX51TI NY

Once RTX_EX1iscompiled and linked, you can test it using DS51. Type

46 Application Examples

DS51 RTX_EX1 | NI T(RTX_EX1.IN)

The I NI T(RTX_EX1. I NI') directive loads an initialization file that configures the DS51
screen; loads the appropriate |OF driver file; initializes watchpoints for the variables
count er0, counter1, and counter2; and finaly starts execution of RTX_EX1.

As each task gets to execute, you will see the corresponding counter increase. The coun-
ter variables are displayed in the watch window at the top of the screen.

Enter CTRL+C to halt execution of RTX_EX1, then type
| NCLUDE DBG_TI NY. | NC
at the DS51 command prompt. This will load an include file that allows you to display

status information of the tasks. Y ou may need to increase the size of the exe window us-
ing ALT+U so all of the task information is displayed.

Once the include file is loaded, press F3 to display status information for the three tasks
defined in this program.

eSS +
i Task ID | Start | State i Wit for Event { Signal | Tiner | Stack |
e eeeeaa - Hommem - [T - Fommm e emeeaeaas Fommeem - Hommem - Hommem - !
I I
] 0 i 000EH | TI MEQUT |] 0] 217 | 20H |
] 1 1 0023H | RUNNI NG |] 0] 217 | 2FH |
] 2 i 002EH | TI MEQUT |] 0] 217 | FOH |

RTX TINY 47

RTX_EX2: A Simple RTX51 Application

The program RTX_EX2 demonstrates an RTX51 Tiny application that uses the os wait
function and signal passing. This program is composed of one source file RTX_EX2.C
located in the \C51VARTX_TINY\RTX_EX2 or \CDEMO\SI\RTX_TINY\RTX_EX2 di-
rectory. The contentsof RTX_EX2.C islisted below.

[hE Kk Rk ok kkkkkkkkkkkkkkkk Kk kkkkkkkkkkkhkkkkkhkkkkhkkhkhkkhkkhkhkkkkkkkhkkkkkk kK% [

/* RTX_EX2.C: A RTX51 Application */

/*************************;}***/

#pragma CODE DEBUG OBJECTEXTEND

#i ncl ude <rtx51tny. h> /* RTX51 tiny functions & defines */
int counterO; /* counter for task O */
int counteri; /* counter for task 1 */
int counter?2; /* counter for task 2 */
int counter3; /* counter for task 2 */

[HA KKK Kk Rk K KK Kk A KKK KKK KKK K KKK KKK KKK KKK IR KKK KKK KA KR K IR KA KKK IR KKK KKKk kA hx Kk [

/* Task O 'jobO': RTX51 tiny starts execution with task 0 */

[HA KKk kR kK KK KK kA K KKK R KKK KK KKK KKK KKK KK IR KKK KKK KA KR KKK KK KA IR KKK KKk kA hx KK [

job0 () _task_ 0 {

os_create_task (1); /* start task 1 */
os_create_task (2); /* start task 2 */
os_create_task (3); /* start task 3 */
while (1) { /* endl ess | oop */
count er 0++; /* increnent counter 0 */
os_wait (K_TMO, 5, 0); /* wait for timeout: 5 ticks */
}
}
/~k~k~k**~k~k~k~k~k~k~k~k***********************/
/* Task 1 'jobl': RTX51 tiny starts this task with os_create_task (1) */

[rE Kk Rk ok ok ok kkkkkkkkkkkkkk Kk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkhkkkkkkk k% [

jobl () _task_ 1 {

while (1) { /* endl ess | oop */
count er 1++; /* increnent counter 1 */
os_wait (K_TMO 10, 0); /* wait for tineout: 10 ticks */
}

}

[RA KKk kR kK KK KKk K KKK R KKK KK KKK KKK KKK KA IR KKK KKK KA KR K I A AR A KKK IR KKK KKKk kA hx Kk [

/* Task 2 '"job2': RTX51 tiny starts this task with os_create_task (2) */

[RA KKk kR kK KK KK kK KKK R KKK KA KKK KKK KK KKK KA IR KKK KKK KA KA KKK KA KKK F KKK KKKk kA hx Kk [

job2 () _task_ 2 {

while (1) { /* endl ess | oop */
count er 2++; /* increnent counter 2 */
if (counter2 == 0) { /* signal overflow of counter 2 */
os_send_signal (3); /* to task 3 */

