
Where we left off…
•Deep in the physical layer

• Encoding bits onto a physical medium in a way that allows for clock
recovery and baseline recovery

• Limits to how much data we can actually communicate within phy
constraints of bandwidth (Hz) and SNR (dB)

UW CSE-461

While we’re waiting– what were the key implications
of Shannon capacity from last class?

Where we are in the Course

•Today: moving on up to the Link Layer!

UW CSE-461

Physical

Link

Network

Transport

Application

Scope of the Link Layer

•Concerns how to transfer messages over one or more
connected links
• Messages are frames, of limited size
• Builds on the “bits on a wire” abstraction provided by the phy!

UW CSE-461

Frame

In terms of layers …

UW CSE-461 4

Actual data path

Virtual data path

Network

Link

Physical

In terms of layers (2)

UW CSE-461 5

Actual data path

Virtual data path

Network

Link

Physical

Typical Implementation of L2

UW CSE-461 6

L2 Topics

1. Framing
• Delimiting start/end of frames

2. Error detection and correction
• Handling errors

3. Retransmissions
• Handling loss

4. Multiple Access
• 802.11, classic Ethernet

5. Switching
• Modern Ethernet

UW CSE-461 7

Framing
Delimiting start/end of frames

UW CSE-461 8

Topic

•The Physical layer gives us a stream of bits.
• How do we interpret it as a sequence of frames?

UW CSE-461 9

…10110
…

Um?

Framing Methods

•We’ll look at:
• Byte count (motivation)
• Byte stuffing
• Bit stuffing

• The book also discusses clock-based framing (2.3.3)
• Happy to discuss on Ed or office hours if of interest

•Note: in practice, the physical layer often helps to identify and/or
confirm frame boundaries
• E.g., Ethernet, 802.11
• Detect “gaps” in the analog signal, clock, etc.

UW CSE-461 10

Byte Count

•First try:
• Let’s start each frame with a length field!
• It’s simple, and hopefully good enough …

UW CSE-461 11

Byte Count (2)

UW CSE-461 12

Byte Count (3)

•Difficult to re-synchronize after framing error
• Want a way to scan for a start of frame

UW CSE-461 13

Byte Stuffing (1)

•Different idea:
• Have a special flag byte value for start/end of frame
• Replace (“stuff”) the flag with an escape code
• Problem?

UW CSE-461 14

Byte Stuffing (2)

•Different idea:
• Have a special flag byte value for start/end of frame
• Replace (“stuff”) the flag with an escape code

• Complication: have to escape the escape code too!

UW CSE-461 15

Byte Stuffing (3)

•Rules:
• Replace each FLAG in data with ESC FLAG
• Replace each ESC in data with ESC ESC

UW CSE-461 16

Byte Stuffing (4)

•Now any unescaped FLAG is the start/end of a frame!

UW CSE-461 17

Unstuffing

You see:
1. Solitary FLAG?
2. Solitary ESC?
3. ESC FLAG?
4. ESC ESC FLAG?
5. ESC ESC ESC FLAG?
6. ESC FLAG FLAG?

UW CSE-461 18

Unstuffing

You see:
1. Solitary FLAG? -> Start or end of frame
2. Solitary ESC? -> Bad frame!
3. ESC FLAG? -> pass FLAG through
4. ESC ESC FLAG? -> pass ESC through, then start or end of frame
5. ESC ESC ESC FLAG? -> pass ESC FLAG through
6. ESC FLAG FLAG? -> pass FLAG through then start or end of

frame

UW CSE-461 19

Bit Stuffing

•Can stuff at the bit level too!
• Call a flag six consecutive 1s
• On transmit, after five 1s in the data, insert a 0
• On receive, a 0 after five 1s is deleted

UW CSE-461 20

Bit Stuffing Example

UW CSE-461 21

Transmitted
bits

(with stuffing)

Data
bits

0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0

Bit Stuffing Example (2)

UW CSE-461 22

Transmitted
bits

(with stuffing)

Data
bits

0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0

0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0

Stuffed BitsHow does it compare to
byte stuffing??? Possible small gain in efficiency, at the expense

of byte alignment : (

Link Example: PPP over SONET

•PPP is Point-to-Point Protocol
• Widely used for link framing
• E.g., it is used to frame variable-length IP packets that are sent over

SONET optical links (which have a fixed frame size!)

