
Transport Layer (TCP/UDP)

2/24/2023 UW CSE-461 1

Where we are in the Course

Now: Transport!!!

“end-to-end” connectivity across networks of networks

2/24/2023 UW CSE-461 2

Physical

Link

Network

Transport

Application

•Transport layer provides end-to-end connectivity
across the network

CSE 461 University of Washington 3

RouterHost Host

TCP

IP

802.11

app

IP

802.11

IP

Ethernet

TCP

IP

Ethernet

app

•Segments carry application data across the network

•Segments are carried within packets within frames

CSE 461 University of Washington 4

802.11 IP TCP App, e.g., HTTP

Segment

Packet

Frame

Transport Layer Services

•Provide different kinds of data delivery across the
network to applications

CSE 461 University of Washington 5

Unreliable Reliable

Messages Datagrams (UDP) SCTP

Bytestream Streams (TCP)

Comparison of Internet Transports

•TCP is full-featured, UDP is a glorified packet

CSE 461 University of Washington 6

TCP (Streams) UDP (Datagrams)

Connections Datagrams

Bytes are delivered once,
reliably, and in order

Messages may be lost,
reordered, duplicated

Arbitrary length content Limited message size

Flow control matches
sender to receiver

Can send regardless
of receiver state

Congestion control matches
sender to network

Can send regardless
 of network state

Socket API

•Simple abstraction to use the network
•The “network” API (really Transport service) used to write
all Internet apps
•Part of all major OSes and languages; originally Berkeley
(Unix) ~1983

•Supports both Internet transport services (Streams
and Datagrams)

CSE 461 University of Washington 7

Socket API (2)

• Sockets let apps attach to the local network at
different ports

CSE 461 University of Washington 8

Socket,
Port #1

Socket,
Port #2

Socket API (3)
•Same API used for Streams and Datagrams

CSE 461 University of Washington 9

Primitive Meaning

SOCKET Create a new communication endpoint

BIND Associate a local address (port) with a socket

LISTEN Announce willingness to accept connections

ACCEPT Passively establish an incoming connection

CONNECT Actively attempt to establish a connection

SEND(TO) Send some data over the socket

RECEIVE(FROM) Receive some data over the socket

CLOSE Release the socket

Only needed
for Streams

To/From for
Datagrams

Ports

•Application process is identified by the tuple IP
address, transport protocol, and port
•Ports are 16-bit integers representing local “mailboxes”
that a process leases

•Servers often bind to “well-known ports”
•<1024, require administrative privileges

•Clients often assigned “ephemeral” ports
•Chosen by OS, used temporarily

CSE 461 University of Washington 10

Some Well-Known Ports

CSE 461 University of Washington 11

Port Protocol Use

20, 21 FTP File transfer

22 SSH Remote login, replacement for Telnet

25 SMTP Email

80 HTTP World Wide Web

110 POP-3 Remote email access

143 IMAP Remote email access

443 HTTPS Secure Web (HTTP over SSL/TLS)

543 RTSP Media player control

631 IPP Printer sharing

Topics

• Service models
• Socket API and ports
• Datagrams, Streams

•User Datagram Protocol (UDP)

•Connections (TCP)

• Sliding Window (TCP)

• Flow control (TCP)

•Retransmission timers (TCP)

•Congestion control (TCP)

CSE 461 University of Washington 12

UDP

User Datagram Protocol (UDP)

•Used by apps that don’t want reliability or
bytestreams
•Like what?

CSE 461 University of Washington 14

User Datagram Protocol (UDP)

•Used by apps that don’t want reliability or
bytestreams
•Voice-over-IP
•DNS, RPC
•DHCP

(If application wants reliability and messages then it
has work to do!)

CSE 461 University of Washington 15

Datagram Sockets

CSE 461 University of Washington 16

Client (host 1) Server (host 2)Time

request

reply

Datagram Sockets (2)

CSE 461 University of Washington 17

Client (host 1) Server (host 2)Time

1: socket
2: bind

1: socket

6: sendto

3: recvfrom*
4: sendto

5: recvfrom*

7: close 7: close

*= call blocks

request

reply

UDP Buffering

CSE 461 University of Washington 18

App

Port Mux/Demux

App AppApplication

Transport
(UDP)

Network (IP) packet

Message queues

Ports

UDP Header

•Uses ports to identify sending and receiving
application processes

•Datagram length up to 64K

•Checksum (16 bits) for reliability

CSE 461 University of Washington 19

UDP Header (2)

•Optional checksum covers UDP segment and IP
pseudoheader
•Checks key IP fields (addresses)
•Value of zero means “no checksum”

CSE 461 University of Washington 20

TCP

2/24/2023 UW CSE-461 21

TCP

•TCP Consists of 3 primary phases:
1. Connection Establishment (Setup)
2. Sliding Windows/Flow Control
3. Connection Release (Teardown)

2/24/2023 UW CSE-461 22

TCP Signaling
Connection Establishment & Release

2/24/2023 UW CSE-461 23

Connection Establishment

•Both sender and receiver must be ready before we start the
transfer of data
• Need to agree on a set of parameters
• e.g., the Maximum Segment Size (MSS)

•This is “signaling”
• It sets up state at the endpoints
• Like “dialing” for a telephone call

2/24/2023 UW CSE-461 24

CSE 461 University of Washington 25

Three-Way Handshake
•Used in TCP; opens connection for
data in both directions

•Each side probes the other with a
fresh Initial Sequence Number (ISN)
• Sends on a SYNchronize segment
• Echo on an ACKnowledge segment

•Chosen to be robust even against
delayed duplicates

Active party
(client)

Passive party
(server)

CSE 461 University of Washington 26

Three-Way Handshake (2)

•Three steps:
•Client sends SYN(x)
•Server replies with SYN(y)ACK(x+1)
•Client replies with ACK(y+1)
•SYNs are retransmitted if lost

•Sequence and ack numbers carried
on further segments

1

2

3

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)

Time

CSE 461 University of Washington 27

Three-Way Handshake (3)

