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Where we are in the Course

Now: Transport!!!

“end-to-end” connectivity across networks of networks
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•Transport layer provides end-to-end connectivity    
across the network
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•Segments carry application data across the network

•Segments are carried within packets within frames
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Transport Layer Services

•Provide different kinds of data delivery across the 
network to applications
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Unreliable Reliable

Messages Datagrams (UDP) SCTP

Bytestream Streams (TCP)



Comparison of Internet Transports

•TCP is full-featured, UDP is a glorified packet
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TCP (Streams) UDP (Datagrams)

Connections Datagrams

Bytes are delivered once, 
reliably, and in order

Messages may be lost, 
reordered, duplicated

Arbitrary length content Limited message size

Flow control matches 
sender to receiver

Can send regardless
of receiver state

Congestion control matches 
sender to network

Can send regardless
 of network state



Socket API

•Simple abstraction to use the network
•The “network” API (really Transport service) used to write 
all Internet apps
•Part of all major OSes and languages; originally Berkeley 
(Unix) ~1983

•Supports both Internet transport services (Streams 
and Datagrams)
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Socket API (2)

• Sockets let apps attach to the local network at 
different ports
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Socket,
Port #1

Socket,
Port #2



Socket API (3)
•Same API used for Streams and Datagrams
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Primitive Meaning

SOCKET Create a new communication endpoint

BIND Associate a local address (port) with a socket

LISTEN Announce willingness to accept connections

ACCEPT Passively establish an incoming connection

CONNECT Actively attempt to establish a connection

SEND(TO) Send some data over the socket

RECEIVE(FROM) Receive some data over the socket

CLOSE Release the socket

Only needed 
for Streams

To/From for 
Datagrams



Ports

•Application process is identified by the tuple IP 
address, transport protocol, and port
•Ports are 16-bit integers representing local “mailboxes” 
that a process leases

•Servers often bind to “well-known ports”
•<1024, require administrative privileges

•Clients often assigned “ephemeral” ports
•Chosen by OS, used temporarily 
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Some Well-Known Ports
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Port Protocol Use

20, 21 FTP File transfer

22 SSH Remote login, replacement for Telnet

25 SMTP Email

80 HTTP World Wide Web

110 POP-3 Remote email access

143 IMAP Remote email access

443 HTTPS Secure Web (HTTP over SSL/TLS)

543 RTSP Media player control

631 IPP Printer sharing



Topics

• Service models
• Socket API and ports
• Datagrams, Streams

•User Datagram Protocol (UDP)

•Connections (TCP)

• Sliding Window (TCP)

• Flow control (TCP)

•Retransmission timers (TCP)

•Congestion control (TCP)
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UDP



User Datagram Protocol (UDP)

•Used by apps that don’t want reliability or 
bytestreams
•Like what?
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User Datagram Protocol (UDP)

•Used by apps that don’t want reliability or 
bytestreams
•Voice-over-IP 
•DNS, RPC 
•DHCP

(If application wants reliability and messages then it 
has work to do!)
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Datagram Sockets
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Client (host 1) Server (host 2)Time

request

reply



Datagram Sockets (2)
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Client (host 1) Server (host 2)Time

1: socket
2: bind

1: socket

6: sendto

3: recvfrom*
4: sendto

5: recvfrom*

7: close 7: close

*= call blocks

request

reply



UDP Buffering

CSE 461 University of Washington 18

App

Port Mux/Demux

App AppApplication

Transport
(UDP)

Network (IP) packet

Message queues

Ports



UDP Header

•Uses ports to identify sending and receiving 
application processes

•Datagram length up to 64K

•Checksum (16 bits) for reliability

CSE 461 University of Washington 19



UDP Header (2)

•Optional checksum covers UDP segment and IP 
pseudoheader
•Checks key IP fields (addresses)
•Value of zero means “no checksum”
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TCP
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TCP

•TCP Consists of 3 primary phases:
1. Connection Establishment (Setup)
2. Sliding Windows/Flow Control
3. Connection Release (Teardown)
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TCP Signaling
Connection Establishment & Release
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Connection Establishment

•Both sender and receiver must be ready before we start the 
transfer of data
• Need to agree on a set of parameters
• e.g., the Maximum Segment Size (MSS)

•This is “signaling”
• It sets up state at the endpoints
• Like “dialing” for a telephone call
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Three-Way Handshake
•Used in TCP; opens connection for 
data in both directions

•Each side probes the other with a 
fresh Initial Sequence Number (ISN)
• Sends on a SYNchronize segment
• Echo on an ACKnowledge segment

•Chosen to be robust even against 
delayed duplicates

Active party
(client)

Passive party
(server)
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Three-Way Handshake (2)

•Three steps:
•Client sends SYN(x)
•Server replies with SYN(y)ACK(x+1)
•Client replies with ACK(y+1)
•SYNs are retransmitted if lost

•Sequence and ack numbers carried 
on further segments

1

2

3

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)

Time
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Three-Way Handshake (3)