UW CSE-461 23

Link Example: PPP over SONET (2)

•Think of SONET as a bit stream, and PPP as the framing that
carries an IP packet over the link

UW CSE-461 24

Protocol
stacks

PPP frames may be split
over SONET payloads

Link Example: PPP over SONET (3)

•Framing uses byte stuffing!
• FLAG is 0x7E and ESC is 0x7D

UW CSE-461 25

Link Layer: Error detection
and correction

UW CSE-461 26

CSE 461 University of Washington 27

Signal
0 0 0 0

11 1
0

0 0 0 0
11 1

0

0 0 0 0
11 1 1

Slightly
Noisy

Very
noisy

Problem – Noise may flip received bits

UW CSE-461 27

Topic

•Some bits will be received in error due to noise.
•What can we do?

• Detect errors with codes
• Retransmit lost frames
• Correct errors with codes

•Reliability is a concern that cuts across the layers!

UW CSE-461 28

Later

Approach – Add Redundancy

•Error detection codes
• Add check bits to the message bits to let some errors be detected

•Error correction codes
• Add even more check bits to let some errors be corrected

•Key issue is now to structure the code to detect many errors
with few check bits and modest computation

UW CSE-461 29

Ideas?

UW CSE-461 30

Motivating Example

•A simple code to handle errors:
• Send two copies! Error if different.

•How good is this code?
• How many errors can it detect/correct?
• How many errors will make it fail?

UW CSE-461 31

Motivating Example (2)

•We want to handle more errors with less overhead
• Will look at better codes; they are applied mathematics
• But, they can’t handle all errors
• And they focus on accidental (non-malicious) errors

• Will look at secure hashes later

UW CSE-461 32

Using Error Codes

•Codeword consists of D data plus R check bits
• =systematic block code

•Sender:
• Compute R check bits based on the D data bits; send the codeword

of D+R bits

UW CSE-461 33

D R=fn(D)

Data bits Check bits

Using Error Codes (2)

•Receiver:
• Receive D+R bits with unknown errors
• Recompute R check bits based on the D data bits; error if R doesn’t

match R’

UW CSE-461 34

D R’
Data bits Check bits

R=fn(D)
=?

Intuition for Error Codes

•For D data bits, R check bits:

•Randomly chosen codeword is unlikely to be correct;
overhead is low

UW CSE-461 35

All
codewords

Correct
codewords

R.W. Hamming (1915-1998)

•Much early work on codes:
• “Error Detecting and Error Correcting

Codes”, BSTJ, 1950

• “If the computer can tell when an
error has occurred, surely there is a
way of telling where the error is so the
computer can correct the error itself”
- Hamming

UW CSE-461 36

Source: IEEE GHN, © 2009
IEEE

Fun Fact:
Shared an office with Claude Shannon (from last class) at Bell Labs!

Hamming Distance

•Hamming distance between two codes (D1 D2) is the
number of bit flips needed to change D1 to D2

Alternatively (and confusingly)...
•Hamming distance of a coding is the minimum error
distance between any pair of codewords (bit-strings) that
cannot be detected

UW CSE-461 37

Hamming Distance (2)

•Error detection:
• For a coding of distance d+1, up to d errors will always be detected

•Error correction:
• For a coding of distance 2d+1, up to d errors can always be

corrected by mapping to the closest valid codeword

UW CSE-461 38

Intuition for Error Correcting Code

•Suppose we construct a code with a Hamming distance of at
least 3
• Need ≥3 bit errors to change one valid codeword into another
• Single bit errors will be closest to a unique valid codeword

• If we assume errors are only 1 bit, we can correct them by
mapping an error to the closest valid codeword
• Works for d errors if HD ≥ 2d + 1

UW CSE-461 39

Intuition (2)

•Visualization of code w/
Hamming distance three:

UW CSE-461 40

A

B

Valid
codeword

Error
codeword

Intuition (3)

UW CSE-461 41

A

B

Valid
codeword

Error
codeword

Single
bit error
from A

Three bit
errors to
get to B

You cannot have it both
ways… receiver needs
to pick if receiving in

the detection or
correction mode : /

•Visualization of code w/
Hamming distance three:

Simple Error Detection – Parity Bit

•Take D data bits, add 1 check bit that is the sum of the D bits
• Sum is modulo 2 or XOR

UW CSE-461 42

Parity Bit (2)

•How well does parity work?
• What is the Hamming distance of the code?
• How many errors will it reliably detect/correct?