•Suppose delayed, duplicate
copies of the SYN and ACK arrive
at the server!
•Improbable, but anyhow …

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

(SEQ=x+1,
ACK=z+1)

CSE 461 University of Washington 28

Three-Way Handshake (4)

•Suppose delayed, duplicate
copies of the SYN and ACK arrive
at the server!
•Improbable, but anyhow …

•Connection will be cleanly
rejected on both sides

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1,
ACK=z+1)

X

XREJECT

REJECT

TCP Connection State Machine

•Captures the states ([]) and transitions (->)
•A/B means event A triggers the transition, with action B

Both parties
run instances
of this state

machine

TCP Connections (2)

• Follow the path of the client:

TCP Connections (3)

•And the path of the server:

TCP Connections (4)

•Again, with states …

CSE 461 University of Washington 32

LISTEN

SYN_RCVD

SYN_SENT

ESTABLISHED

ESTABLISHED

1

2

3

Active party (client) Passive party (server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)
Time

CLOSEDCLOSED

TCP Connections (5)

•Finite state machines are a useful tool to specify and
check the handling of all cases that may occur
•This feels like classic distributed systems :)

•TCP allows for simultaneous open
•i.e., both sides open instead of the client-server pattern
•Try at home to confirm it works

CSE 461 University of Washington 33

Connection Release

•Orderly release by both parties when done
• Delivers all pending data and “hangs up”
• Cleans up state in sender and receiver

•Key problem is to provide reliability while releasing
• TCP uses a “symmetric” close in which both sides shutdown

independently

2/24/2023 UW CSE-461 34

CSE 461 University of Washington 35

TCP Connection Release

•Two steps:
•Active sends FIN(x), passive ACKs
•Passive sends FIN(y), active ACKs
•FINs are retransmitted if lost

•Each FIN/ACK closes one direction
of data transfer

Active
party

Passive party

CSE 461 University of Washington 36

TCP Connection Release (2)

•Two steps:
•Active sends FIN(x), passive ACKs
•Passive sends FIN(y), active ACKs
•FINs are retransmitted if lost

•Each FIN/ACK closes one direction
of data transfer

Active
party

Passive party

1

2

FIN (SEQ=x)

(SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)

FIN (SEQ=y, ACK=x+1)

TCP Connection State Machine

CSE 461 University of Washington 37

Both parties
run instances
of this state

machine

•Captures the
states ([]) and
transitions (->)
•A/B means
event A triggers
the transition,
with action B

TCP Release

•Follow the active party

CSE 461 University of Washington 38

TCP Release (2)

•Follow the passive party

CSE 461 University of Washington 39

TCP Release (3)

•Again, with states …

CSE 461 University of Washington 40

1

2

CLOSED

FIN (SEQ=x)

(SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)

FIN (SEQ=y, ACK=x+1)

Active party Passive party

FIN_WAIT_1

CLOSE_WAIT

LAST_ACK
FIN_WAIT_2

TIME_WAIT

CLOSED

ESTABLISHED

(timeout)

ESTABLISHED

TIME_WAIT State

•Wait a long time after sending all segments and
before completing the close
•Two times the maximum segment lifetime of 60 seconds

•Why?
•ACK might have been lost, in which case FIN will be resent
for an orderly close
•Could otherwise interfere with a subsequent connection

CSE 461 University of Washington 41

Chaotic optimization in the real world…

• The TCP close procedure we just described is “clean”, but…
• Also requires more messages
• Means the connection state needs to be maintained by the server during

the close…
• What if your server is serving 10k, 100k, 1m clients???
• What if the data transferred is small and you know at the application layer that the

client received it all…

• TCP also has an unorganized close… the “reset”
• Intended for use if the connection becomes corrupted
• Can be sent by either party, no guarantee all data transmitted or received
• Handled as an error/exception, but often sent by real-world endpoints

instead of a full close!

2/24/2023 UW CSE-461 42

43

Flow Control

2/24/2023 UW CSE-461 44

Recall

•ARQ with one message at a time is Stop-and-Wait
(normal case below)

CSE 461 University of Washington 45

Frame 0

ACK 0Timeout Time

Sender Receiver

Frame 1

ACK 1

Limitation of Stop-and-Wait

•It allows only a single message to be outstanding
from the sender:
•Fine for LAN (only one frame fits in network anyhow)
•Not efficient for network paths with BD >> 1 packet

CSE 461 University of Washington 46

Limitation of Stop-and-Wait
Example
•Example: R=1 Mbps, D = 50 ms, 10kb packets

• Simple RTT (Round Trip Time) ~ 2D = 100 ms
• How many packets/sec?

•What if R=10 Mbps?

2/24/2023 UW CSE-461 47

~1 packet / RTT -> 10 packets / second -> 10kb/packet * 10 packets/second -> 100kbps
10% link efficiency!

1 packet / RTT -> 10 packets / second -> 10kb/packet * 10 packets/second -> 100kbps
1% link efficiency!

In practice even worse… since real world implementation
cannot ignore the transmission + processing delay!

For this example, ignore
transmission delay & time to

process the message

Sliding Window

•Generalization of stop-and-wait
•Allows W packets to be outstanding
•Can send W packets per RTT (=2D)

•Pipelining improves performance
•Need W=2BD to fill network path

CSE 461 University of Washington 48

Sliding Window (2)

•What W will use the network capacity?
•Remember: W = 2BD
•Assume 10kb packets

•Ex: R=1 Mbps, D = 50 ms

•Ex: What if R=10 Mbps?