•Suppose delayed, duplicate 
copies of the SYN and ACK arrive 
at the server!
•Improbable, but anyhow …

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

(SEQ=x+1,
ACK=z+1)
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Three-Way Handshake (4)

•Suppose delayed, duplicate 
copies of the SYN and ACK arrive 
at the server!
•Improbable, but anyhow …

•Connection will be cleanly 
rejected on both sides 

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1,
ACK=z+1)

X

XREJECT

REJECT



TCP Connection State Machine

•Captures the states ([]) and transitions (->)
•A/B means event A triggers the transition, with action B

Both parties 
run instances 
of this state 

machine



TCP Connections (2)

• Follow the path of the client: 



TCP Connections (3)

•And the path of the server: 



TCP Connections (4)

•Again, with states …
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LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

1

2

3

Active party (client) Passive party (server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)
Time

CLOSEDCLOSED



TCP Connections (5)

•Finite state machines are a useful tool to specify and 
check the handling of all cases that may occur
•This feels like classic distributed systems : )

•TCP allows for simultaneous open
•i.e., both sides open instead of the client-server pattern
•Try at home to confirm it works
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Connection Release

•Orderly release by both parties when done
• Delivers all pending data and “hangs up”
• Cleans up state in sender and receiver

•Key problem is to provide reliability while releasing
• TCP uses a “symmetric” close in which both sides shutdown 

independently
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TCP Connection Release

•Two steps:
•Active sends FIN(x), passive ACKs
•Passive sends FIN(y), active ACKs
•FINs are retransmitted if lost

•Each FIN/ACK closes one direction 
of data transfer

Active 
party

Passive party
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TCP Connection Release (2)

•Two steps:
•Active sends FIN(x), passive ACKs
•Passive sends FIN(y), active ACKs
•FINs are retransmitted if lost

•Each FIN/ACK closes one direction 
of data transfer

Active 
party

Passive party

1

2

FIN (SEQ=x)

(SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)

FIN (SEQ=y, ACK=x+1)



TCP Connection State Machine
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Both parties 
run instances 
of this state 

machine

•Captures the 
states ([]) and 
transitions (->)
•A/B means 
event A triggers 
the transition, 
with action B



TCP Release

•Follow the active party
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TCP Release (2)

•Follow the passive party
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TCP Release (3)

•Again, with states …
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1

2

CLOSED

FIN (SEQ=x)

(SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)

FIN (SEQ=y, ACK=x+1)

Active party Passive party

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK
FIN_WAIT_2

TIME_WAIT

CLOSED

ESTABLISHED

(timeout)

ESTABLISHED



TIME_WAIT State

•Wait a long time after sending all segments and 
before completing the close
•Two times the maximum segment lifetime of 60 seconds

•Why?
•ACK might have been lost, in which case FIN will be resent 
for an orderly close
•Could otherwise interfere with a subsequent connection
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Chaotic optimization in the real world…

• The TCP close procedure we just described is “clean”, but…
• Also requires more messages
• Means the connection state needs to be maintained by the server during 

the close…
• What if your server is serving 10k, 100k, 1m clients???
• What if the data transferred is small and you know at the application layer that the 

client received it all…

• TCP also has an unorganized close… the “reset”
• Intended for use if the connection becomes corrupted
• Can be sent by either party, no guarantee all data transmitted or received
• Handled as an error/exception, but often sent by real-world endpoints 

instead of a full close!
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Flow Control
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Recall

•ARQ with one message at a time is Stop-and-Wait 
(normal case below)
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Frame 0

ACK 0Timeout Time

Sender Receiver

Frame 1

ACK 1



Limitation of Stop-and-Wait

•It allows only a single message to be outstanding 
from the sender:
•Fine for LAN (only one frame fits in network anyhow)
•Not efficient for network paths with BD >> 1 packet
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Limitation of Stop-and-Wait
Example
•Example: R=1 Mbps, D = 50 ms, 10kb packets

• Simple RTT (Round Trip Time) ~ 2D = 100 ms
• How many packets/sec? 

•What if R=10 Mbps?
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~1 packet / RTT -> 10 packets / second -> 10kb/packet * 10 packets/second -> 100kbps
10% link efficiency!

1 packet / RTT -> 10 packets / second -> 10kb/packet * 10 packets/second -> 100kbps
1% link efficiency!

In practice even worse… since real world implementation 
cannot ignore the transmission + processing delay!