•What about larger errors?

UW CSE-461 43

2

Detect 1, correct 0

Can detect all odd number of errors!

Check your understanding…

•What is the Hamming distance of the duplicate message
code we used as a motivating example?

UW CSE-461 44

Checksums

• Idea: sum up data in N-bit words
• Widely used in, e.g., TCP/IP/UDP

•Stronger protection than parity

UW CSE-461 45

1500 bytes 16 bits

Internet Checksum

•Sum is defined in 1s complement arithmetic
• (must add back carries) 🤢
• And it’s the negative sum

• “The checksum field is the 16 bit one's complement of the one's
complement sum of all 16 bit words …” – RFC 791

UW CSE-461 46

Internet Checksum (2)

Sending: 0x0001f204f4f5f6f7
1. Arrange data in 16-bit words
2. Put zero in checksum position, add
3. Add any carryover back to get 16 bits
4. Negate (complement) to get sum

UW CSE-461 47

0001
f204
f4f5
f6f7

+(0000)

2ddf1

ddf1
+ 2

ddf3

220c

Internet Checksum (3)

Receiving: 0x0001f204f4f5f6f7220c
1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0

UW CSE-461 48

0001
f204
f4f5
f6f7

+ 220c

2fffd

fffd

+ 2

ffff

 0000
✅

Internet Checksum (4)

•How well does the checksum work?
• What is the distance of the code?
• How many errors will it detect/correct?

•What about larger errors?

UW CSE-461 49

Internet Checksum (5)

•How well does the checksum work?
• What is the distance of the code?
• How many errors will it detect/correct?

•What about larger errors?

UW CSE-461 50

Hamming distance of 2 : (
Fooled by two errors in

certain positions! Same as
humble parity bit

But does handle bursts of up
to 16 bits, and large random
errors have lower probability

of passing (1/2^16)

Why Error Correction is Hard

•If we had reliable check bits we could use them to
narrow down the position of the error
•Then correction would be easy!

•But error could be in the check bits as well as the
data bits!
•Data might even be correct : (

UW CSE-461 51

Hamming Code

•Gives a method for constructing a code with a distance of 3!
• Uses n = 2k – k – 1, e.g., n=4, k=3
• Put check bits in positions p that are powers of 2, starting with

position 1
• Check bit in position p is parity of positions with a p term in their

values

•AND provides an algorithm to determine where to correct!

UW CSE-461 52

Hamming Code (2)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

UW CSE-461 53

_ _ _ _ _ _ _
1 2 3 4 5 6 7

_ _ 0 _ 1 0 1

Hamming Code (3)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

UW CSE-461 54

1 2 3 4 5 6 7

0 _ 0 _ 1 0 1

Hamming Code (3)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

UW CSE-461 55

1 2 3 4 5 6 7

p1= 0+1+1 = 0

0 1 0 _ 1 0 1

Hamming Code (3)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

UW CSE-461 56

1 2 3 4 5 6 7

p1= 0+1+1 = 0
p2= 0+0+1 = 1

0 1 0 0 1 0 1

Hamming Code (3)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

UW CSE-461 57

1 2 3 4 5 6 7

p1= 0+1+1 = 0
p2= 0+0+1 = 1
p4= 1+0+1 = 0

Hamming Code (4)

•To decode:
1. Recompute check bits

• (with parity sum including the check bit)

2. Arrange as a binary number
3. Value (syndrome) tells error position
4. Value of zero means no error
5. Otherwise, flip bit to correct