CSE 461 University of Washington 49

Sliding Window (3)

•Ex: R=1 Mbps, D = 50 ms
•2BD = 106 b/sec x 100 10-3 sec = 100 kbit
•W = 2BD = 10 packets of 1250 bytes

•Ex: What if R=10 Mbps?
•2BD = 1000 kbit
•W = 2BD = 100 packets of 1250 bytes

CSE 461 University of Washington 50

Sliding Window Protocol

•Many variations, depending on how buffers,
acknowledgements, and retransmissions are handled

•Go-Back-N
•Simplest version, can be inefficient

•Selective Repeat
•More complex, better performance

CSE 461 University of Washington 51

Sliding Window – Sender

•Sender buffers up to W segments until they are
acknowledged
•LFS=LAST FRAME SENT, LAR=LAST ACK REC’D
•Sends while LFS – LAR < W

CSE 461 University of Washington 52

5 6 7 .. 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked Unacked 3Unavailable

Available

seq. number

Sliding
Window

Sliding Window – Sender (2)

•Transport accepts another segment of data from the
Application ...
•Transport sends it (as LFS–LAR < 5)

CSE 461 University of Washington 53

5 6 7 .. 2 3 4 5 2 3 ..

LAR

W=5

Acked Unacked 3Unavailable

Sent

seq. number

Sliding
Window

LFS

Sliding Window – Sender (3)

•Next higher ACK arrives from peer…
•Window advances, buffer is freed
•LFS–LAR < 5 (can send one more)

CSE 461 University of Washington 54

5 6 7 .. 2 3 4 5 2 3 ..

LAR

W=5

Acked Unacked 3Unavailable

Available

seq. number

Sliding
Window

LFS

Sliding Window – Go-Back-N

•Receiver keeps only a single packet buffer for the
next segment
•State variable, LAS = LAST ACK SENT

•On receive:
•If seq. number is LAS+1, accept and pass it to app, update
LAS, send ACK
•Otherwise discard (as out of order)

CSE 461 University of Washington 55

Sliding Window – Selective Repeat

•Receiver passes data to app in order, and buffers
out-of-order segments to reduce retransmissions

•ACK conveys highest in-order segment

•Plus hints about out-of-order segments in modern
implementations

•TCP uses a selective repeat design; we’ll see the details later

CSE 461 University of Washington 56

Sliding Window – Selective Repeat (2)

•Buffers W segments, keeps state variable LAS = LAST
ACK SENT

•On receive:
•Buffer segments that arrive in [LAS+1, LAS+W]
•Send app in-order segments from LAS+1, and update LAS
•Send ACK for LAS regardless

CSE 461 University of Washington 57

5

Sliding Window – Selective Retransmission (3)

•Keep normal sliding window

•If receive something out of order
• Send last unacked packet again!

CSE 461 University of Washington 58

5 6 7 .. 2 4 5 3 ..

LAR+1 again

W=5

Acked Unacked 3Unavailable

Ack Arrives Out of Order!

seq. number

Sliding
Window

LFS

..

5

Sliding Window – Selective Retransmission (4)

•Keep normal sliding window

•If correct ACK arrives, move window and LAR, send
more messages

CSE 461 University of Washington 59

5 6 7 .. 4 5 3 ..

LAR

W=5

Acked Unacked 3

Correct ack arrives…

seq. number

Sliding
Window

LFS

....

Now Available

Sliding Window – Retransmissions

•Go-Back-N uses a single timer to detect losses
•On timeout, resends buffered packets starting at LAR+1

•Selective Repeat uses a timer per unacked segment
to detect losses
•On timeout for segment, resend it
•Hope to resend fewer segments

CSE 461 University of Washington 60

Sequence Numbers

•Need more than 0/1 for Stop-and-Wait …
•But how many?

•For Selective Repeat, need W numbers for packets, plus
W for acks of earlier packets
•2W seq. numbers
•Fewer for Go-Back-N (W+1)

•Typically implement seq. number with an N-bit
counter that wraps around at 2N—1
•E.g., N=8: …, 253, 254, 255, 0, 1, 2, 3, …

CSE 461 University of Washington 61

Sequence vs. Time Plot

2/24/2023 UW CSE-461 62

Time

Se
q.

 N
um

be
r

Acks transmitted
(at Receiver)

Delay (=RTT/2)

Transmissions
(at Sender)

Sequence vs. Time Plot: Go-Back-N

2/24/2023 UW CSE-461 63

Time

Se
q.

 N
um

be
r

Single
Segment
Loss

Timeout

Retransmissions

Window full, stop Tx

Timeout expires…
Go back and retransmit!

Sequence vs. Time Plot: Selective Retransmit

2/24/2023 UW CSE-461 64

Time

Se
q.

 N
um

be
r

Single
Segment
Loss

Timeout Retransmission

Window full, stop Tx

Timeout expires…
Go back and retransmit!

With selective ack
(modern TCP), immediately continue

ACK Clocking
So now we can control the flow! But how do we make it smooth?

2/24/2023 UW CSE-461 65

Sliding Window ACK Clock

•Each in-order ACK advances the sliding window and
lets a new segment enter the network
•ACKs “clock” data segments

CSE 461 University of Washington 66

Ack 1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11 Data

Benefit of ACK Clocking

•Consider what happens when sender injects a burst
of segments into the network

CSE 461 University of Washington 67

Fast link Fast linkSlow (bottleneck) link

Queue

Everyone running for the door at the end of class…

Benefit of ACK Clocking

•Intermediate routers overloaded with traffic (bad)

CSE 461 University of Washington 68

Fast link Fast linkSlow (bottleneck) link

Queue

The door

Poor trapped students

Benefit of ACK Clocking (2)

•Fortunately, segments are buffered and spread out
on slow link

CSE 461 University of Washington 69

Fast link Fast linkSlow (bottleneck) link

Segments
“spread out”

Benefit of ACK Clocking (3)

•ACKs maintain the spread back to the original sender

CSE 461 University of Washington 70

Slow link

Acks maintain spread

Benefit of ACK Clocking (4)

•Sender clocks new segments with the spread
•Now sending at the bottleneck link without queuing!

CSE 461 University of Washington 71

Slow link

Segments spread Queue no longer builds

Benefit of ACK Clocking Summary

•Helps run with low levels of loss and delay!
•The network smooths out the burst of data segments
•ACK clock transfers this smooth timing back to sender
•Subsequent data segments are not sent in bursts so do not
queue up in the network

2/24/2023 UW CSE-461 72

A Related Problem…

•Sliding window has sliding window to keep network busy
• What if the receiver is overloaded?