For this example, ignore 
transmission delay & time to 

process the message



Sliding Window

•Generalization of stop-and-wait
•Allows W packets to be outstanding
•Can send W packets per RTT (=2D)

•Pipelining improves performance 
•Need W=2BD to fill network path
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Sliding Window (2)

•What W will use the network capacity?
•Remember: W = 2BD
•Assume 10kb packets

•Ex: R=1 Mbps, D = 50 ms 

•Ex: What if R=10 Mbps?
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Sliding Window (3)

•Ex: R=1 Mbps, D = 50 ms 
•2BD = 106 b/sec x 100 10-3 sec = 100 kbit
•W = 2BD = 10 packets of 1250 bytes

•Ex: What if R=10 Mbps?
•2BD = 1000 kbit
•W = 2BD = 100 packets of 1250 bytes
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Sliding Window Protocol

•Many variations, depending on how buffers, 
acknowledgements, and retransmissions are handled

•Go-Back-N
•Simplest version, can be inefficient

•Selective Repeat
•More complex, better performance
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Sliding Window – Sender 

•Sender buffers up to W segments until they are 
acknowledged
•LFS=LAST FRAME SENT, LAR=LAST ACK REC’D
•Sends while LFS – LAR < W 
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5 6 7 .. 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked Unacked 3Unavailable

Available

seq. number

Sliding
Window



Sliding Window – Sender (2) 

•Transport accepts another segment of data from the 
Application ...
•Transport sends it (as LFS–LAR < 5)
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5 6 7 .. 2 3 4 5 2 3 ..

LAR

W=5

Acked Unacked 3Unavailable

Sent

seq. number

Sliding
Window

LFS



Sliding Window – Sender (3) 

•Next higher ACK arrives from peer…
•Window advances, buffer is freed 
•LFS–LAR < 5 (can send one more) 
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5 6 7 .. 2 3 4 5 2 3 ..

LAR

W=5

Acked Unacked 3Unavailable

Available

seq. number

Sliding
Window

LFS



Sliding Window – Go-Back-N

•Receiver keeps only a single packet buffer for the 
next segment
•State variable, LAS = LAST ACK SENT

•On receive:
•If seq. number is LAS+1, accept and pass it to app, update 
LAS, send ACK
•Otherwise discard (as out of order)
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Sliding Window – Selective Repeat

•Receiver passes data to app in order, and buffers 
out-of-order segments to reduce retransmissions

•ACK conveys highest in-order segment

•Plus hints about out-of-order segments in modern 
implementations

•TCP uses a selective repeat design; we’ll see the details later
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Sliding Window – Selective Repeat (2)

•Buffers W segments, keeps state variable LAS = LAST 
ACK SENT

•On receive:
•Buffer segments that arrive in [LAS+1, LAS+W] 
•Send app in-order segments from LAS+1, and update LAS
•Send ACK for LAS regardless
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5

Sliding Window – Selective Retransmission (3) 

•Keep normal sliding window

•If receive something out of order
• Send last unacked packet again!
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5 6 7 .. 2 4 5 3 ..

LAR+1 again

W=5

Acked Unacked 3Unavailable

Ack Arrives Out of Order!

seq. number

Sliding
Window

LFS

..



5

Sliding Window – Selective Retransmission (4) 

•Keep normal sliding window

•If correct ACK arrives, move window and LAR, send 
more messages
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5 6 7 .. 4 5 3 ..

LAR

W=5

Acked Unacked 3

Correct ack arrives…

seq. number

Sliding
Window

LFS

....

Now Available



Sliding Window – Retransmissions

•Go-Back-N uses a single timer to detect losses
•On timeout, resends buffered packets  starting at LAR+1

•Selective Repeat uses a timer per unacked segment 
to detect losses
•On timeout for segment, resend it
•Hope to resend fewer segments
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Sequence Numbers

•Need more than 0/1 for Stop-and-Wait …
•But how many?

•For Selective Repeat, need W numbers for packets, plus 
W for acks of earlier packets
•2W seq. numbers
•Fewer for Go-Back-N (W+1)

•Typically implement seq. number with an N-bit 
counter that wraps around at 2N—1 
•E.g., N=8:   …, 253, 254, 255, 0, 1, 2, 3, …
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Sequence vs. Time Plot
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Sequence vs. Time Plot: Go-Back-N
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Sequence vs. Time Plot: Selective Retransmit
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ACK Clocking
So now we can control the flow! But how do we make it smooth?

2/24/2023 UW CSE-461 65



Sliding Window ACK Clock

•Each in-order ACK advances the sliding window and 
lets a new segment enter the network
•ACKs “clock” data segments
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Ack 1  2  3  4  5  6  7  8  9 10

20 19 18 17 16 15 14 13 12 11 Data



Benefit of ACK Clocking

•Consider what happens when sender injects a burst 
of segments into the network
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Fast link Fast linkSlow (bottleneck) link

Queue

Everyone running for the door at the end of class…



Benefit of ACK Clocking

•Intermediate routers overloaded with traffic (bad)
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Fast link Fast linkSlow (bottleneck) link

Queue

The door

Poor trapped students



Benefit of ACK Clocking (2)

•Fortunately, segments are buffered and spread out 
on slow link
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Fast link Fast linkSlow (bottleneck) link

Segments 
“spread out”



Benefit of ACK Clocking (3)

•ACKs maintain the spread back to the original sender

CSE 461 University of Washington 70

Slow link

Acks maintain spread



Benefit of ACK Clocking (4)

•Sender clocks new segments with the spread
•Now sending at the bottleneck link without queuing!
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Slow link

Segments spread Queue no longer builds



Benefit of ACK Clocking Summary

•Helps run with low levels of loss and delay!
•The network smooths out the burst of data segments
•ACK clock transfers this smooth timing back to sender
•Subsequent data segments are not sent in bursts so do not 
queue up in the network
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A Related Problem…

•Sliding window has sliding window to keep network busy
• What if the receiver is overloaded?

