
1

AVR 300: Software I 2C™ Master Interface

Features
• Uses No Interrupts
• Supports Normal And Fast Mode
• Supports Both 7-Bit and 10-Bit

Addressing
• Supports the Entire AVR

Microcontroller Family

Introduction
The need for a simple and cost effective
inter-IC bus for use in consumer, tele-
communications and industrial electron-
ics, led to the developing of the I2C bus.
Today the I2C bus is implemented in a
large number of peripheral and micro-
controllers, making it a good choice in
low speed applications.

The AVR microcontroller family does not
have dedicated hardware for I2C opera-
tion, but because of the flexible I/O and
high processing speed, an efficient soft-
ware I2C single master interface, can
easily be implemented.

Theory of Operation
The I2C bus is a two-wire synchronous
serial interface consisting of one data
(SDA) and one clock (SCL) line. By
using open drain/collector outputs, the
I2C bus supports any fabrication process
(CMOS, bipolar and more).

The I2C bus is a multi-master bus where
one or more devices, capable of taking
control of the bus, can be connected.
When there is only one master con-
nected to the bus, this does not need to
support handling of bus contentions and
inter master access (a master accessing
another master). Only master devices
can drive both the SCL and SDA lines
while a slave device is only allowed to
issue data on the SDA line.

Figure 1. START and STOP conditions

Data transfer is always initiated by a bus
master device. A high to low transition
on the SDA line while SCL is high is
defined to be a START condition (or a
repeated start condition). A START con-
dition is always followed by the (unique)
7-bit slave address and then by a data
direction bit. The slave device addressed

now acknowledges to the master by
holding SDA low for one clock cycle. If
the master does not receives any
acknowledge, the transfer is terminated.
Depending of the data direction bit, the
master or slave now transmits 8-bit of
data on the SDA line. The receiving
device then acknowledges the data. Mul-

S T A R T
C O N D I T I O N

S T O P
C O N D I T I O N

S C L

S D A

8-Bit
Microcontroller

Application
Note

AVR300

0954A-A–9/97

AVR3002

tiple bytes can be transferred in one direction before a
repeated START or a STOP condition is issued by the
master. The transfer is terminated when the master issues
a STOP condition. A STOP condition is defined by a low to
high transition on the SDA line while the SCL is high.

If a slave device cannot handle incoming data until it has
performed some other function, it can hold SCL low to force
the master into a wait-state.

Figure 2. Bit transfer on the I2C bus

Change of data on the SDA line is only allowed during the
low period of SCL as shown in Figure 2. This is a direct
consequence of the definition of the START and STOP
conditions. A more detailed description and timing specifi-
cations, can be found in [1].

Transferring Data
All transfer on the bus is byte sized. Each byte is followed
by an acknowledge bit set by the receiver. The slave
address byte contains both a 7-bit address and a read/write
bit.

Figure 3. Byte Transfer Formats

Figure 3 shows the valid data transfer formats. In the com-
bined format, multiple data can be sent in any direction (to
the same slave device). A change in data direction is done
by using a repeated START condition. Note that a master
read operation must be terminated by not acknowledging
the last byte read.

Connection
Both I2C lines (SDA and SCL) are bi-directional therefore
outputs must be of an open-drain or an open-collector type.
Each line must be connected to the supply voltage via a
pull-up resistor. A line is then logic high when none of the
connected devices drives the line, and logic low if one or
more is drives the line low.

S D A

S C L

D A T A
VAL ID

C H A N G E
A L L O W E D

��
��Sr

��
��P

��
��

FROM MASTER TO SLAVE

FROM SLAVE TO MASTER

��
��S A A

����
����Slave Address

��
��R / W

�����
�����DATA

������
������DATA A/A

��
��P

��
��S A

����
����Slave Address

��
��R / W DATA

��
��A DATA

�
�A
��
��P

�����
�����Slave Address

�
�R / W

��
��S A

����
����Slave Address

��
��R / W DATA A/A A DATA A/A

"0"

"1"

Master Wr i te

Master Read

Combined Format

��
��

S START CONDITION

��
��P STOP CONDITION

A ACKNOWLEDGE (SDA LOW)

A NOT ACKNOWLEDGE (SDA HIGH)

REPEATED START

��
��Sr

n BYTES

n BYTES

n BYTES n BYTES

AVR300

3

Figure 4. Physical connection to the I2C bus

Figure 4 shows how to connect the AVR microcontroller to
the I2C bus. The value of RP depends on VDD and the bus
capacitance (typically 4.7k).