2/24/2023 UW CSE-461 73

Arg 🥵 …

Streaming video
Big Iron Constrained

Mobile

Sliding Window – Receiver Constraints

•Consider receiver with W buffers
•LAS=last ack sent

• App pulls in-order data from buffer with recv() call

2/24/2023 UW CSE-461 74

Sliding
Window

5 6 7 5 2 3 ..

LAS

W=5

Finished 3Too high

seq. number

555 5Acceptable

Sliding Window – Receiver Constraints (2)

•Suppose the next two segments arrive…
• but app does not call recv()
• LAS rises, but we can’t slide window! No buffer space!

2/24/2023 UW CSE-461 75

Sliding
Window

5 6 7 5 2 3 ..

LAS

W=5

Finished 3Too high

seq. number

55
ACK’d

Sliding Window – Receiver Constraints (3)

•Further segments arrive (in order)… fill entire buffer
• Must drop segments until app recvs!

2/24/2023 UW CSE-461 76

Nothing Acceptable!

5 6 7 2 3 ..

LAS

W=5

Finished 3Too high

seq. number

ACK’d, not recv’d

Sliding Window – Receiver Constraints (4)

•App recv() takes two segments
• Buffer window slides (phew)

2/24/2023 UW CSE-461 77

2 buffers available!

5 6 7 2 3 ..

LAS

W=5

3Too high

seq. number

ACK’d, not
recv’dFinished

Flow Control

• Avoid loss at receiver by telling sender the available buffer space
• WIN=#Acceptable, not just W + LAS

2/24/2023 UW CSE-461 78

2 acceptable!

5 6 7 2 3 ..

LAS

W=5

3Too high

seq. number

ACK’d, not
recv’dFinished

Flow Control (2)

•Acks include receiver’s WIN
•Sender uses lesser value as the effective window size

• min({sliding window W + LAS}, {flow control window (WIN)})

2/24/2023 UW CSE-461 79

2 acceptable!

5 6 7 2 3 ..

LAS

W=5

3Too high

seq. number

ACK’d, not
recv’dFinished

Flow Control (3)

•TCP-style example
• seq/ack sliding window
• Flow control with WIN
• seq + length < ack + win
• 4KB buffer at receiver

• Implemented as a circular
buffer of bytes

2/24/2023 UW CSE-461 80

TCP Uses ACK Clocking + Flow Control

•TCP uses a sliding window because of the value of ACK
clocking
•Sliding window controls how many segments are inside the
network
•TCP only sends small bursts of segments to let the network
keep the traffic smooth
•Some implementation details

• (see “Silly Window Syndrome” in reading)
• “Nagle’s Algorithm” has implications for high-performance

work!

2/24/2023 UW CSE-461 81

Optimizing the Timeout
How do we actually know the value to use??? 🤨😵😩

2/24/2023 UW CSE-461 82

Topic

•How to set the timeout for sending a retransmission
•Adapting to the network path

CSE 461 University of Washington 83

Lost?

Network

Retransmissions

•With sliding window, detecting loss with timeout
•Set timer when a segment is sent
•Cancel timer when ack is received
•If timer fires, retransmit data as lost

CSE 461 University of Washington 84

Retransmit!

The Timeout Problem

•Timeout should be “just right”
• Too long wastes network capacity
• Too short leads to spurious resends
• But what is “just right”?

•Easy to set on a LAN (Link)
• Short, fixed, predictable RTT

•Hard on the Internet (Transport)
• Wide range, variable RTT

2/24/2023 UW CSE-461 85

Ro
un

d
Tr

ip
 T

im
e

(m
s)

Seconds

Example of RTTs

2/24/2023 UW CSE-461 86

BCN→SEA→BCN

Example of RTTs (2)

2/24/2023 UW CSE-461 87

Ro
un

d
Tr

ip
 T

im
e

(m
s)

Seconds

Variation due to queuing at routers,
changes in network paths, etc.

Propagation (+transmission) delay ≈ 2D

Example of RTTs (3)

2/24/2023 UW CSE-461 88

Ro
un

d
Tr

ip
 T

im
e

(m
s)

Seconds

Timer too high!

Timer too low!

Need to adapt to current
network conditions!

Simple Adaptive Timeout

•Smoothed estimates of the RTT (1) and variance in RTT (2)
• Update estimates with an exponentially weighted moving average

• SRTTN+1 = 0.9*SRTTN + 0.1*RTTN+1
• SvarN+1 = 0.9*SvarN + 0.1* |RTTN+1– SRTTN+1|

•Set timeout to a multiple of estimates
• To estimate the upper RTT in practice

• TCP TimeoutN = SRTTN + 4*SvarN

2/24/2023 UW CSE-461 89

Example of Adaptive Timeout

2/24/2023 UW CSE-461 90

RT
T

(m
s)

SRTT

Svar

Seconds

Example of Adaptive Timeout (2)

2/24/2023 UW CSE-461 91

RT
T

(m
s)

Timeout (SRTT + 4*Svar)

Early
timeout

Seconds

Adaptive Timeout Summary

•Simple to compute, does a good job of tracking actual RTT
• Little “headroom” to lower
• Yet very few early timeouts

•Turns out to be important for good performance and
robustness

2/24/2023 UW CSE-461 92

Congestion 🤧
🚐🚗🚙🚚🚗🚗

2/24/2023 UW CSE-461 93

TCP to date:

•We can set up a connection
• (connection establishment)

•Tear down a connection
• (connection release)

•Keep the sending and receiving buffers from overflowing
• (flow control)

2/24/2023 UW CSE-461 94

What’s missing?

Network Congestion

•A “traffic jam” in the network
• Later we will learn how to control it

2/24/2023 UW CSE-461 95

What’s the hold up?

Network

Congestion Collapse in the 1980s

•Early TCP used fixed size window (e.g., 8 packets)
• Initially fine for reliability

•But something happened as the ARPANET grew
• Links stayed busy but transfer rates fell by orders of magnitude!