2/24/2023 UW CSE-461 73

Arg 🥵 …

Streaming video
Big Iron Constrained 

Mobile



Sliding Window – Receiver Constraints

•Consider receiver with W buffers
•LAS=last ack sent

• App pulls in-order data from buffer with recv() call 
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Sliding
Window

5 6 7 5 2 3 ..

LAS

W=5

Finished 3Too high

seq. number

555 5Acceptable



Sliding Window – Receiver Constraints (2)

•Suppose the next two segments arrive…
• but app does not call recv()
• LAS rises, but we can’t slide window! No buffer space!
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Sliding
Window

5 6 7 5 2 3 ..

LAS

W=5

Finished 3Too high

seq. number

55
ACK’d



Sliding Window – Receiver Constraints (3)

•Further segments arrive (in order)… fill entire buffer 
• Must drop segments until app recvs!
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Nothing Acceptable!

5 6 7 2 3 ..

LAS

W=5

Finished 3Too high

seq. number

ACK’d, not recv’d



Sliding Window – Receiver Constraints (4)

•App recv() takes two segments
• Buffer window slides (phew)
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2 buffers available!

5 6 7 2 3 ..

LAS

W=5

3Too high

seq. number

ACK’d, not 
recv’dFinished



Flow Control

• Avoid loss at receiver by telling sender the available buffer space
• WIN=#Acceptable, not just W + LAS
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2 acceptable!

5 6 7 2 3 ..

LAS

W=5

3Too high

seq. number

ACK’d, not 
recv’dFinished



Flow Control (2)

•Acks include receiver’s WIN
•Sender uses lesser value as the effective window size

• min({sliding window W + LAS}, {flow control window (WIN)}) 
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2 acceptable!

5 6 7 2 3 ..

LAS

W=5

3Too high

seq. number

ACK’d, not 
recv’dFinished



Flow Control (3)

•TCP-style example
• seq/ack sliding window
• Flow control with WIN
• seq + length < ack + win 
• 4KB buffer at receiver

• Implemented as a circular 
buffer of bytes
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TCP Uses ACK Clocking + Flow Control

•TCP uses a sliding window because of the value of ACK 
clocking
•Sliding window controls how many segments are inside the 
network
•TCP only sends small bursts of segments to let the network 
keep the traffic smooth
•Some implementation details

• (see “Silly Window Syndrome” in reading)
• “Nagle’s Algorithm” has implications for high-performance 

work!
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Optimizing the Timeout
How do we actually know the value to use??? 🤨😵😩
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Topic

•How to set the timeout for sending a retransmission
•Adapting to the network path
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Lost?

Network



Retransmissions

•With sliding window, detecting loss with timeout
•Set timer when a segment is sent
•Cancel timer when ack is received
•If timer fires, retransmit data as lost
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Retransmit!



The Timeout Problem

•Timeout should be “just right”
• Too long wastes network capacity
• Too short leads to spurious resends
• But what is “just right”?

•Easy to set on a LAN (Link)
• Short, fixed, predictable RTT

•Hard on the Internet (Transport)
• Wide range, variable RTT
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BCN→SEA→BCN



Example of RTTs (2)
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Variation due to queuing at routers, 
changes in network paths, etc.

Propagation (+transmission) delay ≈ 2D



Example of RTTs (3)
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Timer too low!

Need to adapt to current 
network conditions!



Simple Adaptive Timeout

•Smoothed estimates of the RTT (1) and variance in RTT (2)
• Update estimates with an exponentially weighted moving average

• SRTTN+1 = 0.9*SRTTN + 0.1*RTTN+1
• SvarN+1 = 0.9*SvarN + 0.1* |RTTN+1– SRTTN+1|

•Set timeout to a multiple of estimates
• To estimate the upper RTT in practice

• TCP TimeoutN = SRTTN + 4*SvarN
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Example of Adaptive Timeout
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Example of Adaptive Timeout (2)
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timeout

Seconds



Adaptive Timeout Summary

•Simple to compute, does a good job of tracking actual RTT
• Little “headroom” to lower
• Yet very few early timeouts

•Turns out to be important for good performance and 
robustness
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Congestion 🤧
🚐🚗🚙🚚🚗🚗
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TCP to date:

•We can set up a connection
• (connection establishment)

•Tear down a connection
• (connection release)

•Keep the sending and receiving buffers from overflowing
• (flow control)
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What’s missing?



Network Congestion

•A “traffic jam” in the network
• Later we will learn how to control it
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What’s the hold up?