}

}

/~k~k~k~k~k******~k~k~k~k********~k~k~k~k******~k~k~k~k********~k~k~k~k*****************************/
/* Task 3 '"job3': RTX51 tiny starts this task with os_create_task (3) */

[rE Kk Rk ok ok ok kkkkkkkkkkkkkk Kk ok kkkkkkkkkkkkkkkkhhkkkkkkkkkkkhkhkkhkkkkkkkhkkkkkkk k% [

job3 () _task_ 3 {

while (1) { /* endl ess | oop */
os_wait (K.SIG 0, 0); /* wait for signal */
count er 3++; /* process overflow fromcounter 2 */

48 Application Examples

Enter the following commands at the DOS prompt to compile and link RTX_EX2.

C51 RTX_EX2. C DEBUG OBJECTEXTEND
BL51 RTX_EX2. OBJ RTX51TI NY

When RTX_EX2 iscompiled and linked, you can test it using DS51. Type
DS51 RTX_EX2

torun DS51 and load RTX_EX2. When DS51 is loaded, type the following commands at
the DS51 command prompt.

WS count er0
W5 counterl
W5 count er 2
W5 count er 3
G

This will set watchpoints for the four task counter variables and will begin execution of
RTX_EX2. RTX_EX2 increments the four counters as follows:

counterO incremented every 5 RTX51 timer ticks

counterl incremented every 10 RTX51 timer ticks

counter?2 incremented as fast as possible (this task gets most of the available
CPU5time)

counter3 incremented for every overflow of count er 2

Enter CTRL+C to halt execution of RTX_EX1 and enter F3 to display status informa-
tion for the four tasks defined in this program.

P +
{ Task ID | Start | State i Wit for Event i Signal | Tinmer | Stack |
b hoioioioio - Foloioioim o e oioioio e hoioioioim - hoioioioim - 0
i 0 i 000EH | WAITING | TI MEQUT i 0 i 5 | 28H |
i 1 i 0032H | WAITING | TI MEQUT i 0 i 10 | 2AH |
i 2 1 0047H | RUNNI NG | i 0 i 196 | 2CH |
i 3 1 005DH | WAITING | SIGNAL i 0 i 196 | FDH |
S +

RTX_EX2 uses the os wait function to wait for events. The event that each task is wait-
ing for is shown in the displayed task list shown above.

RTX TINY

49

TRAFFIC: A Traffic Light Controller

The preceding examples, RTX_EX1 and RTX_EX2, show only the basic features of
RTX51 Tiny. These examples could just as easily have been implemented without using
RTX51. This example, a pedestrian traffic light controller, is more complex and can not
be easily implemented without a multitasking real- time operating system like RTX51.

TRAFFIC is atime- controlled traffic light controller. During a user- defined clock time
interval, the traffic light is operating. Outside this time interval, the yellow light flashes.
If a pedestrian presses the request button, the traffic light goes immediately into a tvalk”
state. Otherwise, the traffic light works continuously.

Traffic Light Controller Commands

You can communicate with the traffic light controller via the serial port interface of the
8051. You can use the seria window of DS51 to test the traffic light controller com-
mands.

The serial commands that are available are listed in the following table. These commands
are composed of ASCII text characters. All commands must be terminated with a car-
riage return.

Command Serial Text Description

Display D Display clock, start, and ending times.

Time T hh:nm ss Set the current time in 24- hour format.

Start S hh: mm ss Set the starting time in 24- hour format. The traffic light

controller operates normally between the start and end
times. Outside these times, the yellow light flashes.

End E hh: nm ss Set the ending time in 24- hour format.

Software

The TRAFFIC application is composed of three files that can be found in the
\C51VARTX_TINY\TRAFFIC or \CDEMO\51\RTX_TINY\TRAFFIC directory.

TRAFFIC.C contains the traffic light controller program which is divided into the fol-
lowing tasks:

- Task O Initialize: initidlizes the serial interface and starts all other
tasks. Task O deletesitself since initialization is only needed once.

- Task 1 Command: is the command processor for the traffic light
controller. Thistask controls and processes serial commands received.

- Task 2 Clock: controlsthe time clock.

- Task 3 Blinking: flashes the yellow light when the clock time is out-
side the active time range.