UW CSE-461 58

Hamming Code (5)

p1=
p2=
p4=

Syndrome =
Data = 0101

UW CSE-461 59

0 1 0 0 1 0 1
1 2 3 4 5 6 7

C1 = 1,3,5,7
C2 = 2,3,6,7
C3 = 4,5,6,7

Hamming Code (8)

p1=
p2=
p4= 0+1+0+1 = 0

Syndrome = 0
Data = 0101

UW CSE-461 60

0 1 0 0 1 0 1
1 2 3 4 5 6 7

C1 = 1,3,5,7
C2 = 2,3,6,7
C3 = 4,5,6,7

Hamming Code (8)

p1=
p2= 1+0+0+1 = 0
p4= 0+1+0+1 = 0

Syndrome = 00
Data = 0101

UW CSE-461 61

0 1 0 0 1 0 1
1 2 3 4 5 6 7

C1 = 1,3,5,7
C2 = 2,3,6,7
C3 = 4,5,6,7

Hamming Code (8)

p1= 0+0+1+1 = 0
p2= 1+0+0+1 = 0
p4= 0+1+0+1 = 0

Syndrome = 000, no error
Data = 0101

UW CSE-461 62

0 1 0 0 1 0 1
1 2 3 4 5 6 7

C1 = 1,3,5,7
C2 = 2,3,6,7
C3 = 4,5,6,7

Hamming Code (9)

p1=
p2=
p4=

Syndrome =
Data =

UW CSE-461 63

0 1 0 0 1 1 1
1 2 3 4 5 6 7

💥

C1 = 1,3,5,7
C2 = 2,3,6,7
C3 = 4,5,6,7

Hamming Code (10)

p1=
p2=
p4=

Syndrome =
Data = 0 1 1 1

UW CSE-461 64

0 1 0 0 1 1 1
1 2 3 4 5 6 7

💥

C1 = 1,3,5,7
C2 = 2,3,6,7
C3 = 4,5,6,7

Hamming Code (11)

p1=
p2=
p4= 0+1+1+1 = 1

Syndrome = 1
Data = 0 1 1 1

UW CSE-461 65

0 1 0 0 1 1 1
1 2 3 4 5 6 7

💥

C1 = 1,3,5,7
C2 = 2,3,6,7
C3 = 4,5,6,7

Hamming Code (12)

p1=
p2= 1+0+1+1 = 1
p4= 0+1+1+1 = 1

Syndrome = 1 1
Data = 0 1 1 1

UW CSE-461 66

0 1 0 0 1 1 1
1 2 3 4 5 6 7

💥

C1 = 1,3,5,7
C2 = 2,3,6,7
C3 = 4,5,6,7

Hamming Code (13)

p1= 0+0+1+1 = 0
p2= 1+0+1+1 = 1
p4= 0+1+1+1 = 1

Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip 🤯)

UW CSE-461 67

0 1 0 0 1 1 1
1 2 3 4 5 6 7

💥

C1 = 1,3,5,7
C2 = 2,3,6,7
C3 = 4,5,6,7

0 1 0 0 1 1 1

Hamming Code (14)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

UW CSE-461 68

1 2 3 4 5 6 7

💥 p1= 0+0+1+1 = 0
p2= 1+0+1+1 = 1
p4= 0+1+1+1 = 1

No magic, the parity bits are just
cleverly constructed to address the

failing common bit!

Other Error Correction Codes

•Many commonly used codes are more involved than Hamming
• (Hamming still used for ECC ram since very easy to implement in HW)

•E.g., Convolutional codes
• Take a stream of data and output a mix of the input bits
• Makes each output bit less fragile
• Decode using Viterbi algorithm (which can use bit confidence values)

UW CSE-461 69

Cyclic Redundancy Check (CRC)

•Even stronger protection
• Given n data bits, generate k check bits such that the n+k bits are

evenly divisible by a generator C

•Example with numbers:
• n = 302, k = one digit, C = 3

UW CSE-461 70

CRCs (2)

•The catch:
• It’s based on mathematics of finite fields, in which “numbers”

represent polynomials
• e.g, 10011010 is x7 + x4 + x3 + x1

•What this means:
• We work with binary values and operate using modulo 2 arithmetic

UW CSE-461 71

CRCs (3)

Send Procedure:
1. Extend the n data bits with k zeros
2. Divide by the generator value C
3. Keep remainder, ignore quotient
4. Adjust k check bits by remainder

Receive Procedure:
5. Divide by C
6. Check for zero remainder

UW CSE-461 72

CRCs (4)

Data bits:
1101011111

Check bits:
C(x)=x4+x1+1
C = 10011
k = 4

UW CSE-461 73

CRCs (5)

UW CSE-461 74

plus

CRCs (6)

•Protection depends on generator
• Standard CRC-32 is 10000010 01100000 10001110 110110111

•Properties:
• Hamming Distance=4, detects up to triple bit errors!
• Also odd number of errors
• And bursts of up to k bits in error
• Not vulnerable to systematic errors like checksums

UW CSE-461 75

Other Codes (2) – Turbo Codes

•Turbo Codes
• Evolution of convolutional codes
• Sends multiple sets of parity bits with payload
• Decodes sets together (e.g. Sudoku)
• Used in 3G and 4G cellular technologies
• Empirically approach Shannon capacity!