Network



Congestion Collapse in the 1980s

•Early TCP used fixed size window (e.g., 8 packets)
• Initially fine for reliability

•But something happened as the ARPANET grew
• Links stayed busy but transfer rates fell by orders of magnitude! 
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Nature of Congestion

•Routers/switches have internal buffering 
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Nature of Congestion (2)

•Simplified view of per port output queues
• Typically FIFO (First In First Out), discard when full
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Nature of Congestion (3)

•Queues help by absorbing bursts when input > output rate
•But if input > output rate persistently, queue will overflow

• This is congestion

•Congestion is a function of the traffic patterns
• Can occur even if every link has the same capacity!
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Effects of Congestion

•What happens to performance as we increase load?



Effects of Congestion (2)

•What happens to performance as we increase load?



Effects of Congestion (3)

•As offered load rises, congestion occurs as queues 
begin to fill:
•Delay and loss rise sharply with more load
•Throughput falls below load (due to loss)
•Goodput may fall below throughput (due to spurious 
retransmissions)

•None of the above is good!
•Want network performance just before congestion
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Van Jacobson (1950—) 

•Widely credited with saving the 
Internet from congestion collapse in 
the late 80s
•Introduced congestion control 
principles
•Practical solutions (TCP Tahoe/Reno) 

•Much other pioneering work:
•Tools like traceroute, tcpdump, 
pathchar
•IP header compression, multicast tools
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TCP Tahoe/Reno

•TCP extensions and features we will study:
•AIMD
•Fair Queuing
•Slow-start
•Fast Retransmission
•Fast Recovery
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TCP Timeline
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19901970 19801975 1985

Origins of “TCP”
(Cerf & Kahn, ’74)

3-way handshake
(Tomlinson, ‘75)

TCP Reno
(Jacobson, ‘90)

Congestion collapse 
Observed, ‘86

TCP/IP “flag day”
(BSD Unix 4.2, 

‘83)
TCP Tahoe

(Jacobson, ’88)

Pre-history Congestion control
. . .

TCP and IP
(RFC 791/793, 

‘81)



TCP Timeline (2)
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201020001995 2005

ECN
(Floyd, ‘94)

TCP Reno
(Jacobson, ‘90) TCP New Reno

(Hoe, ‘95) TCP BIC
(Linux, 

‘04

TCP with SACK
(Floyd, ‘96)

DiversificationClassic congestion control
. . .

1990

TCP LEDBAT
(IETF ’08)

TCP Vegas
(Brakmo, ‘93)

TCP CUBIC
(Linux, 

’06)

. . .

BackgroundRouter support

Delay
based

FAST TCP
(Low et al., ’04)

Compound TCP
(Windows, ’07)



Bandwidth Allocation

• Important task for network is to allocate its capacity to 
senders
• Good allocation is both efficient and fair

•Efficient means most capacity is used but there is no 
congestion
•Fair means every sender gets a reasonable share the 
network
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Bandwidth Allocation (2)

•Key observation:
• In an effective solution, Transport and Network layers must work 

together

•Network layer witnesses congestion
• Only it can provide direct feedback

•Transport layer causes congestion
• Only it can reduce offered load
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Bandwidth Allocation (3)

•Why is it hard? (Just split equally!)
• Number of senders and their offered load changes
• Senders may lack capacity in different parts of network
• Network is distributed; no single party has an overall picture of its 

state
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Bandwidth Allocation (4)

•Solution context:
• Senders adapt concurrently based on their own view of the network
• Design this adaption so the network usage as a whole is efficient 

and fair
• Adaption is continuous since offered loads continue to change over 

time
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Fair Allocations
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Fair Allocation

•What’s a “fair” bandwidth allocation?
•The max-min fair allocation is one that’s often cited
•There are *huge* assumptions baked into this definition of 

fairness, which we’ll talk about the last week!
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Recall

•We want a good bandwidth allocation to be both 
fair and efficient
•Now we learn what fair means

•Caveat: in practice, efficiency is more important 
than fairness
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Efficiency vs. Fairness

•Cannot always have both!
•Example network with traffic:

•A→B, B→C and A→ C 

•How much traffic can we carry?
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A B C
1 1



Efficiency vs. Fairness (2)

•If we care about fairness:
•Give equal bandwidth to each flow
•A→B: ½ unit, B→C: ½, and A→C, ½ 
•Total traffic carried is 1 ½ units
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A B C
1 1



Efficiency vs. Fairness (3)

•If we care about efficiency:
•Maximize total traffic in network
•A→B: 1 unit, B→C: 1, and A→C, 0 
•Total traffic rises to 2 units!
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A B C
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The Slippery Notion of Fairness

•Why is “equal per flow” fair anyway?
•A→C uses more network resources than A→B or B→C
•Host A sends two flows, B sends one

•Not productive to seek exact fairness
•More important to avoid starvation

•A node that cannot use any bandwidth

•“Equal per flow” is good enough
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Generalizing “Equal per Flow”

•Bottleneck for a flow of traffic is the link that limits 
its bandwidth
•Where congestion occurs for the flow
•For A→C, link A–B is the bottleneck 
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A B C
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Bottleneck



Generalizing “Equal per Flow” (2)