50 Application Examples

Task 4 Lights: controlsthe traffic light phases while the clock timeis
in the active time range (between the start and end times).

Task 5 Button: reads the pedestrian push button and sends signals to
the lights task.

Task 6 Quit: checksfor an ESC character in the serial stream. If one
is encountered, this task terminates a previously specified display
command.

SERIAL.C implements an interrupt driven seria interface. This file contains the
functions putchar and getkey. The high- level /O functions printf and
getline call these basic I/O routines. The traffic light application will also
operate without using interrupt driven serial 1/0. but will not perform as
well.

GETLINE.C is the command line editor for characters received from the serial port.
This sourcefile is aso used by the MEASURE application.

TRAFFIC.C

AR R R R R R R R R R R R AR R

[* TRAFFI C. C Traffic Light Controller wusing the C51 Conpiler

AR E R R R R R R R RS R R R AR R AR R R AR R R R R R R R R R R A R R R R AR R R R R

*/

code char nmenu[] =
"\ e
"4xxkxx TRAFF|I C LI GHT CONTROLLER using C51 and RTX-51 tiny *****+\n"
"| This programis a sinple Traffic Light Controller. Between |[\n"
start time and end tinme the systemcontrols a traffic light |[\n"

|

"| with pedestrian self-service. Qutside of this tinme range |\ n"

"| the yellow caution lanp is blinking. |\ n"

"+ command -+ syntax ----- + function -------------ooooa +\ n"

"| Display | D | display tines |\ n"

"l Time | T hh:mmss | set clock tine |\ n"

"| Start | S hh:mmss | set start tine |\ n"

"| End | E hh:mnmss | set end tine |\ n"

Mo cccczz=o= dimcccccc==cocc disccccccc-cocccc-cc-cocccc-cc-coccsc-ccoooc +\n";
#i ncl ude <reg52. h> /* special function registers 8052
*/
#i ncl ude <rtx51tny. h> /* RTX-51 tiny functions & defines
*/
#i ncl ude <stdio. h> /* standard 1/O .h-file
*/
#i ncl ude <ctype. h> /* character functions
*/
#i ncl ude <string.h> /* string and nenory functions

*/

RTX TINY

51

Sxtern getline (char idata *, char); /* external function: input |ine
S%tern serial _init (); /* external function: init serial UART
fdefine INI'T 0 /* task number of task: init
f{jefine COMVAND 1 /* task number of task: conmand
f{jefine CLOCK 2 /* task nunber of task: cl ock
f{jefi ne BLINKING 3 /* task nunber of task: bl i nki ng
f{jefi ne LIGHTS 4 /* task nunber of task: si gnal
f{jefine KEYREAD 5 /* task nunber of task: keyr ead
f;jefine CET_ESC 6 /* task nunber of task: get _escape
ftruct time { /* structure of the tine record
/unsi gned char hour ; / hour
/ unsi gned char m n; / mnute
junsi gned char sec; / second
b

ftruct time ctime = { 12, 0, 0 }; /* storage for clock tine values
firuct time start = { 7, 30, 0 }; /* storage for start tine values
fgruct time end = { 18, 30, 0 }; /* storage for end time val ues
fbit red = P172; /* 1/0 Pin: red | anp out put
f{Jit yellow = P171; /* 1/0O Pin: yel l ow | anp out put
f{Jit green = P170; /* 1/0O Pin: green |anp output
E{Ji t st op = P173; /* 1/0O Pin: st op | anp out put
E{Ji t wal k = P174; /* 1/0O Pin: wal k | anp out put
fgjit key = P175; /* 1/0O Pin: sel f-service key input
L;:lata char inline[16]; /* storage for conmand input I|ine