2/24/2023 UW CSE-461 96

Nature of Congestion

•Routers/switches have internal buffering

2/24/2023 UW CSE-461 97

. .
 .

. . .

. . .

. .
 .

Input
Buffer

Output
Buffer

Fabric

Input Output

Nature of Congestion (2)

•Simplified view of per port output queues
• Typically FIFO (First In First Out), discard when full

2/24/2023 UW CSE-461 98

Router
=

(FIFO)
Queue

Queued
Packets

Route
r

Nature of Congestion (3)

•Queues help by absorbing bursts when input > output rate
•But if input > output rate persistently, queue will overflow

• This is congestion

•Congestion is a function of the traffic patterns
• Can occur even if every link has the same capacity!

2/24/2023 UW CSE-461 99

Effects of Congestion

•What happens to performance as we increase load?

Effects of Congestion (2)

•What happens to performance as we increase load?

Effects of Congestion (3)

•As offered load rises, congestion occurs as queues
begin to fill:
•Delay and loss rise sharply with more load
•Throughput falls below load (due to loss)
•Goodput may fall below throughput (due to spurious
retransmissions)

•None of the above is good!
•Want network performance just before congestion

CSE 461 University of Washington 102

Van Jacobson (1950—)

•Widely credited with saving the
Internet from congestion collapse in
the late 80s
•Introduced congestion control
principles
•Practical solutions (TCP Tahoe/Reno)

•Much other pioneering work:
•Tools like traceroute, tcpdump,
pathchar
•IP header compression, multicast tools

CSE 461 University of Washington 103

TCP Tahoe/Reno

•TCP extensions and features we will study:
•AIMD
•Fair Queuing
•Slow-start
•Fast Retransmission
•Fast Recovery

CSE 461 University of Washington 104

TCP Timeline

CSE 461 University of Washington 105

19901970 19801975 1985

Origins of “TCP”
(Cerf & Kahn, ’74)

3-way handshake
(Tomlinson, ‘75)

TCP Reno
(Jacobson, ‘90)

Congestion collapse
Observed, ‘86

TCP/IP “flag day”
(BSD Unix 4.2,

‘83)
TCP Tahoe

(Jacobson, ’88)

Pre-history Congestion control
. . .

TCP and IP
(RFC 791/793,

‘81)

TCP Timeline (2)

CSE 461 University of Washington 106

201020001995 2005

ECN
(Floyd, ‘94)

TCP Reno
(Jacobson, ‘90) TCP New Reno

(Hoe, ‘95) TCP BIC
(Linux,

‘04

TCP with SACK
(Floyd, ‘96)

DiversificationClassic congestion control
. . .

1990

TCP LEDBAT
(IETF ’08)

TCP Vegas
(Brakmo, ‘93)

TCP CUBIC
(Linux,

’06)

. . .

BackgroundRouter support

Delay
based

FAST TCP
(Low et al., ’04)

Compound TCP
(Windows, ’07)

Bandwidth Allocation

• Important task for network is to allocate its capacity to
senders
• Good allocation is both efficient and fair

•Efficient means most capacity is used but there is no
congestion
•Fair means every sender gets a reasonable share the
network

2/24/2023 UW CSE-461 107

Bandwidth Allocation (2)

•Key observation:
• In an effective solution, Transport and Network layers must work

together

•Network layer witnesses congestion
• Only it can provide direct feedback

•Transport layer causes congestion
• Only it can reduce offered load

2/24/2023 UW CSE-461 108

Bandwidth Allocation (3)

•Why is it hard? (Just split equally!)
• Number of senders and their offered load changes
• Senders may lack capacity in different parts of network
• Network is distributed; no single party has an overall picture of its

state

2/24/2023 UW CSE-461 109

Bandwidth Allocation (4)

•Solution context:
• Senders adapt concurrently based on their own view of the network
• Design this adaption so the network usage as a whole is efficient

and fair
• Adaption is continuous since offered loads continue to change over

time

2/24/2023 UW CSE-461 110

Fair Allocations

2/24/2023 UW CSE-461 111

Fair Allocation

•What’s a “fair” bandwidth allocation?
•The max-min fair allocation is one that’s often cited
•There are *huge* assumptions baked into this definition of

fairness, which we’ll talk about the last week!

CSE 461 University of Washington 112

Recall

•We want a good bandwidth allocation to be both
fair and efficient
•Now we learn what fair means

•Caveat: in practice, efficiency is more important
than fairness

CSE 461 University of Washington 113

Efficiency vs. Fairness

•Cannot always have both!
•Example network with traffic:

•A→B, B→C and A→ C

•How much traffic can we carry?

CSE 461 University of Washington 114

A B C
1 1

Efficiency vs. Fairness (2)

•If we care about fairness:
•Give equal bandwidth to each flow
•A→B: ½ unit, B→C: ½, and A→C, ½
•Total traffic carried is 1 ½ units

CSE 461 University of Washington 115

A B C
1 1

Efficiency vs. Fairness (3)

•If we care about efficiency:
•Maximize total traffic in network
•A→B: 1 unit, B→C: 1, and A→C, 0
•Total traffic rises to 2 units!