•Flows may have different bottlenecks
•For A→C, link A–B is the bottleneck
•For B→C, link B–C is the bottleneck
•Can no longer divide links equally …
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Max-Min Fairness

• Intuitively, flows bottlenecked on a link get an equal share of 
that link
•Max-min fair allocation is one that:

• Increasing the rate of one flow will decrease the rate of a smaller 
flow

• This “maximizes the minimum” flow
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Max-Min Fairness (2)

•To find it given a network, imagine “pouring water 
into the network”

1. Start with all flows at rate 0
2. Increase the flows until there is a new bottleneck in 

the network
3. Hold fixed the rate of the flows that are bottlenecked
4. Go to step 2 for any remaining flows
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Max-Min Example

•Example: network with 4 flows, link bandwidth = 1
•What is the max-min fair allocation? 
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Max-Min Example (2)

•When rate=1/3, flows B, C, and D bottleneck R4—R5 
•Fix B, C, and D, continue to increase A 
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Max-Min Example (3)

•When rate=2/3, flow A bottlenecks R2—R3. Done. 
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Bottleneck

Bottleneck



Max-Min Example (4)

•End with A=2/3, B, C, D=1/3, and R2/R3, R4/R5 full 
•Other links have extra capacity that can’t be used

• 
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Adapting over Time

•Allocation changes as flows start and stop
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Adapting over Time (2)
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Flow 1 slows when 
Flow 2 starts

Flow 1 speeds up 
when Flow 2 stops

Time 

Flow 3 limit 
is elsewhere



Bandwidth Allocation
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Recall

•Want to allocate capacity to senders
•Network layer provides feedback
•Transport layer adjusts offered load
•A good allocation is efficient and fair

•How should we perform the allocation?
•Several different possibilities …
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Bandwidth Allocation Models

•Open loop versus closed loop
•Open: reserve bandwidth before use
•Closed: use feedback to adjust rates

•Host versus Network support
•Who is sets/enforces allocations?

•Window versus Rate based
•How is allocation expressed?
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TCP is a closed loop, host-driven, and window-based



Bandwidth Allocation Models (2)

•We’ll look at closed-loop, host-driven, and 
window-based too
•Network layer returns feedback on current 
allocation to senders 
•For TCP signal is “a packet dropped”

•Transport layer adjusts sender’s behavior via 
window in response
•How senders adapt is a control law 
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Additive Increase Multiplicative Decrease 

•AIMD is a control law hosts can use to reach a good 
allocation
• Hosts additively increase rate while network not congested
• Hosts multiplicatively decrease rate when congested
• Used by TCP

•Let’s explore the AIMD game …
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AIMD Game

•Hosts 1 and 2 share a bottleneck
• But do not talk to each other directly

•Router provides binary feedback
• Tells hosts if network is congested
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AIMD Game (2)

•Each point is a possible allocation
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AIMD Game (3)

•AI and MD move the allocation 
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AIMD Game (4)

•Play the game!
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AIMD Game (5)

•Always converge to good allocation!
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AIMD Sawtooth

•Produces a “sawtooth” pattern  over time for rate of each 
host
• This is the “TCP sawtooth”
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AIMD Properties

•Converges to an allocation that is efficient and fair when 
hosts run it
• Holds for more general topologies

•Other increase/decrease control laws do not!
• (Try MIAD, MIMD, MIAD)

•Requires only binary feedback from the network
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Feedback Signals

•Several possible signals, with different pros/cons
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Activity:
1. In a group of 3, come up with two 

different possible feedback signals
(possibly recall from the reading)

2. And what are their pros/cons 



Feedback Signals

•Several possible signals, with different pros/cons
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Signal Example Protocol Pros / Cons
Packet loss TCP NewReno

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Packet delay TCP BBR (Youtube) Hear about congestion early

Need to infer congestion
Router 

indication
TCPs with Explicit 

Congestion Notification
DCTCP (Datacenters)

Hear about congestion early
Require router support



Feedback Signals

•Several possible signals, with different pros/cons
• We’ll look at classic TCP that uses packet loss as a signal
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Signal Example Protocol Pros / Cons
Packet loss TCP NewReno

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Packet delay TCP BBR (Youtube) Hear about congestion early

Need to infer congestion
Router 

indication
TCPs with Explicit 

Congestion Notification
DCTCP (Datacenters)

Hear about congestion early
Require router support



Slow Start
(TCP Additive Increase)
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Practical AIMD

•We want TCP to follow an AIMD control law for a 
good allocation

•Sender uses a congestion window or cwnd to set its 
rate (≈cwnd/RTT)

•Sender uses loss as network congestion signal

•Need TCP to work across a very large range of rates 
and RTTs
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TCP Startup Problem

•We want to quickly near the right rate, cwnd
IDEAL

, but 
it varies greatly
•Fixed sliding window doesn’t adapt and is rough on the 
network (loss!) 
•Additive Increase with small bursts adapts cwnd gently to 
the network, but might take a long time to become 
efficient
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Slow-Start Solution

