
Generating Images with Neural Networks

RORY SOIFFER, University of Washington, USA
JIANYANG ZHANG, University of Washington, USA

Artists often want to edit global properties of an image such as hue and
saturation without changing how it appears in small areas. Current tools
usually don't attempt to prevent modifications to the perceptual content
of an image. We propose a deep learning based method for color transfer
problem that modifying the image to change the desired parameter while
attempting to keep the detected high-level features as constant as possible
and requires no user input besides the input image and the target color.
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1 INTRODUCTION
One common task in digital image editing is changing the overall
color of an image. Applications for this task are commonplace: mod-
ifying an image to better fit with a color scheme, copying one image
to another while making the content blend naturally, and so on. It
is also generally desireable to perform this edit so naturally that the
audience is not able to notice that an edit occured. As such, want to
create a tool that can perform color transfer between images while
maintaining the perceptual realism of the image.

Most current tools for color transfer work on simple pixel manip-
ulations, such as applying a linear transformation to the pixels in
some color space. Other more advanced tools try to take statistical
or semantic properties of the image into account. These methods
often require user input to annotate images and colors. In addition,
they often fail to understand higher-level properties of an image,
and so produce strange-looking and unrealistic results.
Recent advances in deep learning allow for computers to auto-

matically determine the perceptual content of an image, with no
user input at all. Our goal is to apply these ideas from deep learning
to the problem of color transfer. We hope to create a tool that is
able to transfer color between images while producing perceptually
realistic results.
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2 RELATED WORK
Color transfer is an active research area in the communities of
image processing and computer graphics. We review some previous
work proposed for color transferring between images, together with
several deep learning methods for image processing and image
texturing that related to our approach.

2.1 Statistical Color Transfer Methods
In the literature, early color transfer methods are mainly statistics-
based algorithm. Reinhard et al. introduced a method that model
color distributions as Gaussian distributions. They define color trans-
fer as transfer the means and standard deviations along each chan-
nels in Lαβ color space using per-axis scaling and shifting from one
image to another [Reinhard et al. 2001]. Since the RGB color space
is highly correlated and does not account for human-perception,
they first transform pixel values from RGB space to Lαβ color space
according equation 1. The Lαβ color space can minimizes correla-
tion between channels and is proved to be more perception-based
[Ruderman et al. 1998]. Then, they calculate the mean and standard
deviations separately on each of the three channels. They transfer
these statistics from the input image to the output image as scales
and offsets along each axis for each pixel in its Lαβ color space.
Last, they transform each pixel value back to RGB space. For im-
ages contains multiple color regions, users can provide additional
annotations to divide the image into color clusters.
The major difficulty of color transferring often lies in the cor-

rect segmentation of semantic regions of the images. Levin et al.
derived an optimization framework for colorized a gray scale image
or movie by assuming that neighboring pixels in space-time with
similar intensities should be assigned with similar colors [Levin et al.
2004]. This approach uses a using a quadratic cost function and ob-
tain an optimization problem that can be solved efficiently using
standard techniques. The users are required to annotate the image
with color scribbles, and the indicated colors are automatically prop-
agated in both space and time to produce a fully colorized image
or sequence. In later works, Huang et al. extended this method to
reduce color blending over object boundaries with edge detection
techniques [Huang et al. 2005]. Yatziv et al. extended this method
using weighted distance between user annotations to produce a
color blending [Yatziv and Sapiro 2006].

Zeng et al. proposed a method that transfer color based on local
semantic segmentation [Zeng et al. 2011]. This approach parses an
input image into semantic objects according to different material
properties by human interactions. Based on the segmentations, a
proper reference image is selected from the library. The dominant
colors of the input image and reference image are computed by
clustering, and then transferred on to the input image.
While these approaches all produced promising results in color

transferring, the problem of these approach is, they all require con-
siderable amount of human interactions, especially when the color
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setting of the image is complex. A lot of annotations need to be
specified by users and such annotations may not result in a desired
color segmentations of the image. In addition, these method is re-
stricted to linear color transformations but often time color transfer
procedures require non-linear matching between colors.