ISR R R R R R AR R R R R R AR R R R R R R R R R R AR R

[* Task 0 init': Initialize

ISR R R R R R AR R R R R R AR R R R R R R R R R R R R

*/

52 Application Examples

init () _task_ INT { /* program execution starts here
*/
serial _init (); /* initialize the serial interface
*/
os_create_task (CLOCK); /* start clock task
*/
os_create_task (COMVAND); /* start conmmand task
*/
os_create_task (LICGHTS); /* start lights task
*/
os_create_task (KEYREAD); /* start keyread task
*/
os_delete_task (INT); /* stop init task (no |onger needed)
*/
}
bit display_tinme = 0; /* flag: signal cnd state display_tine
*/
/***
*/
/* Task 2 ' ¢l ock’
*/
/***
*/
clock () _task_ CLOCK {
while (1) { /* clock is an endless |oop
*/
if (++ctinme.sec == 60) { /* calculate the second
*/
ctime.sec = 0
if (++ctime.min == 60) { /* calculate the minute
*/
ctime.min =0
if (++cti me. hour == 24) { /* calculate the hour
*/
ctime. hour = 0
}
}
if (display_tine) { /* if command_status == display_tine
*/
os_send_si gnal (COMVAND) ; /* signal to task command: tine changed
*/
Yoo L
os_wait (K.IVL, 100, 0); /* wait interval: 1 second
*/
}
}
struct time rtine; /* tenporary storage for entry tine
*/
/***
*/
[* readti me: convert line input to tinme values & store in rtine
*/
/***
*/

bit readtine (char idata *buffer) {

53

unsi gned char args; /* nunmber of argunents
*/
rtine.sec = 0; /* preset second
*/
args = sscanf (buffer, "%bd: %d: %d", /* scan input line for
*/
&rtime. hour, /* hour, mnute and second
*/
&time.mn,
& tinme.sec);
if (rtine.hour > 23 |] rtine.mn > 59 | /* check for valid inputs
*/
rtine.sec > 59 || args < 2 || args == EOF) {
printf ("\n*** ERROR |NVALID TI ME FORVAT\ n");
return (0);
return (1);
#define ESC 0x1B /* ESCAPE character code
*/
bi t escape; /* flag: mark ESCAPE character entered
*/
/***
*/
[* Task 6 'get_escape': check if ESC (escape character) was entered
*/
/***
*/
get _escape () _task_ GET_ESC {
while (1) { /* endless |oop
*/
if (_getkey () == ESC) escape = 1; /* set flag if ESC entered
*/
if (escape) ({ /* if escape flag send signal
*/
os_send_si gnal (COMVAND) ; /* to task 'conmand'
*/
}
}
}

/***
*/
/* Task 1 'conmand': conmand processor */
/***
*/
conmand () _task_ COVWAND {

unsi gned char i;

printf (menu); /* display conmand nenu
*
/
while (1) { /* endless |oop
*
/
printf ("\nCommand: "); /* display pronpt

*/

54

Application Examples

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

getline (& nline, sizeof (inline)); /* get command |ine input

for (i = 0; inline[i] !'= 0; i++) { /* convert to uppercase

inline[i] = toupper(inline[i]);

for (i = 0; inline[i] == " '; i++); /* skip blanks
switch (inline[i]) { /* proceed to conmmand function
case 'D: /* Display Tinme Conmmand

printf ("Start Tinme: %92bd: %92bd: ¥92bd "
"End Tinme: %92bd: %92bd: %92bd\ n",
start.hour, start.mn, start.sec,

end. hour, end. nmi n, end. sec) ;

printf (" type ESC to abort\r");
os_create_task (GET_ESO); /* ESC check in display |oop
escape = 0; /* clear escape flag
display_time = 1; /* set display tine flag
os_cl ear_signal (COVVAND); /* clear pending signals
whil e (!escape) { /* while no ESC entered

printf ("Clock Time: 9%2bd: %92bd: %02bd\r", /* display tinme

ctime. hour, ctinme.mn, ctine.sec);

os_wait (K_SIG 0, 0); /* wait for time change or ESC
}
os_del ete_task (GET_ESC); /* ESC check not |onger needed
di splay_time = 0; /* clear display tine flag

printf ("\n\n");

br eak;
case 'T': /* Set Time Command
if (readtinme (& nline[i+1])) { /* read time input and
ctinme.hour = rtine. hour; /* store in 'ctine'
ct@ne.m'n = rt@ne.m'n;
ctine.sec = rtine.sec;
%Jreak;
case 'E': /* Set End Tinme Command
if (readtinme (& nline[i+1])) { /* read time input and
end. hour = rtine. hour; /* store in 'end