•Start by doubling cwnd every RTT
•Exponential growth (1, 2, 4, 8, 16, …)
•Start slow, but quickly reach large values
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Slow-Start Solution (2)

•Eventually packet loss will occur when the network 
is congested
•Loss timeout tells us cwnd is too large
•Next time, switch to AI beforehand
•Slowly adapt cwnd near right value

•In terms of cwnd:
•Expect loss for cwnd

C
 ≈ 2BD+queue

•Use ssthresh = cwnd
C
/2 to switch to AI
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Slow-Start Solution (3)

•Combined behavior, after first time
•Most time spend near right value
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Slow-Start (Doubling) Timeline
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Increment cwnd 
by 1 packet for 
each ACK



Additive Increase Timeline

CSE 461 University of Washington 150

Increment cwnd by 1 
packet every cwnd 
ACKs (or 1 RTT)



TCP Tahoe (Implementation)

• Initial slow-start (doubling) phase
• Start with cwnd = 1 (or small value)
• cwnd += 1 packet per ack

•Later Additive Increase phase
• cwnd += 1/cwnd packets per ack
• Roughly adds 1 packet per RTT

•Switching threshold (initially infinity)
• Switch to AI when cwnd > ssthresh
• Set ssthresh = cwnd/2 after loss
• Begin with slow-start after timeout
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Timeout Misfortunes

•Why do a slow-start after timeout?
• Instead of MD cwnd (for AIMD)

•Timeouts are sufficiently long that the ack clock will have run 
down 😩
• Slow-start ramps up the ack clock

•We need to detect loss before a timeout to get to full AIMD
• TCP Tahoe doesn’t
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Fast Recovery 
(Enabling TCP Multiplicative Decrease)
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Practical AIMD (2)

•We want TCP to follow an AIMD control law for a 
good allocation

•Sender uses a congestion window or cwnd to set its 
rate (≈cwnd/RTT)

•Sender uses slow-start to ramp up the ACK clock, 
followed by Additive Increase

•But after a timeout, sender slow-starts again with 
cwnd=1 (as if no ACK clock)
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Inferring Loss from ACKs

•TCP uses a cumulative ACK
•Carries highest in-order seq. number
•Normally a steady advance

•Duplicate ACKs give us hints about what data hasn’t 
arrived
•Tell us some new data did arrive, but it was not next 
segment
•Thus the next segment may be lost
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Fast Retransmit

•Treat three duplicate ACKs as a loss 
•Retransmit next expected segment
•Some repetition allows for reordering, but still detects loss 
quickly
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Fast Retransmit (2)

CSE 461 University of Washington 157

Ack 10
Ack 11
Ack 12
Ack 13

. . . 

Ack 13

Ack 13
Ack 13

Data 14. . . 
Ack 13

Ack 20
. . . . . . 

Data 20
Third duplicate 
ACK, so send 14 Retransmission fills 

in the hole at 14
ACK jumps after 
loss is repaired

. . . . . . 

Data 14 was lost 
earlier, but got 

15 to 20



Fast Retransmit (3)

•It can repair single segment loss quickly, typically 
before a timeout

•However, we have quiet time at the sender/receiver 
while waiting for the ACK to jump

•And we still need to MD cwnd …
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Inferring Non-Loss from ACKs

•Duplicate ACKs also give us hints about what data 
has arrived
•Each new duplicate ACK means that some new segment 
has arrived
•It will be the segments after the loss
•Thus advancing the sliding window will not increase the 
number of segments stored in the network
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Fast Recovery

•First fast retransmit, and MD cwnd

•Then pretend further duplicate ACKs are the 
expected ACKs
•Lets new segments be sent for ACKs 
•Reconcile views when the ACK jumps
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Fast Recovery (2)
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Ack 12
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Ack 13

Ack 13
Ack 13

Data 14Ack 13

Ack 20
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Data 20
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earlier, but got 
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Retransmission fills 
in the hole at 14

Set ssthresh, 
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Data 21

Data 22

More ACKs advance 
window; may send 

segments before jump

Ack 13

Exit Fast Recovery



Fast Recovery (3)

•With fast retransmit, it repairs a single segment loss 
quickly and keeps the ACK clock running

•This allows us to realize AIMD
•No timeouts or slow-start after loss, just continue with a 
smaller cwnd

•TCP Reno combines slow-start, fast retransmit and 
fast recovery
•Multiplicative Decrease is ½ 
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TCP Reno
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MD of ½ , no slow-start

ACK clock 
running

TCP sawtooth



TCP Reno, NewReno, and SACK

•Reno can repair one loss per RTT
• Multiple losses cause a timeout

•NewReno further refines ACK heuristics
• Repairs multiple losses without timeout

•Selective ACK (SACK) is a better idea
• Receiver sends ACK ranges so sender can retransmit without 

guesswork
• Requires header extension, widely used in practice
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TCP CUBIC

•Current standard TCP Stack
• Linux (>= 2.6.19)
• Windows (>= 10.1709)
• MacOS (>= Yosemite)

• Internet grows to have more long-distance, high bandwidth 
connections
•Seeks to resolve two key problems with “standard” TCP:

• Flows with lower RTT’s “grow” faster than those with higher RTTs
• Flows grow too “slowly” (linearly) after congestion
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TCP CUBIC
1. At the time of experiencing congestion event the window size for that 

instant will be recorded as Wmax or the maximum window size.
2. The Wmax value will be set as the inflection point of the cubic function that 

will govern the growth of the congestion window.
3. The transmission will then be restarted with a smaller window value (20%) 

and, if no congestion is experienced, this value will increase according to the 
concave portion of the cubic function (not depending on received ACKs for 
cadence).