CSE 461 University of Washington 116

A B C
1 1

The Slippery Notion of Fairness

•Why is “equal per flow” fair anyway?
•A→C uses more network resources than A→B or B→C
•Host A sends two flows, B sends one

•Not productive to seek exact fairness
•More important to avoid starvation

•A node that cannot use any bandwidth

•“Equal per flow” is good enough

CSE 461 University of Washington 117

Generalizing “Equal per Flow”

•Bottleneck for a flow of traffic is the link that limits
its bandwidth
•Where congestion occurs for the flow
•For A→C, link A–B is the bottleneck

CSE 461 University of Washington 118

A B C
1 10

Bottleneck

Generalizing “Equal per Flow” (2)

•Flows may have different bottlenecks
•For A→C, link A–B is the bottleneck
•For B→C, link B–C is the bottleneck
•Can no longer divide links equally …

CSE 461 University of Washington 119

A B C
1 10

Max-Min Fairness

• Intuitively, flows bottlenecked on a link get an equal share of
that link
•Max-min fair allocation is one that:

• Increasing the rate of one flow will decrease the rate of a smaller
flow

• This “maximizes the minimum” flow

2/24/2023 UW CSE-461 120

Max-Min Fairness (2)

•To find it given a network, imagine “pouring water
into the network”

1. Start with all flows at rate 0
2. Increase the flows until there is a new bottleneck in

the network
3. Hold fixed the rate of the flows that are bottlenecked
4. Go to step 2 for any remaining flows

CSE 461 University of Washington 121

Max-Min Example

•Example: network with 4 flows, link bandwidth = 1
•What is the max-min fair allocation?

CSE 461 University of Washington 122

Max-Min Example (2)

•When rate=1/3, flows B, C, and D bottleneck R4—R5
•Fix B, C, and D, continue to increase A

CSE 461 University of Washington 123

BottleneckBottleneck

Max-Min Example (3)

•When rate=2/3, flow A bottlenecks R2—R3. Done.

CSE 461 University of Washington 124

Bottleneck

Bottleneck

Max-Min Example (4)

•End with A=2/3, B, C, D=1/3, and R2/R3, R4/R5 full
•Other links have extra capacity that can’t be used

•

CSE 461 University of Washington 125

Adapting over Time

•Allocation changes as flows start and stop

CSE 461 University of Washington 126

Time

Adapting over Time (2)

CSE 461 University of Washington 127

Flow 1 slows when
Flow 2 starts

Flow 1 speeds up
when Flow 2 stops

Time

Flow 3 limit
is elsewhere

Bandwidth Allocation

2/24/2023 UW CSE-461 128

Recall

•Want to allocate capacity to senders
•Network layer provides feedback
•Transport layer adjusts offered load
•A good allocation is efficient and fair

•How should we perform the allocation?
•Several different possibilities …

CSE 461 University of Washington 129

Bandwidth Allocation Models

•Open loop versus closed loop
•Open: reserve bandwidth before use
•Closed: use feedback to adjust rates

•Host versus Network support
•Who is sets/enforces allocations?

•Window versus Rate based
•How is allocation expressed?

CSE 461 University of Washington 130

TCP is a closed loop, host-driven, and window-based

Bandwidth Allocation Models (2)

•We’ll look at closed-loop, host-driven, and
window-based too
•Network layer returns feedback on current
allocation to senders
•For TCP signal is “a packet dropped”

•Transport layer adjusts sender’s behavior via
window in response
•How senders adapt is a control law

CSE 461 University of Washington 131

Additive Increase Multiplicative Decrease

•AIMD is a control law hosts can use to reach a good
allocation
• Hosts additively increase rate while network not congested
• Hosts multiplicatively decrease rate when congested
• Used by TCP

•Let’s explore the AIMD game …

2/24/2023 UW CSE-461 132

AIMD Game

•Hosts 1 and 2 share a bottleneck
• But do not talk to each other directly

•Router provides binary feedback
• Tells hosts if network is congested

2/24/2023 UW CSE-461 133

Rest of
Network

Bottleneck

Router

Host 1

Host 2

1

1
1

AIMD Game (2)

•Each point is a possible allocation

2/24/2023 UW CSE-461 134

Host 1

Host 20 1

1

Fair

Efficient

Optimal
Allocation

Congested

AIMD Game (3)

•AI and MD move the allocation

2/24/2023 UW CSE-461 135

Host 1

Host
2

0 1

1

Fair, y=x

Efficient, x+y=1

Optimal
Allocation

Congested

Multiplicative
Decrease

Additive
Increase

AIMD Game (4)

•Play the game!

2/24/2023 UW CSE-461 136

Host 1

Host
2

0 1

1

Fair

Efficient

Congested

A starting
point

AIMD Game (5)

•Always converge to good allocation!

2/24/2023 UW CSE-461 137

Host 1

Host 20 1

1

Fair

Efficient

Congested

A starting
point

AIMD Sawtooth

•Produces a “sawtooth” pattern over time for rate of each
host
• This is the “TCP sawtooth”

2/24/2023 UW CSE-461 138

Multiplicative
Decrease

Additive
Increase

Time

Host 1 or
2’s Rate

AIMD Properties

•Converges to an allocation that is efficient and fair when
hosts run it
• Holds for more general topologies

•Other increase/decrease control laws do not!
• (Try MIAD, MIMD, MIAD)

•Requires only binary feedback from the network

2/24/2023 UW CSE-461 139

Feedback Signals

•Several possible signals, with different pros/cons

2/24/2023 UW CSE-461 140

Activity:
1. In a group of 3, come up with two

different possible feedback signals
(possibly recall from the reading)

2. And what are their pros/cons

Feedback Signals

•Several possible signals, with different pros/cons

2/24/2023 UW CSE-461 141

Signal Example Protocol Pros / Cons
Packet loss TCP NewReno

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Packet delay TCP BBR (Youtube) Hear about congestion early

Need to infer congestion
Router

indication
TCPs with Explicit

Congestion Notification
DCTCP (Datacenters)

Hear about congestion early
Require router support

Feedback Signals

•Several possible signals, with different pros/cons
• We’ll look at classic TCP that uses packet loss as a signal

2/24/2023 UW CSE-461 142

Signal Example Protocol Pros / Cons
Packet loss TCP NewReno

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Packet delay TCP BBR (Youtube) Hear about congestion early

Need to infer congestion
Router

indication
TCPs with Explicit

Congestion Notification
DCTCP (Datacenters)

Hear about congestion early
Require router support

Slow Start
(TCP Additive Increase)

2/24/2023 UW CSE-461 143

Practical AIMD

•We want TCP to follow an AIMD control law for a
good allocation

•Sender uses a congestion window or cwnd to set its
rate (≈cwnd/RTT)