2.2 Deep Learning Based Methods
Techniques based on deep learning has been widely used in com-
puter graphics and computer vision tasks, such as image processing
and image generation.
Deep Dream is an application based on deep-learning convolu-

tional neural networks (CNNs) [Krizhevsky et al. 2012] that blend
visual qualities from source images to create a new output im-
age[Mordvintsev et al. 2015]. Deep Dream algorithms uses pre-
trained CNNs to perform gradient descent on a target image to
maximize the perceptual features, generating a transformed version
of a source image with perceptual qualities from target image.
Generative Adversarial Networks (GANs) have achieved signifi-

cant results in image generation [Goodfellow et al. 2014] and image
to image translation [Radford et al. 2015]. The basic idea behind
GAN is to simultaneously train two adversarial networks, a discrim-
inative network and a generative network, competing against one
another. The generator produces fake samples by passing random
noise variables pz (z) as input through a multilayer perceptron G.
The discriminator D, also a multilayer perceptron, learns a loss by
distinguishing between the output samples of G from real world
samples. We use D(x) represents the probability that a sample x
came from the real world data. The generator receives the gradient
of the output of D with respect to the fake sample and uses it to
minimize the adversarial loss log(1−D(G(z))). In another word, the
two networks play a two ply min-max game, and the utility function
can be written as

min
G

max
D

V (D,G) = Ex∼pdata(x )[logD(x)]+Ez∼pz (z)[log(1−D(G(z)))]

[Goodfellow et al. 2014]. This method have led to great success be-
cause the generator produces imitation of data and the discriminator
captures the visual realism of generator output. We thus adapted
this architecture to support color transferring. In addition, we added
a color loss and extended the architecture to convolutional network,
which will be elaborated in section 3.

Yi et al. extended the idea of GANs to unlabeled and unpaired
image-to-image translation [Yi et al. 2017] inspired by dual learning
in machine translation [He et al. 2016]. The architecture employs
two GANs, a primal GAN and a dual GAN. Given two sets of unla-
beled and unpaired images from two domains U and V, the primal
GAN learns a generatorGA : U → V and a discriminatorDA that dis-
criminates output ofGA from samples in V. The dual network trains
an inverse generator GB : U → V and a discriminator DB . During
the training, an image u ∈ U is transferred to domain V with GA.
GA(u, z) is then transferred back to domain U with GB . In addition
to the adversarial loss, the architecture minimizes two reconstruc-
tion losses ∥GA(GB (v, z

′), z)) −v ∥ and ∥GB (GA(u, z), z
′ − u)∥. The

reconstruction losses force the inputs to be re-constructable from
outputs which strengthens feedback signals that encodes the tar-
geted distribution [Yi et al. 2017]. Zhu et al. proposed a similar loss

function, cycle consistensy loss, as a way of using transitivity in
GAN network to supervise training [Zhu et al. 2017]. Both methods
were proved to have significant performance improvement over
the work of art, which can be attributed to the addition of the re-
construction loss. We thus adapted the reconstruction loss into our
approach as a similarity loss to capture backwards color transfer-
ability between input and output images, which will be elaborated
in section 3.

Building on ideas from these many previous works, we developed
a generative adversarial based approach for color transfer. Our main
contribution is applying new ideas from deep learning to the old
problem of color transfer. The method changes the color of an image
in a way that preserves the perceptual content of the image and
require no user input besides the input image and the target color.

3 APPROACHES
We attempted two approaches for color transfer that preserves
the perceptual content of the image. Our first approach performs
gradient descent on an image to minimize the difference between
the features detected by a convolutional neural network. Our second
approach trains a generative adversarial network to create realistic-
seeming images with the desired target color.

3.1 Feature Matching
Our first approach tries to change the color of an image while
matching the features detected by a neural network to the original
image. We implemented this method in a python script, which we
have made available in our project’s code repository. Essentially,
this method starts with some input image, defines a loss function
that measures the quality of the output, and then performs gradient
descent on the input image in order to minimize the loss function.
Our loss function includes the following components:

• Color Loss
• Feature Matching Loss
• Blur Loss

The Color Loss measures the difference between the current
color of the image and the target color the program is attempting
to reach. It is defined as |C −CT |2, where C is the current color of
the image and CT is the target color. Both colors are expressed as
3-d vectors in the RGB color space. As this loss decreases, the image
approaches the target average color.
The Feature Matching Loss measures the difference between

the current perceptual features of the image and the perceptual
features of the input image. Let N (I ) be a function that takes as
input an image and returns as output a vector of features detected
by the neural network. Then the Feature Matching Loss is defined
as |N (I ) − N (I0)|2, where I is the current image and I0 is the input
image. As this loss decreases, the perceptual content of the image (as
measured by the neural network) approaches the perceptual content
of the input image. In our implementation, we used a Tensorflow
copy of Google’s Inception network as our neural network, and we
extracted features from the ’mixed3’ layers.
We found that a simple change to the Feature Matching Loss

to make it scale-invariant drastically improved the quality of the
output. The intuition behind this change is that the neural network
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only detects features at a given scale, so if we want to detect features
of any scale, we need to run the neural network multiple times on
scaled version of the input image. We created several copies of the
input image (which we call octaves), each downscaled by a factor of
2n for n ∈ [1, ..., 3]. We then computed the Feature Matching Loss
for each octave, adding together the results, while more heavily
weighting the loss of higher-resolution images. Our final definition
for the Feature Matching Loss was

3∑
i=0

|N (Di (I )) − N (Di (I0))|2 ∗ (.9)i

where I is the current image and I0 is the input image, and Di (I ) is
a function that downscales the image I by a factor of 2i . To allow
for backpropagation of gradients, we defined Di (I ) via strided con-
volution with a gaussian kernel to smoothly blur and downsample
the image.