4. As the window approaches Wmax the increments will slow down.
5. Once the tipping point has been reached, i.e. Wmax, the value of the window 

will continue to increase discreetly.
6. Finally, if the network is still not experiencing any congestion, the window 

size will continue to increase according to the convex portion of the 
function.
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TCP CUBIC
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Still keeps all the same tricks from NewReno about fast 
recovery and fast retransmit w/ SACK,

Replaces additive increase with a cubic function

Why is this helpful?



TCP CUBIC vs Everyone
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The next generation? TCP BBR

•Bottleneck Bandwidth and Round-trip propagation time 
•Developed at Google in 2016 primarily for YouTube traffic
•Attempting to solve “bufflerbloat” problem
• “Model-based” (Vegas) rather than “Loss-based” (CUBIC)

• Measure RTT, latency, bottleneck bandwidth
• Use this to predict window size
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Bufferbloat

•Larger queues are better than smaller queues right?
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When might this not be the case?

You already know the answer if you went to 
section! )



Bufferbloat

•Given TCP loss semantics…
•Performance can decrease as 
buffer size is increased
•Consider a mostly full buffer:

• New packets arrive and have to 
wait

• Then are transmitted to next 
mostly full buffer

• No drops but performance (in 
terms of latency!) degrades
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TCP BBR

BBR Has 4 Distinct Phases:
1. Startup: Basically identical to Cubic. Exponentially grow until 

RTTs start to increase (instead of dropped packet). Set cwnd. 
2. Drain: Startup filled a queue.  Temporarily reduce sending rate 

(known as “pacing gain”)
3. Probe Bandwidth: Increase sending rate to see if there’s more 

capacity. If not, drain again.
4. Probe RTT: Reduce rate dramatically (4 packets) to measure 

RTT. Use this as our baseline for above. 
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TCP BBR vs Everyone
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Network-Side Congestion 
Control
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Congestion Avoidance vs. Control

•Classic TCP drives the network into congestion and then 
recovers
• Needs to see loss to slow down

•Would be better to use the network but avoid congestion 
altogether!
• Reduces loss and delay

•But how can we do this?
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Feedback Signals

Delay and router signals can let us avoid congestion
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Signal Example Protocol Pros / Cons
Packet loss Classic TCP

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Packet delay TCP BBR (Youtube) Hear about congestion early

Need to infer congestion
Router 

indication
TCPs with Explicit 

Congestion Notification
Hear about congestion early

Require router support



ECN (Explicit Congestion Notification)

•Router detects the onset of congestion via its queue
• When congested, it marks affected packets (IP header)

2/24/2023 UW CSE-461 177



ECN (2)

•Marked packets arrive at receiver; treated as loss
• TCP receiver reliably informs TCP sender of the congestion
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ECN (3)

•Advantages:
• Routers deliver clear signal to hosts
• Congestion is detected early, (no loss🎉🤩💯)
• No extra packets need to be sent

•Disadvantages:
• Routers and hosts must be upgraded
• More work at router

• With IPv4 even have to recompute that pesky checksum : (
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In hindsight, ECN is a much better approach than using loss…

Loss-based signaling causes active harm to the flow in the 
process of notifying about congestion : (



Random Early Detection (RED)

• Jacobson (again!) and Floyd
• Alternative idea: instead of marking packets, drop

• We know they’re using TCP, make use of that fact

• Signals congestion to sender
• But without adding headers or doing packet inspection

•Drop at random, depending on queue size
• If queue empty, accept packet always
• If queue full, always drop
• As queue approaches full, increase likelihood of packet drop

• Example: 1 queue slot left, 10 packets expected, 90% chance of drop
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An interim solution, better than 
nothing until ECN is widespread



RED (Random Early Detection)

•Router detects the onset of congestion via its queue
• Prior to congestion, drop a packet to signal
• Lightweight: no per-flow state, no header modification
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Drop packet



RED (Random Early Detection)

•Sender enters MD (multiplicative decrease), slows packet flow
• We shed load, everyone is happy 
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Drop packet



Final thoughts on congestion control

•End-host approaches by their nature are cooperative, and 
can be abused by malicious hosts
•What would you do if you were an internet service provider?
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In practice drives lots of complexity in real-world access networks!

In cellular the network sets per-user rate limits + sharing priorities

Fiber + Cable networks add user ratelimiting too, inline hardware to detect and 
police “nonresponsive” flows that don’t cooperate


