MC68HC705K1 Servo Controller

Kevin Nichols 11-18-00

For CSE 466

Features:

1) Controls up to 8 individual servos simultaneously

2) 8-bit servo positioning resolution over the 1ms to 2 ms range.

3) Uses 3 line serial interface for commands and data

4) Up to 32 commands can be defined

5) Each servo maintains its last position until sent a new position, or turned off.

Interface

The interface (from the 68HC705’s perspective) consists of two input lines, and one output line. One of the input lines is the “You’ve Got Mail” (YGM) line, the other is the data (DAT) line. The output line is the acknowledge (ACK) line.

The data transfer sequence goes as follows (assume all lines start out low):

1) SENDER ACTION: The sender notices that the both the ACK line is clear, and the YGM line is clear. This means the sender is free to send a data bit. The sender places data on the DAT line, and then sets the YGM line high. It then checks the ACK line occasionally. If the ACK line is still low, it knows the mail has not been picked up, so it simply leaves the DAT & YGM lines as they are, and keeps checking back once in a while.

2) RECEIVER ACTION: At any time the 68HC705 checks the YGM line, and notices it is high. It then checks the ACK line, and if the ACK line is low, it knows it has received “new mail”. It then gets the data bit and sets the ACK line. The receiver is now free to process the data bit.

3) SENDER ACTION: At any time later, the sender notices that the ACK line has gone high. It knows the data bit has been received successfully, so it then clears the YGM line. It then periodically checks the ACK line to see when it goes low.

4) RECEIVER ACTION: At any time later, the 68HC705 checks the YGM and ACK line. If they are both set, it knows the data is old data, and to ignore it. If it finds that YGM is clear, and ACK is set, it knows the sender has seen its ACK line, and the receiver will then clear the ACK line.

5) Go back to step 1 & repeat the process.

There is an internal 16-bit buffer that contains the serial bits as they are clocked in. As soon as the 16th bit is received, the package is assumed to be valid, and action is taken by the 68HC705 to execute the command. The next bit received will start loading into bit 0 of the next package. Because of the handshaking nature of the interface, it is thought that any errors will be low.

This serial interface format is quite different from normal serial interfaces. For one, it does not utilize any timing or interrupt routines. Secondly, it is a one-way data transfer protocol. It also does not guarantee anything about how fast the data will be transferred. Thirdly, it does no framing error control. This probably should be included, however, due to the development time limitations, none was included.

So why use it here? The main advantage for using this interface with a microcontroller like the 68HC705 (with its single non-settable timer) is that there are no time-critical elements to this interface. This is very important in a microcontroller such as the 68HC705 which has a single timer that cannot be preset, and when other highly time-critical events are being controlled like pulse width modulation for eight servos. The second advantage is that no state is required to be saved, other than the levels of the three lines being used, and the levels of the lines determine what the current state is, and what the next state should be. This simplifies the processing, and makes the interface highly interruptible.

 The fours states of the interface are as follows:

STATE 1) Sender has ok to send data, receiver waiting for data.

(YGM = low, DAT = invalid, ACK = low)

STATE 2) Sender has sent data, and is waiting for ack, receiver is getting data

(YGM = high, DAT = valid, ACK = low)

STATE 3) Receiver has gotten and ack’d data, sender waiting for ack

(YGM = high, DAT = valid, ACK = high)

STATE 4) Sender recognizes ack, receiver waiting for new data

(YGM = low, DAT = invalid, ACK = high)

Package Format

Each 16 bit data package is formatted as follows:

 [DDDDDDDD] [CCCCC|AAA]

Bit Position of Buffer

76543210 76543 210

Buffer Name (see source code) buffer_h buffer_l

where C is a command bit, A is the servo being addressed, and D is the data value for the servo.

The package is sent serially as follows (D7 bit first, A0 bit last):

D7, D6, D5, D4, D3, D2, D1, D0, C7, C6, C5, C4, C3, A2, A1, A0

Commands:

00000 = Turn servo on: Uses data portion of packet to set position of this servo (note: all servos are initially off at reset). Also use this command to reposition a servo that is already on.

00001 = Turn servo off: Data value is ignored. (Servo will no longer receive timing pulses and may drift)

00010 = All servos off: Address & Data values ignored. (All servos will no longer receive timing pulses)

00011 = All servos on (use included data): Address ignored (Each servo will use included data for positioning)

00100 = All servos on (use prev. data): Address & data ignored (Each servo uses data it was previously sent)

11111 = Test all servos: All servos are turned on, and sweep over their entire range every 4 seconds. This continues until another command is sent. Previous data values are lost.

Servo addresses:

000 = Servo connected to port A, pin 0

001 = Servo connected to port A, pin 1

010 = Servo connected to port A, pin 2

011 = Servo connected to port A, pin 3

100 = Servo connected to port A, pin 4

101 = Servo connected to port A, pin 5

110 = Servo connected to port A, pin 6

111 = Servo connected to port A, pin 7

Data

00000000 (0) (0x00)
Servo rotated to CW limit (approx. 1ms pulse width)

11111111 (255) (0xFF)
Servo rotated to CCW limit (approx. 2ms pulse width)

10000000 (128) (0x80)
Servo in centered or neutral position (approx. 1.5ms pulse width)

MC68HC705K1 Pin Assignments

PA0 – PA7: Servo control lines (output). Outputs a positive pulse, width varying between 1ms and 2ms. Repetition rate (per line) is 32.8ms.

/IRQ: This is the YGM line (input). Note: This pin is NOT using the interrupt function.

PB0: This is the DAT line (input).

PB1: This is the ACK line (output)

Reset Conditions

On controller reset, all servo data values contain 128 (neutral position), and all servos are off (not receiving timing pulses, ie they may drift).

