What’s Coming

- Hardware
 - Basic Filters and Noise Management
 - Serial Communications
- Design Meeting
- Move the quiz up to Monday 10/16 from 10/20.
Address Decoder Logic Design

1. Define External Memory Map (64K): addr[15:0]
 - Ram: Upper 32K enable if address = \texttt{1xxxxxxxxxxxxxxx}
 - LCD: 0-31 enable if address = \texttt{0xxxxxxxx00xxxxx}
 - DAC2: 32 enable if address = \texttt{0xxxxxxxx01xxxxx}
 - ADC1: 64 enable if address = \texttt{0xxxxxxxx10xxxxx}

2. Come up w/ address decoder logic for each case (many to 1 ok, 1 to many not okay!)
 - \(\bar{E}_4 = (A_{15})' \) covers all upper 32K addresses
 - \(\bar{E}_3 = (A_{15}A_{6}'A_{5}')' \) covers \(2^{12} \) addresses including 0-31 but excluding upper 32K, 64, 32
 - \(\bar{E}_2 = (A_{15}A_{6}'A_{5})' \) covers \(2^{13} \) addresses but excludes upper 32K, 64, 0-31
 - \(\bar{E}_1 = (A_{15}A_{6}A_{5}')' \) covers \(2^{13} \) addresses but excludes upper 32K, 32, 0-31
Power Supply Noise

Why?
- Power supply can’t change instantaneously
- Power lines have inductance
- Rapidly reduced R_{eff} at constant I
- Voltage drop at the load

So what? Could cause processor to reset/go to unknown state, mess up analog voltage readings, cause electromagnetic interference
What to do about it?

Acts like a low pass filter

Called a “Bypass Cap”

How big should cap be?
Depends on speed and inductance of the supply, and ΔI when switched
Typical values for digital boards are .1μF/IC placed very close to IC
….then there’s capacitive loads….
Capacitive Loads

Why is this worse than resistive load?
Recharge current is only limited by available electrons!
Can cause massive voltage drop until battery catches up.
So what? Last year’s capstone project: sonar firing caused processor reset
Charge Sharing

1. Initially $Q_1 = V_0 C_1$
2. Then close switch, what is V'/V_0?
3. $V_0 = Q_1 / C_1$ (initial condition)
4. $Q_1' + Q_2' = Q_1$ (post condition)
5. $Q_1 = V'C_1 + V'C_2 = V'(C_1 + C_2)$
6. $V' = Q_1 / (C_1 + C_2)$
7. $V'/V_0 = Q_1 / (C_1 + C_2) \ast C_1 / Q_1$
8. $V'/V_0 = C_1 / (C_1 + C_2)$

If C_1 dominates, then $V' \sim V_0$
If $C_1 = 10C_2$ Then $V_1/V_0 = 10/11$
Where else could we use a low pass filter?

For RC filter

gain < 1

\[F_{hp} = \frac{1}{2\pi RC} \]
\[RC = \frac{1}{2\pi F_{hp}} \]

Assume \(I \) into amp = 0

\(F_{hp} \): gain = 0.5
Design Meeting

- We can play tones.
- What do we have to do now?
 - Music representation – what is music?
 - Basic I/O to the host (PC)
 - C
 - Multiple independent tones with a single timer
Is Constant Rate Sampling Okay?

- Just like CD player: runs a 44KHz...max frequency it can create is 22KHz,
- A CD recording of a pure 22HKz tone would look like a square/triangle wave on the output of the DAC.

two frequencies with same rate. How fast can you go?
Frequency range w/ fixed sample rate

To get a pseudo-sine wave, what is the max Stride for our lookup table?

- 64: \(\frac{64}{156} \) (5K) = 1.125KHz

Let Stride = 1 and Sample Rate = 5KHz

- output frequency = \(\frac{5KHz}{256} \) = 19.531Hz
- low frequencies generate a smoother waveform

Let Stride = n

- output frequency = \(\frac{5KHz}{(256/n)} \) = n*(5KHz/256)

Solve for output frequency

- Stride = (freq*256)/5KHz
- Middle C = 262Hz, so stride = 13.41 can we just round this off? Yes for this week’s lab.
- D = 294, so stride = 15.05

What happens for low frequencies

- Low F: 87.31Hz stride = 4.74
- Low E: 82.42Hz stride = 4.47
- what do we do with non-integral strides?
Serial Communication: RS-232 (IEEE Standard)

- Serial protocol for point-to-point low-cost, low speed applications
- Commonly used to connect PCs to I/O devices
- RS-232 wires

 - TxD -- transmit data
 - TxC -- transmit clock
 - RTS -- request to send
 - CTS -- clear to send

 - RxD -- receive data
 - RxC -- receive clock
 - DSR -- data set ready
 - DTR -- data terminal ready

 SG -- Signal Ground
Transfer modes

- **Synchronous**
 - Clock signal wire is used by both receiver and sender to sample data

- **Asynchronous**
 - No clock signal in common
 - Data must be over-sampled
 - Needs only three wires (one data for each direction, and ground)

- **Flow control**
 - Handshaking signals to control byte rate, not bit rate
 - Optional
Data Format

- Logic 0 (space): between +3 and +25 Volts.
- Logic 1 (mark): between -3 and -25 Volts.
- Undefined between +3 and -3 volts.

Start Bit, Stop bit, Data bits, Parity Bit (odd, even, none)
Level Converter: DS 275

- **RXout**: RS-232 Receiver Output (-0.3V to Vcc)
- **Vdrv**: Transmit driver +V (hook to Vcc)
- **TXin**: RS-232 Driver Output (-0.3V to Vcc)
- **GND**: System ground
- **TXout**: RS-232 Driver Output (+/- 15 V)
- **RXin**: RS-232 Receive Input (+/- 15 V)
- **Vcc**: System Logic Supply (+5V)
- Using only TD, RD, and SG
- No need for flow control (May miss characters if sent too fast)
- Both ends ready to send/receive at any time

This adapter does the swapping for you.