RTX TINY 55

end.min = rtine.mn;
end.sec = rtine.sec;
}
br eak;
case 'S': /* Set Start Tinme Conmand */
if (readtinme (& nline[i+1])) { /* read time input and
*/
start.hour = rtine.hour; /* store in 'start'
*/
start.min = rtinme.mn;
start.sec = rtine.sec;
}
br eak;
defaul t: /* Error Handling
*/
printf (menu); /* display command nenu
*/
br eak;
}
}
}
/***
*/
[* signalon: <check if clock time is between start and end
*/
/***
*/

bit signalon () {
if (mencnp (&start, &end, sizeof (struct time)) < 0) {
if (mencnp (&start, &ctine, sizeof (struct tine)) <0 &&

mencnp (&ctinme, &end, sizeof (struct tinme)) < 0) return (1);
}
else {
if (nmencnp (&end, &ctime, sizeof (start)) >0 &&
mencnp (&ctinme, &start, sizeof (start)) > 0) return (1);
return (0); /* signal off, blinking on
*
/

}

SRR R R R R R AR R R R R R AR R R R R R R R R R R R R R R

*/
/* Task 3 "blinking': runs if current time is outside start & end tine
*/
/***
*/
blinking () _task_ BLINKING { /* blink yellow Iight
*/

red = 0; /* all lights off
*/

yell ow = 0;

green = 0;

st op = 0;

wal k = 0;

while (1) { /* endless |oop

*/

56 Application Examples

yellow = 1; /* yellow |ight on
*/
os_wait (K_TMO, 30, 0); /* wait for tinmeout: 30 ticks
*/
yellow = O; /* yellow |ight off
*/
os_wait (K_TMO, 30, 0); /* wait for tinmeout: 30 ticks
*/
if (signalon ()) { /* if blinking time over
*/
os_create_task (LICGHTS); /* start |lights
*/
os_del ete_task (BLINKING); /* and stop blinking
*/
}
}
}
/***
*/
[* Task 4 '"lights': executes if current tine is between start & end tine
*/
/***
*/
lights () _task_ LIGHTS { /* traffic |light operation
*/
red = 1; /* red & stop lights on
*/
yel l ow = 0;
green = 0;
st op = il
wal k = 0;
while (1) { /* endless |oop
*/
os_wait (K_TMO, 30, 0); /* wait for tineout: 30 ticks
*/
if (!signalon ()) { /* if traffic signal tine over
*/
os_create_task (BLINKING ; /* start blinking
*/
os_del ete_task (LIGHTS); /* stop lights
*/
yellow = 1;
os_wait (K_TMO, 30, 0); /* wait for tinmeout: 30 ticks
*/
red = 0; /* green light for cars
*/
yell ow = 0;
green = 1;
os_cl ear_signal (LICGHTS);
os_wait (K_TMO, 30, 0); /* wait for tinmeout: 30 ticks
*/
os_wait (K. TMO + K SIG 250, 0); /* wait for timeout & signal
*/
yellow = 1;
green = 0;
os_wait (K_TMO, 30, 0); /* wait for tinmeout: 30 ticks
*/
red = 1; /* red light for cars
*/

yel l ow = 0;

RTX TINY 57

os_wait (K_TMO, 30, 0); /* wait for tinmeout: 30 ticks
*/
st op = 0; /* green light for wal kers
*/
wal k =1;
os_wait (K_TMO, 100, 0); /* wait for tinmeout: 100 ticks
*/
st op = 1; /* red light for wal kers
*/
wal k = 0;
}
}
/***
*/
[* Task 5 'keyread': process key stroke from pedestrian push button
*/
/***
*/
keyread () _task_ KEYREAD ({
while (1) { /* endless |oop
*/
if (key) { /* if key pressed
*/
os_send_signal (LIGHTS); /* send signal to task lights
*/
Yoo _ _ _
os_wait (K_TMO, 2, 0); /* wait for timeout: 2 ticks
*/
}
}
SERIAL.C
/***
*/
/*
*/
[* SERIAL. C. Interrupt Controlled Serial Interface for RTX-51 tiny
*/
/*
*/
/***
*/
#i ncl ude <reg52. h> /* special function register 8052
*/
#i ncl ude <rtx51tny. h> /* RTX-51 tiny functions & defines
*/
#define OLEN 8 /* size of serial transm ssion buffer
*/
unsi gned char ostart; /* transnission buffer start index
*/
unsi gned char oend; /* transm ssion buffer end index
*/
i dat a char out buf [OLEN] ; /* storage for transm ssion buffer
*/
unsi gned char otask = Oxff; /* task nunber of output task

