Review and Lab Prep

q hotmail account on mailing list doesn’t work

Memory Architecture Review

Show the memory after execution from reset

MOV A,@R1;
MOV R1,A;
MOV A,#FEH;
MOV 64H,A;
MOV A,FEH;
JMP 20H;

MOV A,FEH;

MOV A,#FEH;

MOV 64H,A;

MOV A,FEH;

JMP 20H;

MOV A,FEH;

MOV A,#FEH;

MOV 64H,A;

MOV A,FEH;

JMP 20H;

MOV A,FEH;

MOV A,#FEH;

MOV 64H,A;

MOV A,FEH;

JMP 20H;

MOV A,FEH;

MOV A,#FEH;

MOV 64H,A;

MOV A,FEH;

JMP 20H;

MOV A,FEH;

MOV A,#FEH;

MOV 64H,A;

MOV A,FEH;

JMP 20H;

MOV A,FEH;

MOV A,#FEH;

MOV 64H,A;

MOV A,FEH;

JMP 20H;

MOV A,FEH;

MOV A,#FEH;

MOV 64H,A;

MOV A,FEH;

JMP 20H;

MOV A,FEH;

MOV A,#FEH;

MOV 64H,A;

MOV A,FEH;

JMP 20H;

MOV A,FEH;

MOV A,#FEH;

MOV 64H,A;

MOV A,FEH;

JMP 20H;

MOV A,FEH;

MOV A,#FEH;

MOV 64H,A;

MOV A,FEH;

JMP 20H;

MOV A,FEH;

MOV A,#FEH;

MOV 64H,A;

MOV A,FEH;

JMP 20H;

MOV A,FEH;

MOV A,#FEH;

MOV 64H,A;

MOV A,FEH;

JMP 20H;

MOV A,FEH;

MOV A,#FEH;

MOV 64H,A;

MOV A,FEH;

JMP 20H;

MOV A,FEH;

MOV A,#FEH;

MOV 64H,A;

MOV A,FEH;

JMP 20H;
Basic RC review

\[V_o = V_i(1-e^{-t/RC}) \] so \(V_o/V_i = 4/5 = 0.8 = (1-e^{-t/RC}) \)

\[t = -RC\ln(1 - .8) = 49\text{mSec} \]

What is the voltage across the cap after button release?

~4V

Careful w/ Coils (motors, valves, etc)

Steady state on current: \(Vcc/R \)
\(Vds \sim 0 \) (\(Rds \sim 4\text{mOhm} \))

But, when we try to turn off the Mosfet quickly, what happens?

- \(Rds \) goes up quickly, but \(Ids \) drops slowly
- If \(Rds \) becomes 1K, then \(Vds \) becomes 100V
- And instantaneous power becomes 10W
Saturation Mode Amp

- Use a current amplifier (PNP Transistor)
 - $I_{ce} = \beta I_b$ (assume $\beta = 100$)
 - Assume $V_{be} = 0.7V$ when "on"
 - Assume $V_{ce} = 1V$ when "on"
 - Assume $tone1 = 0V$
 - Pick R_c to protect the speaker
 - Pick R_b to protect the processor while turning on the transistor

Assumptions:

- $Is = ((.2/8)^.5)/3 = \approx 50mA$
- $R_c: 5 - (50mA \times 8) - V_{ce} - (50mA \times R_c) = 0$
 - $so: R_c = (5 - 1 - 0.4)/.05 = 72\text{ohms}$
- $R_b: V_{b}/1mA = [5 - (8*.05) - .7]/1mA = 3.9K!$

Last Year's Model

- 8051
- $5V$
- 8ohms
This Year’s Model

Digital to Analog Converter

8051

SW?

DAC

8

Computer Speaker

AMP

(V to I)

Voltage signal

Speaker cares about current, not voltage

How can we generate two simultaneous tones of 500Hz and 1KHz using only 1 timer interrupt?

Sine Wave Program (in psuedo-C)

const unsigned byte sine[256] = {

};

interrupt routine (25.6KHz):

P0 = sine[i];
i++;
return

How do I get two tones with one interrupt (constant sample rate)?
Digital to Analog Converter

Effective network is

DB[7:0] = 10000000
out =

DB[7:0] = 10000001
out =

each bit pumps more current into Rfb in different amounts depending on position

Digital-to-Analog Converter

FUNCTIONAL BLOCK DIAGRAM

WRITE CYCLE TIMING DIAGRAM

8051 port0
\write
8051

DAC

out1

CS

Rfb

AMP

Vref

input

gnd

CSE466 Autumn '00-9

CSE466 Autumn '00-10
Sampling

Add sampled sine waves to get multiple tones

two frequencies with same rate. How fast can you go?