• Invented and patented by Claude Berrou
• Professor at École Nationale Supérieure des

Télécommunications de Bretagne

UW CSE-461 76

Other Codes (3) – LDPC

•Low Density Parity Check
• LDPC based on sparse matrices
• Decoded iteratively using a belief

propagation algorithm
• Empirically approach Shannon capacity!

• Invented by Robert Gallager in 1963 as
part of his PhD thesis
• Promptly forgotten until 1996 …
• Now used for the 5G dataplane, WiFi

UW CSE-461 77

Source: IEEE GHN, © 2009
IEEE

Other Codes (3) – Polar codes

•New kid on the block
• Invented 2008 by Erdal Arıkan, a

Turkish professor

•Provably achieve Shannon capacity!!!
•Don’t have high throughput
implementations yet
• Require iteration in decode that makes

it hard to parallelize

•Used in the 5G control plane

UW CSE-461 78

More coding theory

•This is a huge field.
•See EE 505, 514, 515 for more info

•These are graduate classes

•Key points:
•Coding allows us to detect and correct bit errors received
from the PHY
• It can get complicated…

• Abstract away with Hamming Distance :)

UW CSE-461 79

Detection vs. Correction

•Which is better will depend on the pattern of errors.
For example:
•1000 bit messages with a bit error rate (BER) of 1 in 10000

•Which has less overhead?

UW CSE-461 80

Detection vs. Correction

•Which is better will depend on the pattern of errors.
For example:
•1000 bit messages with a bit error rate (BER) of 1 in 10000

•Which has less overhead?
• It still depends! We need to know more about the errors

UW CSE-461 81

Detection vs. Correction (2)

Assume bit errors are random
• Messages have 0 or maybe 1 error (1/10 of the time)

Error correction:
• Need ~10 check bits per message
• Overhead: ?

Error detection:
• Need ~1 check bits per message plus 1000 bit retransmission
• Overhead: ?

UW CSE-461 82

Numbers here are
approximate, specifics

depend on specific code and
implementation

Detection vs. Correction (3)

Assume bit errors are random
• Messages have 0 or maybe 1 error (1/10 of the time)

Error correction:
• Need ~10 check bits per message
• Overhead: 10b/m

Error detection:
• Need ~1 check bits per message plus 1000 bit retransmission
• Overhead: 1b/m + 1000/10 = 101bpm

UW CSE-461 83

Numbers here are
approximate, specifics

depend on specific code and
implementation

Detection vs. Correction (4)

Assume errors come in bursts of 100
• Only 1 or 2 messages in 1000 have significant (multi-bit) errors

Error correction:
• Need >>100 check bits per message
• Overhead: ?

Error detection:
• Need 32 check bits per message plus 1000 bit resend 2/1000 of the time
• Overhead: ?

UW CSE-461 84

Numbers here are
approximate, specifics

depend on specific code and
implementation

Detection vs. Correction (5)

Assume errors come in bursts of 100
• Only 1 or 2 messages in 1000 have significant (multi-bit) errors

Error correction:
• Need >>100 check bits per message
• Overhead: >>100 b/m

Error detection:
• Need 32 check bits per message plus 1000 bit resend 2/1000 of the time
• Overhead: 32b/m + 1000* .002= 34b/m

UW CSE-461 85

Numbers here are
approximate, specifics

depend on specific code and
implementation

Detection vs. Correction (6)

•Error correction:
•Needed when errors are expected
•Or when no time for retransmission

•Error detection:
•More efficient when errors are not expected
•And when errors are large when they do occur

UW CSE-461 86

Error Correction in Practice

•Heavily used when the phy is error prone
• LDPC + polar is the future, used for demanding links like 802.11,

DVB, 5G, power-line…
• Convolutional codes widely used in practice

•Error detection (w/ retransmission) is used in the link layer
and above for residual errors
•Correction can also used in the application layer

• Called Forward Error Correction (FEC)
• Normally with an “erasure” error model (bits lost instead of flipped)
• E.g., Reed-Solomon (CDs, DVDs, etc.)