*/

58 Application Examples

#define |ILEN 8 /* size of serial receiving buffer
*/
unsi gned char istart; /* receiving buffer start index
*/
unsi gned char i end; /* receiving buffer end index
*/
i data char i nbuf [I LEN] ; /* storage for receiving buffer
*/
unsi gned char itask = Oxff; /* task nunber of output task
*/
#defi ne CTRL_Q Ox11 /* Control +Q character code
*/
#defi ne CTRL_S 0x13 /* Control +S character code
*/
bi t sendful [; /* flag: marks transmit buffer full
*/
bi t sendacti ve; /* flag: marks transmitter active
*/
bi t sendst op; /* flag: marks XOFF character
*/
/***
*/
[* put buf : wite a character to SBUF or transm ssion buffer
*/
/***
*/
put buf (char c) {
if (!sendfull) { /* transmit only if buffer not full
*/
if (!sendactive && !sendstop) { /* if transmitter not active:
*/
sendactive = 1; /* transfer the first character direct
*/
SBUF = c; /* to SBUF to start transmi ssion
*/
} :
el se { /* otherw ze:
*/
out buf [oend++ & (OLEN-1)] = c¢; [/* transfer char to transm ssion buffer
*/
if (((oend » ostart) & (OLEN-1)) == 0) sendfull = 1;
/* set flag if buffer is full
*/
}
}
/***
*/
/* put char: i nterrupt controlled put char function
*/
/***
*/
char putchar (char c) {
if (c == '"\n") { /* expand new line character:
*/
while (sendfull) { /* wait for transm ssion buffer enpty

*/

RTX TINY

59

otask = os_running task_ id (); /* set output task nunber
*/
os_wait (K.SIG 0, 0); /* RTX-51 call: wait for signal
*/
otask = Oxff; /* clear output task nunber
*/
} _
put buf (0x0D) ; /* send CR before LF for <new |ine>
*/
while (sendfull) { /* wait for transmi ssion buffer enpty
*/
otask = os_running_task_id (); /* set output task nunber
*/
os_wait (K.SIG 0, 0); /* RTX-51 call: wait for signal
*/
otask = Oxff; /* clear output task nunber
*/
put buf (c); /* send character
*/
return (c); /* return character: ANSI requirenent
*/
}
/***
*/
[* _get key: i nterrupt control |l ed _get key
*/
/***
*/
char _getkey (void) {
while (iend == istart) {
itask = os_running_task_id (); /* set i nput task nunber
*/
os_wait (K.SIG 0, 0); /* RTX-51 call: wait for signal
*/
itask = Oxff; /* clear input task nunber
*/
} _ _
return (inbuf[istart++ & (ILEN-1)]);
}
/***
*/
[* serial : seri al receiver / transmtter interrupt
*/
/***
*/
serial () interrupt 4 using 2 { /* use registerbank 2 for interrupt
*/

unsi gned char c;
bi t start_trans = O;

if (RI) { /* if receiver interrupt
*/
¢ = SBUF; /* read character
*/
R = 0; /* clear interrupt request flag

*/

60 Application Examples

switch (c) { /* process character
*/
case CTRL_S:
sendstop = 1; /* if Control+S stop transnission
*/
br eak;
case CTRL_Q
start_trans = sendstop; /* if Control+Q start transm ssion
*/
sendstop = 0;
br eak;
defaul t: /* read all other characters into inbuf
*/
if (istart + ILEN !'=iend) {
inbuf[iend++ & (ILEN-1)] = c;
}
[* if t ask wai ting: si gnal ready
*/
if (itask != OxFF) isr_send_signal (itask);
br eak;
}
}
if (Tl || start_trans) { /* if transmitter interrupt
*/
TI = 0; /* clear interrupt request flag
*/
if (ostart != oend) { /* if characters in buffer and
*/
if (!sendstop) { /* if not Control+S received
*/
SBUF = outbuf[ostart++ & (OLEN-1)]; /* transmt character
*/
sendfull = 0; /* clear ‘'sendfull' flag
*/
[* if t ask wai ting: si gnal ready
*/
if (otask != OxFF) isr_send_signal (otask);
}
el se sendactive = O; /* if all transmitted clear 'sendactive'
*/
}
}
/***
*/
[* serial _init: initialize seri al interface
*/
/***
*/
serial _init () {
SCON = 0x50; /* mode 1: 8-bit UART, enable receiver
*/
TMOD | = 0x20; /* tinmer 1 node 2: 8-Bit reload
*/
TH1 = Oxf3; /* reload value 2400 baud

*/

RTX TINY

GETLINE.C

62 Application Examples

line = O0; / mark end of string
“f
}

Compiling and Linking TRAFFIC
Enter the following commands at the DOS prompt to compile and link TRAFFIC.