Implementation
The only resources used by the I2C master routines pre-
sented in this application, is the two pins for SCL and SDA
on port D. Since the I2C bus is synchronous, the duty cycle
and the period time to the serial clock line (SCL) is not criti-
cal. Therefore it is not necessary to ‘fine-tune’ the routines
which would cause to an increase of program size.

There are two types of delays used in this implementation:
quarter period and half period delays. For I2C in normal
mode (100 kHz), these delays must be tquarter > 2.5 µs and
thalf > 5.0 µs. For I2C in fast mode (400 kHz) the parameters
are tquarter > 0.6 µs and thalf > 1.3 µs.

There is a large number of possible implementations of the
delay loop. All the implementations depends on the MCU
clock frequency. It is not possible to make a generalized
version which is efficient for all clock speeds.

The following steps show how to choose the most efficient
implementation of the delays:

1. Calculate the required number of clock cycles both
delays:

n = t * fosc ; t = tquarter and thalf, fosc is MCU clock.

SCLK IN

"0"

S C L K O U T

DATA IN

"0"

D A T A O U T

R P R P

S C L S D A

PDx

PDy

AT90Sxxxx
(I2C Master)

S C L

S D A

I2C Slave(s)

V DD

AVR3004

2. Use n to chose one of the following methods for both
delays.

I2C Subroutines
‘i2c_init’
Initializes SCL and SDA lines. The SCLP and SDAP con-
stants located top of the program code, chooses the pin
number on port D. It is possible to use any pins on any port
by changing the program code if required.

All the port D initialization can be put in this subroutine to
reduce code size.

‘i2c_start’
Generate start condition and sends slave address. All data
transfer must start with this subroutine. When a transfer is
done the ‘i2c_end’ must be called. When the bus is free
(after ‘i2c’_end is called) all registers are free for other
usage.

n Delay method

< 1 remove all calls to the delay routine

1 < n < 2 replace all calls to the delay routine with one ‘nop’ instruction

2 < n < 3 replace all calls to the delay routine with an ‘rjmp 1’ instruction

2 < n < 7 the delay routine should consist of one ‘ret’ instruction only

> 7 use the following routine :
ldi i2cdelay, 1+ (n-7)/3

loop: dec i2cdelay

brne loop

ret

(this routine is used in the program code!)

Parameter Value

Code Size 3

Execution cycles N/A

Register Usage Low registers
 High registers
 Global registers

:None
:3
:1

Register Input Internal Output

r16 ‘i2cdelay’ - Delay loop counter

r17 ‘i2cdata’ - Transmit buffer

r18 ‘i2cadr’ - Slave address and
transfer direction (global)

AVR300

5

‘i2c_rep_start’
Generate repeated start condit ion and sends slave
address. A repeated START can only be given after a byte
has been read or written.

‘i2c_write’
Writes data (one byte) to the I2C bus. This function is also
used for sending the address.

‘i2c_get_ack’
Get slave acknowledge response. The reason for separate
this subroutine from the ‘i2c_write’ routine is to get a more
readable program code.

Parameter Value

Code Size 5

Execution cycles N/A

Register Usage Low registers
 High registers
 Global registers

:None
:3
:1

Register Input Internal Output

r16 ‘i2cdelay’ - Delay loop counter

r17 ‘i2cdata’ - Transmit buffer

r18 ‘i2cadr’ - Slave address and
transfer direction (global)

Parameter Value

Code Size 16

Execution cycles N/A

Register Usage Low registers
 High registers
 Global registers

:None
:2
:None

Register Input Internal Output

r16 ‘i2cdelay’ - Delay loop counter

r17 ‘i2cdata’ - Data to be written

Parameter Value

Code Size 11

Execution cycles N/A

Register Usage Low registers
 High registers
 Global registers

:None
:1
:None

Register Input Internal Output

r16 ‘i2cdelay’ - Delay loop counter

AVR3006

Figure 5. ‘i2c_start’, ‘i2c_rep_start’, ‘i2c_write’ and ‘i2c_get_ack’ Flow Chart

Figure 5 shows the flow chart for ‘i2c_start’, ‘i2c_rep_start’,
‘i2c_write’ and ‘i2c_get_ack’. These subroutines shares
program code to reduce size.