UW CSE-461 87

Link Layer: Retransmissions

UW CSE-461 88

Context on Reliability

•Where in the stack should we place reliability functions?

UW CSE-461 89

Physical

Link

Network

Transport

Application

Context on Reliability

•Where in the stack should we place reliability functions?
•Everywhere! It is a key issue

• Different layers contribute differently

UW CSE-461 90

Physical

Link

Network

Transport

Application Recover actions
(correctness)

Mask errors
(performance optimization)

What do we do if a frame is corrupted?

•From sender?
•From receiver?

UW CSE-461 91

ARQ (Automatic Repeat reQuest)

•ARQ often used when errors are common or must be
corrected
• E.g., WiFi, and TCP (later)

•Rules at sender and receiver:
• Receiver automatically acknowledges correct frames with an ACK
• Sender automatically resends after a timeout, until an ACK is

received

UW CSE-461 92

ARQ (2)

•Normal operation (no loss)

UW CSE-461 93

Frame

ACK
Timeout Time

Sender Receiver

ARQ (3)

•Loss and retransmission

UW CSE-461 94

ACK

Frame

Timeout Time

Sender Receiver

Frame

X

Duplicates

•What happens if an ACK is lost?

UW CSE-461 95

X

Frame

ACKTimeout

Sender Receiver

Duplicates (2)

•What happens if an ACK is lost?

UW CSE-461 96

Frame

ACK

X

Frame

ACK
Timeout

Sender Receiver

New
Frame??

Duplicates (3)

•Or the timeout is early?

UW CSE-461 97

ACK

Frame

Timeout

Sender Receiver

Duplicates (4)

•Or the timeout is early?

UW CSE-461 98

Frame

ACK

Frame

ACK

Timeout

Sender Receiver

New
Frame??

So What’s Tricky About ARQ?

•Two non-trivial issues:
• How long to set the timeout?
• How to avoid accepting duplicate frames as new frames

•Want performance in the common case and correctness
always…
• Ideas?

UW CSE-461 99

Timeouts

•Timeout should be:
• Not too big (link goes idle)
• Not too small (spurious resend)

•Fairly easy on a LAN
• Clear worst case, little variation

•Fairly difficult over the Internet : (
• Much variation, no obvious bound
• We’ll revisit this with TCP (later)

UW CSE-461 100

Sequence Numbers

•Frames and ACKs must both carry sequence
numbers for correctness
•To distinguish the current frame from the next one, a
single bit (two numbers) is sufficient
•Called Stop-and-Wait

UW CSE-461 101

Stop-and-Wait

• In the normal case:

UW CSE-461 102

Time

Sender Receiver

Stop-and-Wait (2)

• In the normal case:

UW CSE-461 103

Frame 0

ACK 0Timeout

Frame 1

ACK 1

Time

Sender Receiver

Stop-and-Wait (3)

•With ACK loss:

UW CSE-461 104

X

Frame 0

ACK 0
Timeout

Sender Receiver

Stop-and-Wait (4)

•With ACK loss:

UW CSE-461 105

Frame 0

ACK 0

X

Frame 0

ACK 0
Timeout

Sender Receiver

It’s a
Resend!

Stop-and-Wait (5)

•With early timeout:

UW CSE-461 106

ACK 0

Frame 0

Timeout

Sender Receiver

Stop-and-Wait (6)

•With early timeout:

UW CSE-461 107

Frame 0

ACK 0

Frame 0

ACK 0

Timeout

Sender Receiver

It’s a
Resend

OK
…

Limitation of Stop-and-Wait

• It allows only a single frame to be outstanding from the
sender:
• Good for LAN, not efficient for high Bandwidth x Delay Product

•Ex: R=1 Mbps, D = 50 ms
•Approximately how many frames/sec? If R=10 Mbps?

UW CSE-461 108

Sliding Window

•Generalization of stop-and-wait
• Allows W frames to be outstanding
• Can send W frames per RTT (=2D)

•Various options for numbering frames/ACKs and handling
loss
• Will look at along with TCP (later)

UW CSE-461 109