C51 TRAFFI C. C DEBUG OBJECTEXTEND RF (TRAFFI C. REG)
C51 SERI AL. C DEBUG OBJECTEXTEND RF (TRAFFI C. REG)
C51 GETLI NE. C DEBUG OBJECTEXTEND RF (TRAFFI C. REG)

BL51 @RAFFIC.LIN

Alternatively, there is a batch file called TRAFFIC.BAT that you can use to compile,
link, and automatically run DS51.

Testing and Debugging TRAFFIC

Once you have compiled and linked TRAFFIC, you can test it using DS51. Type
DS51 TRAFFI C

to run DS51 and load including the DS5L.INI initialization file. This file will automati-
cally load the IOF driver, load the traffic program, load an include file for displaying task
status, active watchpoints for the traffic lights, define a function for the pedestrian button
(which is activated using F4), and start the TRAFFIC application. Following is the list-
ing of DS51.INI.

load ..\..\ds51\8052.i of /* | oad 8052 CPU driver*/
i ncl ude dbg_tiny.inc /* | oad debug function for RTX51 Tiny */

/* define watch variables */

red

yel | ow

green

st op

wal k

set P1.5 to zero: Key |Input */
PORT1 &= ~0x20

/* define a debug function for the pedestrian push button */
signal void button (void) {

555055

~
*

PORT1 | = 0x20; /* set Portl.5 */
twat ch (50000); /[* wait 50 ns */
PORT1 &= ~0x20; /* reset Portl.5 */

}

/* define F4 key as call to button () */
set F4="button ()"

Y ou can start the execution of the application TRAFFIC with the GO command:
g

RTX TINY

63

When DS51 starts executing TRAFFIC, the serial window will display the command
menu and waits for you to enter a command. Change to the serial window with Al t +S;
type d and pressthe ENTER key. Thiswill display the current time and the start and
end time range for the traffic light. For example:

Start Time: 07:30:00 End Tine: 18:30: 00
Clock Tinme: 12:00:11 type ESC to abort

As the program runs, you can watch the red, yellow, and green lamps of the traffic light
change. The pedestrian button is simulated using F4. Press F4 to see the traffic light
switch to red and the walk light switch to on.

You can display the task status using F3 much as before. The following task information
will be displayed:

P +
i Task ID | Start | State i Wit for Event i Signal | Tiner | Stack |
S hoioioioio - Foloioioim o e toioioio e hoioioioim - hoioioioo - !
I I
i 0 | 0026H | DELETED | i 0 i 131 | 84H |
i 1 i 00D1H | WAITING | SIGNAL i 0 i 131 | 84H |
i 2 i 0043H | WAITING | TI MEOUT i 0 i 5 | 86H |
i 3 | 0278H | DELETED | i 0 i 131 | 88H |
i 4 | 02ACH | WAITING | SIGNAL & TI MEQUT | 0 i 220 | 88H |
i 5 i 032BH | WAITING | TI MEOUT i 0 i i | 8AH |
i 6 i 000EH | WAITING | SIGNAL i 0 i 131 | FBH |
S +

If the Exe window is not large enough to show the entire status text, you can press
ALT+R toremove theregister window. You can aso increase the vertical size of the Exe
window. Press ALT+E to select the Exe window then enter ALT+U severa timesto in-
crease the size of the window.

When you are through using DS51, type EXI T at the DS51 command prompt.