•Sender uses loss as network congestion signal

•Need TCP to work across a very large range of rates
and RTTs

CSE 461 University of Washington 144

TCP Startup Problem

•We want to quickly near the right rate, cwnd
IDEAL

, but
it varies greatly
•Fixed sliding window doesn’t adapt and is rough on the
network (loss!)
•Additive Increase with small bursts adapts cwnd gently to
the network, but might take a long time to become
efficient

CSE 461 University of Washington 145

Slow-Start Solution

•Start by doubling cwnd every RTT
•Exponential growth (1, 2, 4, 8, 16, …)
•Start slow, but quickly reach large values

146

AI

Fixed

Time

W
in

d
o

w
 (

cw
n

d
)

Slow-start

Slow-Start Solution (2)

•Eventually packet loss will occur when the network
is congested
•Loss timeout tells us cwnd is too large
•Next time, switch to AI beforehand
•Slowly adapt cwnd near right value

•In terms of cwnd:
•Expect loss for cwnd

C
 ≈ 2BD+queue

•Use ssthresh = cwnd
C
/2 to switch to AI

CSE 461 University of Washington 147

Slow-Start Solution (3)

•Combined behavior, after first time
•Most time spend near right value

148

AI

Fixed

Time

Window

ssthresh

cwnd
C

cwnd
IDEAL AI phase

Slow-start

Slow-Start (Doubling) Timeline

CSE 461 University of Washington 149

Increment cwnd
by 1 packet for
each ACK

Additive Increase Timeline

CSE 461 University of Washington 150

Increment cwnd by 1
packet every cwnd
ACKs (or 1 RTT)

TCP Tahoe (Implementation)

• Initial slow-start (doubling) phase
• Start with cwnd = 1 (or small value)
• cwnd += 1 packet per ack

•Later Additive Increase phase
• cwnd += 1/cwnd packets per ack
• Roughly adds 1 packet per RTT

•Switching threshold (initially infinity)
• Switch to AI when cwnd > ssthresh
• Set ssthresh = cwnd/2 after loss
• Begin with slow-start after timeout

2/24/2023 UW CSE-461 151

Timeout Misfortunes

•Why do a slow-start after timeout?
• Instead of MD cwnd (for AIMD)

•Timeouts are sufficiently long that the ack clock will have run
down 😩
• Slow-start ramps up the ack clock

•We need to detect loss before a timeout to get to full AIMD
• TCP Tahoe doesn’t

2/24/2023 UW CSE-461 152

Fast Recovery
(Enabling TCP Multiplicative Decrease)

2/24/2023 UW CSE-461 153

Practical AIMD (2)

•We want TCP to follow an AIMD control law for a
good allocation

•Sender uses a congestion window or cwnd to set its
rate (≈cwnd/RTT)

•Sender uses slow-start to ramp up the ACK clock,
followed by Additive Increase

•But after a timeout, sender slow-starts again with
cwnd=1 (as if no ACK clock)

CSE 461 University of Washington 154

Inferring Loss from ACKs

•TCP uses a cumulative ACK
•Carries highest in-order seq. number
•Normally a steady advance

•Duplicate ACKs give us hints about what data hasn’t
arrived
•Tell us some new data did arrive, but it was not next
segment
•Thus the next segment may be lost

CSE 461 University of Washington 155

Fast Retransmit

•Treat three duplicate ACKs as a loss
•Retransmit next expected segment
•Some repetition allows for reordering, but still detects loss
quickly

CSE 461 University of Washington 156

Ack 1 2 3 4 5 5 5 5 5 5

Fast Retransmit (2)

CSE 461 University of Washington 157

Ack 10
Ack 11
Ack 12
Ack 13

. . .

Ack 13

Ack 13
Ack 13

Data 14. . .
Ack 13

Ack 20
.

Data 20
Third duplicate
ACK, so send 14 Retransmission fills

in the hole at 14
ACK jumps after
loss is repaired

.

Data 14 was lost
earlier, but got

15 to 20

Fast Retransmit (3)

•It can repair single segment loss quickly, typically
before a timeout

•However, we have quiet time at the sender/receiver
while waiting for the ACK to jump

•And we still need to MD cwnd …

CSE 461 University of Washington 158

Inferring Non-Loss from ACKs

•Duplicate ACKs also give us hints about what data
has arrived
•Each new duplicate ACK means that some new segment
has arrived
•It will be the segments after the loss
•Thus advancing the sliding window will not increase the
number of segments stored in the network

CSE 461 University of Washington 159

Fast Recovery

•First fast retransmit, and MD cwnd

•Then pretend further duplicate ACKs are the
expected ACKs
•Lets new segments be sent for ACKs
•Reconcile views when the ACK jumps

CSE 461 University of Washington 160

Ack 1 2 3 4 5 5 5 5 5 5

Fast Recovery (2)

CSE 461 University of Washington 161

Ack 12
Ack 13
Ack 13

Ack 13
Ack 13

Data 14Ack 13

Ack 20

.

Data 20
Third duplicate
ACK, so send 14

Data 14 was lost
earlier, but got

15 to 20

Retransmission fills
in the hole at 14

Set ssthresh,
cwnd = cwnd/2

Data 21

Data 22

More ACKs advance
window; may send

segments before jump

Ack 13

Exit Fast Recovery

Fast Recovery (3)

•With fast retransmit, it repairs a single segment loss
quickly and keeps the ACK clock running

•This allows us to realize AIMD
•No timeouts or slow-start after loss, just continue with a
smaller cwnd

•TCP Reno combines slow-start, fast retransmit and
fast recovery
•Multiplicative Decrease is ½

CSE 461 University of Washington 162

TCP Reno

2/24/2023 UW CSE-461 163

MD of ½ , no slow-start

ACK clock
running

TCP sawtooth

TCP Reno, NewReno, and SACK

•Reno can repair one loss per RTT
• Multiple losses cause a timeout

•NewReno further refines ACK heuristics
• Repairs multiple losses without timeout