TheBlur Lossmeasures howmuch high-frequency noise is in the
current image. This term in the loss is required to avoid generating
an image with a lot of noise that happens to randomly match the
filters in the neural network. Let B(I ) be a function that takes as
input an image and returns as output a blurred version of that image
(in our case, we used a simple 3x3 constant matrix to blur the image).
Then the Blur Loss is defined as |B(I ) − I |, where I is the current
image. As this loss decreases, the image contains less and less high
frequency noise.

One advantage of this method is that we can produce a wide vari-
ety of effects simply by changing the terms of the loss function. One
especially interesting additional termwas theColor Variance Loss,
which measures how much each RGB component varies across the
image. From amathematical perspective, adding this termmakes the
program approximate the color of an image as a pseudo-gaussian
distribution instead of as a single average value. Let V (I ) be a func-
tion that takes an input an image and returns as output the variance
of each RGB component in the image. We got optimal results by
definingV (I ) =mean[

√
abs(I −C)]2, whereC is the average color of

I , though there are many other definitions of the color variance that
performed about as well. Then the Color Variance Loss is defined
as |V (I ) −V (I0)|2, where I is the current image and I0 is the input
image. As this loss decreases, the image approaches the target color
variance. By changing the target color variance, we can generate
images with increased or decreased saturation.

3.2 Generative Adversarial Network
Our second approach used a generative adversarial network to
change the color of an image while making the output of the net-
work seem as realisitic as possible. We implemented this method in
a python script, which we have made available in our project’s code
repository. This method uses a standard GAN to generate images,
but adds additional terms to the loss function to constrain the GAN
to generating images with the desired target color. Specifically, we
add a term to the generator loss that measures the difference be-
tween the color of the output image and the target color the program
is attempting to reach. Similarly to the Color Loss in the Feature
Matching approach, the generator’s color loss is defined as |C −CT |,
where C is the color of the output image of the generator and CT

is the target color. Both colors are expressed as 3-d vectors in the
RGB color space. As this loss decreases, the output of the generator
approaches the target average color.
We based our implementation on the Improved Training for

Wasserstein GAN sample code here: https://github.com/wiseodd/
generative-models. We used the Adam Optimizer with a learning
rate of 10−5, and trained the discriminator for 5 steps for each train-
ing step of the generator. We used a minibatch size of 32. We trained
our network on 24x24 crops of CIFAR-10 images, and later on 64x64
crops of a small subset of Imagenet images.

Our generator network took as input the starting image, a noise
vector, and the target color, and returned as output another image of
the same size. Our generator network consisted entirely of four 5x5
convolution layers with 64 filters each. Our discriminator network
took as input an image, and returned as output a scalar representing
its confidence that the image was real, as opposed to a an output of
the generator (positive numbers mean real, negative numbers mean
fake). Our discriminator consisted of three 5x5 convolution layers
with 64 or 128 filters, each followed by a max pooling layer. These
layers were followed by two fully-connected layers with 256 and
128 neurons each.

We also tried including a reconstruction loss term in the gener-
ator network to measure how well the network could run in reverse
to recreate the original image. Adding a reconstruction loss term has
been shown by methods like DualGAN and CycleGAN to greatly
improve the performance of GANs for image-to-image translation.
While color transfer is a different problem than image-to-image
translation, we felt that there was enough similarily between the
two that reconstruction loss might be helpful. LetG(I ,C) be a func-
tion that takes as input an image and a target color and returns the
output of the generator network for that image and target color. If
we use the generator network to transfer the original color back to
the image, we can define Ir econ = G(G(I ,C1),C0), where C0 is the
average color of I and C1 is any color. Then the reconstruction loss
is defined asmean(abs(I −Ir econ )). As this loss decreases, the output
of running the generator twice approaches the original image. In
practice, we did not include the reconstruction loss when training
the GAN, as we found it had very little effect on the output.