64

Application Examples

A

Application Example
RTX Example
TRAFFIC

Arithmetic Unit

B

45,

bank switching
BITBUS Communication

C

C51 Library Functions
C51 memory model
CAN Communication
CAN Functions
Compiling
Compiling RTX51 Tiny Programs
CONF_TNY.A51
Configuration Variables
FREE_STACK
INT_CLOCK
INT_REGBANK
RAMTOP
STACK_ERROR
TIMESHARING

D

DBG_TINY.INC
Debugging with dScope-51
Development Tool Requirements

E

Event
Interval
Signal
Timeout

F

9,12,

FREE_STACK

47
49
16

15
12

16
15
12
13
11
23
21

22
22
22
22
22
22

42
41
15

18
18
18
18

22

INT_CLOCK 22
INT_REGBANK 17,22
Interrupt Handling 15
Interrupts 12
isr_send_signa 25,27
K
K_IVL 34, 37
K_SIG 34, 37
K_TMO 34, 37
L
Linking 11
Linking RTX51 Tiny Programs 23
M
Message Passing 12
Multiple Data Pointer 16
Multitasking Routines
isr_send_signa 25
os clear_signa 25
0s_create_task 25
0s_delete task 25
0S_running_task_id 25
os_send_signal 25
0s_wait 25
os waitl 25
0s_wait2 25
N
NOT_OK 34, 36, 38
Notational Conventions 5
O
Optimizing RTX51 Tiny Programs 23
0s clear_signal 25,28
0s _create task 25,29
0s _delete task 25,30
0s_running_task_id 25,31

RTX TINY 65
os_send_signal 25,32 Single Task Program 8
0s_wait 25,34 Stack Management 41
o0s waitl 25, 36 STACK_ERROR 22
0s_wait2 25,37 System Debugging 41

System Functions 13
P
T
Preemption 11
Priorities 11 Target System Requirements 15
Task Definition 17
R Task Management 17
Task State
RAMTOP 22 Deleted 17
. Ready 17
Reentrant Functions 16 .
. Running 17
Registerbanks 17 .

- Time-out 17
Round-Robin Program 8 Waitin 17
Round-Robin Scheduling 8 ng

Task Switching 18
RTX51 X
. Technical Data 14
Introduction 7 Timer 0 16
RTX51 Full 7 Interrupt 16
RTXSLTiny ! TIMESHARING 18,22
RTX51 Tiny Configuration 21 TMO EVENT 34 38
RTX51 Tiny System Functions 25 - ’
RTX51TNY.H 15,21
RTX5ITNY.LIB 15 U
S Using Signals 10
Using Time-outs 9
SIG_EVENT 34, 36, 38

Information in this document is subject to change without notice and does not represent a
commitment on the part of Keil Elektronik GmbH. The software and/or databases de-
scribed in this document are furnished under license agreement or nondisclosure agree-
ment and may be used or copied only in accordance with the terms of the agreement. It is
against the law to copy the software on any medium except as specifically alowed in the
license or nondisclosure agreement. The purchaser may make one copy of the software
for backup purposes. No part of this manual and/or databases may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopy-
ing, recording, or information storage and retrieval systems, for any purpose other than
for the purchasers personal use, without the express written permission of Keil Elektronik
GmbH.

© Copyright 1995, Keil Elektronik GmbH. All rights reserved.
Printed in the Germany.

ISHELL, Keil C166, Keil C51, dScope, and Professional Developers Kit are trademarks
of Keil Elektronik GmbH.

Microsoft®, MSBOS®, Windows and MASM® are registered trademarks of Microsoft
Corporation.

IBM and PC® are registered trademarks of International Business Machines Corporation.
Intel, MCS, AEDIT, ASM51, and PL/M51 are registered trademarks of Intel Corporation.

Germany and Europe

KEIL ELEKTRONIK GmbH
Bretonischer Ring 15

D-85630 Grasbrunn b. Minchen
Tel: (49) (089) 46 50 57

FAX: (49) (089) 46 81 62

Keil Software is market in the United States and Canada also under the Franklin Software, Inc.

KEIL ELEKTRONIK GmbH has representatives in the following countries: Australia, Austria, Belgium, CFR, Denmark, Finland, France, Germany, India,
Ireland, Israel, Italy, Netherlands, Norway, Poland, Spain, South Africa, Sweden, Switzerland, Taiwan, United Kingdom, United States and Canada.

Contact KEIL ELEKTRONIK GmbH to obtain the name and address of the distributor nearest to you.

Printed in Germany 2-95, Document #9443-1

D KEIL
SOFTWARE

RTX51 TINY

REAL- TIME OPERATING SYSTEM

User’s Guide 2.95