•Selective ACK (SACK) is a better idea
• Receiver sends ACK ranges so sender can retransmit without

guesswork
• Requires header extension, widely used in practice

2/24/2023 UW CSE-461 164

TCP CUBIC

•Current standard TCP Stack
• Linux (>= 2.6.19)
• Windows (>= 10.1709)
• MacOS (>= Yosemite)

• Internet grows to have more long-distance, high bandwidth
connections
•Seeks to resolve two key problems with “standard” TCP:

• Flows with lower RTT’s “grow” faster than those with higher RTTs
• Flows grow too “slowly” (linearly) after congestion

2/24/2023 UW CSE-461 165

TCP CUBIC
1. At the time of experiencing congestion event the window size for that

instant will be recorded as Wmax or the maximum window size.
2. The Wmax value will be set as the inflection point of the cubic function that

will govern the growth of the congestion window.
3. The transmission will then be restarted with a smaller window value (20%)

and, if no congestion is experienced, this value will increase according to the
concave portion of the cubic function (not depending on received ACKs for
cadence).

4. As the window approaches Wmax the increments will slow down.
5. Once the tipping point has been reached, i.e. Wmax, the value of the window

will continue to increase discreetly.
6. Finally, if the network is still not experiencing any congestion, the window

size will continue to increase according to the convex portion of the
function.

2/24/2023 UW CSE-461 166

TCP CUBIC

2/24/2023 UW CSE-461 167

Still keeps all the same tricks from NewReno about fast
recovery and fast retransmit w/ SACK,

Replaces additive increase with a cubic function

Why is this helpful?

TCP CUBIC vs Everyone

2/24/2023 UW CSE-461 168

The next generation? TCP BBR

•Bottleneck Bandwidth and Round-trip propagation time
•Developed at Google in 2016 primarily for YouTube traffic
•Attempting to solve “bufflerbloat” problem
• “Model-based” (Vegas) rather than “Loss-based” (CUBIC)

• Measure RTT, latency, bottleneck bandwidth
• Use this to predict window size

2/24/2023 UW CSE-461 169

Bufferbloat

•Larger queues are better than smaller queues right?

2/24/2023 UW CSE-461 170

When might this not be the case?

You already know the answer if you went to
section!)

Bufferbloat

•Given TCP loss semantics…
•Performance can decrease as
buffer size is increased
•Consider a mostly full buffer:

• New packets arrive and have to
wait

• Then are transmitted to next
mostly full buffer

• No drops but performance (in
terms of latency!) degrades

2/24/2023 UW CSE-461 171

TCP BBR

BBR Has 4 Distinct Phases:
1. Startup: Basically identical to Cubic. Exponentially grow until

RTTs start to increase (instead of dropped packet). Set cwnd.
2. Drain: Startup filled a queue. Temporarily reduce sending rate

(known as “pacing gain”)
3. Probe Bandwidth: Increase sending rate to see if there’s more

capacity. If not, drain again.
4. Probe RTT: Reduce rate dramatically (4 packets) to measure

RTT. Use this as our baseline for above.

2/24/2023 UW CSE-461 172

TCP BBR vs Everyone

2/24/2023 UW CSE-461 173

Network-Side Congestion
Control

2/24/2023 UW CSE-461 174

Congestion Avoidance vs. Control

•Classic TCP drives the network into congestion and then
recovers
• Needs to see loss to slow down

•Would be better to use the network but avoid congestion
altogether!
• Reduces loss and delay

•But how can we do this?

2/24/2023 UW CSE-461 175

Feedback Signals

Delay and router signals can let us avoid congestion

2/24/2023 UW CSE-461 176

Signal Example Protocol Pros / Cons
Packet loss Classic TCP

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Packet delay TCP BBR (Youtube) Hear about congestion early

Need to infer congestion
Router

indication
TCPs with Explicit

Congestion Notification
Hear about congestion early

Require router support

ECN (Explicit Congestion Notification)

•Router detects the onset of congestion via its queue
• When congested, it marks affected packets (IP header)

2/24/2023 UW CSE-461 177

ECN (2)

•Marked packets arrive at receiver; treated as loss
• TCP receiver reliably informs TCP sender of the congestion

2/24/2023 UW CSE-461 178

ECN (3)

•Advantages:
• Routers deliver clear signal to hosts
• Congestion is detected early, (no loss🎉🤩💯)
• No extra packets need to be sent

•Disadvantages:
• Routers and hosts must be upgraded
• More work at router

• With IPv4 even have to recompute that pesky checksum : (

2/24/2023 UW CSE-461 179

In hindsight, ECN is a much better approach than using loss…

Loss-based signaling causes active harm to the flow in the
process of notifying about congestion : (

Random Early Detection (RED)

• Jacobson (again!) and Floyd
• Alternative idea: instead of marking packets, drop

• We know they’re using TCP, make use of that fact

• Signals congestion to sender
• But without adding headers or doing packet inspection

•Drop at random, depending on queue size
• If queue empty, accept packet always
• If queue full, always drop
• As queue approaches full, increase likelihood of packet drop

• Example: 1 queue slot left, 10 packets expected, 90% chance of drop

2/24/2023 UW CSE-461 180

An interim solution, better than
nothing until ECN is widespread

RED (Random Early Detection)

•Router detects the onset of congestion via its queue
• Prior to congestion, drop a packet to signal
• Lightweight: no per-flow state, no header modification

2/24/2023 UW CSE-461 181

Drop packet

RED (Random Early Detection)

•Sender enters MD (multiplicative decrease), slows packet flow
• We shed load, everyone is happy

2/24/2023 UW CSE-461 182

Drop packet

Final thoughts on congestion control

•End-host approaches by their nature are cooperative, and
can be abused by malicious hosts
•What would you do if you were an internet service provider?

2/24/2023 UW CSE-461 183

In practice drives lots of complexity in real-world access networks!

In cellular the network sets per-user rate limits + sharing priorities

Fiber + Cable networks add user ratelimiting too, inline hardware to detect and
police “nonresponsive” flows that don’t cooperate