‘i2c_read’
Reads data (one byte) from the I2C bus.

'i2c_start '

i2cadr = i2cdata

ZERO = '1 '?

' i2c_rep_start '

s e t S D A L O W

Delay thalf

s e t SCL LOW
& SDA H IGH

'i2c_write'

se t SCL HIGH

Delay tquater

Delay tquater

set CARRY = '1 '

lef t rotate i2cdata left shif t i2cdata

se t SCL LOW

No

CARRY = '1 '?

se t SDA HIGH s e t S D A L O W

Yes

No

Delay thalf

se t SCL HIGH

Delay thalf

s e t SCL LOW

Delay thalf

se t SCL HIGH

Delay thalf

SCL H IGH ?

Yes

No

se t CARRY = SDA

' i2c_get_ack '

Yes

return

Parameter Value

Code Size 11

Execution cycles N/A

Register Usage Low registers
 High registers
 Global registers

:None
:3
:1

AVR300

7

‘i2c_put_ack’
Put an acknowledge bit depending on carry flag is set or
not. Separating this subroutine from the ‘i2c_read’ routine

is convenient for the user if a acknowledge is based on the
result of the read operation.

Register Input Internal Output

r16 ‘i2cdelay’ - Delay loop counter

r17 ‘i2cdata’ - Received data

r19 ‘i2cstat’ - Store acknowledge bit
(global)

Parameter Value

Code Size 12

Execution cycles N/A

Register Usage Low registers
 High registers
 Global registers

:None
:2
:1

Register Input Internal Output

r16 ‘i2cdelay’ - Delay loop counter

r19 ‘i2cstat’ - Acknowledge bit
(global)

AVR3008

Figure 6. ‘i2c_read’ and ‘i2c_put_ack’ Flow Chart

Figure 5 shows the f low char t for ‘ i2c_read’ and
‘i2c_put_ack’. These subroutines shares program code to
reduce size.

‘i2c_stop’
Generate stop condition. When a transfer is done the
‘i2c_end’ must be called. When the bus is free (after
‘i2c’_end is called) all registers are free for use.

' i2c_read'

set i2cdata = 0x01

se t SCL LOW

Delay thal f

se t SCL HIGH

Delay thal f

se t CARRY = SDA

left rotate i2cdata

CARRY = '1 ' ?

N o

se t SCL LOW

'i2c_put_ack '

set SDA = i2cstat

Delay thal f

se t SCL HIGH

SCL H IGH ?

Yes

N o

Delay thal f

return

Parameter Value

Code Size 8

Execution cycles N/A

Register Usage Low registers
 High registers
 Global registers

:None
:1
:None

Register Input Internal Output

r16 ‘i2cdelay’ - Delay loop counter

AVR300

9

Figure 7. ‘i2c_stop’ Flow Chart

Figure 7 shows the flow chart for ‘i2c_stop’.

‘i2c_do_transfer’
The ‘i2c_do_transfer’ routine is implemented for conve-
nience only. It uses the direction bit from the last address
byte send, to decide whether to call the ‘i2c_read’ or the
‘i2c_write’ routine.

Tips and Warnings
The main loop in the program shows an example of reading
and writing data to a 256byte SRAM. This is a simple dem-
onstration of how to use the I2C routines. Typically the
reading and writing of SRAM will be implemented as func-
tions calls, but since there is a large variety of slave imple-
mentations and ways of accessing them, the making this
type of function calls is left for the user.

Warning! Do not change the order of the I2C routines. Most
routines expects to be followed by a another specific I2C
routine to work correctly.

Conclusion
This application note shows how to implement a master I2C
interface on any AVR microcontroller device. This by using
a minimum of resources. Since no interrupts are used in
the implementation, these are free for other applications. It
is also possible to use the I2C interface inside interrupts.

References
[1] The I2C-bus and how to use it (including specifications),
Philips Semiconductors, April 1995.

' i2c_stop'

se t SCL LOW
& S D A L O W

Delay t half

se t SCL HIGH

Delay tquater

se t SDA HIGH

Delay t half

return