4 PERFORMANCE EVALUATION
The feature matching approach worked fairly well overall. It was
successfully able to change the color of images while preserving
their perceptual content. For example, in Figure 1 to Figure 3, note
that the output of this process has much more vibrant colors than
the baseline image. Also note that the sky and clounds in the output
image are a clear blue and white respectively, while in the baseline
image they’re a strange shade of green. Because it corrects these
anomalies, the output image seems subjectively more realisitic and
higher quality than the baseline image.

However, the feature matching approach suffers from some signif-
icant drawbacks. For one, the script is very slow, as it’s performing
gradient descent on an image with millions of pixels. This is mathe-
matically very similar to performing gradient descent on a neural
network with millions of parameters, and as expected, the script
takes a similar amount of time to run - roughly a few hours per
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Fig. 1. Start image

Fig. 2. Edited image

Fig. 3. Output image from feature matching network

image. In addition, the script often produced noticeable artifacts in
the form of noisy rainbow patterns. This is likely a failure of the
Blur Loss described above to completely remove high-frequency
noise from the image.
The GAN approach did not work very well. When training, the

network failed to converge to a stable solution on any run. The
discriminator and generator loss were constantly jumping up and
down, even after thousands of batches. On some runs, the losses
would diverge to NaN. Working around these training challenges

Fig. 4. GAN output: (a) start image, (b) edited image, (c) GAN output

took a lot of effort restructing the network and trying new possibil-
ities.

In the end, the network had partial success in training. The results
appear somewhat correct, and the generator and discriminator losses
were usually better than a baseline comparison. However, the results
are noticeably low quality. In some cases, the network completely
failed to match the target color of the image. The network sometimes
even made the color of the image farther from the target! Below are
a few outputs of the GAN:

The second row in figure 4 shows a success case of the network.
It attempts to change the overall color of the image to be more
yellowish. The GAN strikes a balance between matching this color
and preserving the realism of the image. The reader can see that
the output of the network appears both yellowish and perceptually
realistic.

The third row in figure 5 shows a failure case of the network. The
network was asked to change the color of the image to be more
purplish, but instead, it changed to the color of the image to be
more grayish. This is likely a case of the color loss not being strong
enough to push the output of the network towards the correct target
color.

5 CONCLUSIONS
In this work, we explored two different methods based on deep
learning to solve the color transferring task. The feature matching
approach and generative adversarial based network. The feature
matching network is adapted from the Deep Dream architecture.
Our main contribution is by incorporating the blur loss to reduce
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Fig. 5. Failure cases: (a) start image, (b) edited image, (c) GAN output

noise in the image and the feature matching loss to capture per-
ceptual features at different scales together with the color loss to
modifying the image parameter while matching high level percep-
tual information of the image. Our second approach is inspired by
Generative Adversarial Networks. We introduced a novel loss func-
tion consists of three parts, a discriminative loss, a reconstruction
loss and a color loss, in order to solve the color transfer problem.

Comparing the outputs and performance of the two architectures,
we can see the feature matching method is simple to understand and
implement and can be easily adapt to other image editing problems
such as modifying blurriness or brightness of an image. The GAN
based network incorporate more information and construct a much
more complex architecture. It gradually converges to the equilibrium
of modifying the image parameters and maintain the image similar
to the start image. But due to the complex structure of GAN, the
system only works well for low resolution images such as MNIST
[LeCun et al. 2010] or Cifar-10 [Krizhevsky et al. 2014] but will
generate considerable amount of parameters for a larger dataset.

6 FUTURE WORK
In the future, we plan to train the GAN with higher-resolution
images. Due to the complex structure of GAN network, we only
had chance to tune the network with low-resolution images such as
crops from ImageNet [Krizhevsky et al. 2012] andCifar-10[Krizhevsky
et al. 2014]. Experimenting with images of different resolutions and
different scales may lead to different results. Furthermore, if we
want this approach to be useful in practice as an image-editing tool,
it needs to be able to produce high-quality output on images of any
resolution.

Another challenge we could address with future work is the
difficulty of objectively evaluating the output of our approaches.
Currently, we mostly evaluate the results visually, which is easy to
perform, but is subjective and impossible to exactly measure. In the
future, we could conduct a more formal user study on visual realism
of the synthesized images as a quantitative metric for evaluation.
Beyond simply color transfer, there are many other probelms in

computer graphics and vision that our approaches could be applied
to. For instance, we could train our models to modify the saturation,
blurriness, or brightness of an image. The featurematching approach
is very general, and could be applied to a wide variety of style
transfer problems. The generative adversarial network method is
more difficult to generalize, but it could be possible to do so with a
more sophisticated model and a larger dataset.
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