
Where we left off…
•Deep in the physical layer

• Encoding bits onto a physical medium in a way that allows for clock 
recovery and baseline recovery

• Limits to how much data we can actually communicate within phy 
constraints of bandwidth (Hz) and SNR (dB)
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While we’re waiting– what were the key implications 
of Shannon capacity from last class?



Where we are in the Course

•Today: moving on up to the Link Layer!
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Scope of the Link Layer

•Concerns how to transfer messages over one or more 
connected links
• Messages are frames, of limited size
• Builds on the “bits on a wire” abstraction provided by the phy!
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Frame



In terms of layers …
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In terms of layers (2)
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Typical Implementation of L2
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L2 Topics

1. Framing
• Delimiting start/end of frames

2. Error detection and correction
• Handling errors

3. Retransmissions
• Handling loss

4. Multiple Access
• 802.11, classic Ethernet

5. Switching
• Modern Ethernet
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Framing
Delimiting start/end of frames
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Topic

•The Physical layer gives us a stream of bits.
• How do we interpret it as a sequence of frames?
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…10110 
…

Um?



Framing Methods

•We’ll look at:
• Byte count (motivation)
• Byte stuffing 
• Bit stuffing

• The book also discusses clock-based framing (2.3.3)
• Happy to discuss on Ed or office hours if of interest

•Note: in practice, the physical layer often helps to identify and/or 
confirm frame boundaries
• E.g., Ethernet, 802.11
• Detect “gaps” in the analog signal, clock, etc.
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Byte Count

•First try:
• Let’s start each frame with a length field!
• It’s simple, and hopefully good enough …
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Byte Count (2)
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Byte Count (3)

•Difficult to re-synchronize after framing error
• Want a way to scan for a start of frame
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Byte Stuffing (1)

•Different idea:
• Have a special flag byte value for start/end of frame
• Replace (“stuff”) the flag with an escape code
• Problem?
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Byte Stuffing (2)

•Different idea:
• Have a special flag byte value for start/end of frame
• Replace (“stuff”) the flag with an escape code

• Complication: have to escape the escape code too!
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Byte Stuffing (3)

•Rules:
• Replace each FLAG in data with ESC FLAG
• Replace each ESC in data with ESC ESC
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Byte Stuffing (4)

•Now any unescaped FLAG is the start/end of a frame!
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Unstuffing

You see:
1. Solitary FLAG?
2. Solitary ESC?
3. ESC FLAG?
4. ESC ESC FLAG?
5. ESC ESC ESC FLAG?
6. ESC FLAG FLAG?
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Unstuffing

You see:
1. Solitary FLAG? -> Start or end of frame
2. Solitary ESC? -> Bad frame!
3. ESC FLAG? -> pass FLAG through
4. ESC ESC FLAG? -> pass ESC through, then start or end of frame
5. ESC ESC ESC FLAG? -> pass ESC FLAG through
6. ESC FLAG FLAG? -> pass FLAG through then start or end of 

frame

UW CSE-461 19



Bit Stuffing

•Can stuff at the bit level too!
• Call a flag six consecutive 1s
• On transmit, after five 1s in the data, insert a 0
• On receive, a 0 after five 1s is deleted 
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Bit Stuffing Example

UW CSE-461 21

Transmitted 
bits

(with stuffing)

Data 
bits

0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0



Bit Stuffing Example (2)
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Transmitted 
bits

(with stuffing)

Data 
bits

0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0

0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0

Stuffed BitsHow does it compare to 
byte stuffing??? Possible small gain in efficiency, at the expense 

of byte alignment : (



Link Example: PPP over SONET

•PPP is Point-to-Point Protocol
• Widely used for link framing
• E.g., it is used to frame variable-length IP packets that are sent over 

SONET optical links (which have a fixed frame size!)
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Link Example: PPP over SONET (2)

•Think of SONET as a bit stream, and PPP as the framing that 
carries an IP packet over the link

UW CSE-461 24

Protocol 
stacks

PPP frames may be split 
over SONET payloads



Link Example: PPP over SONET (3)

•Framing uses byte stuffing!
• FLAG is 0x7E and ESC is 0x7D
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Link Layer: Error detection 
and correction
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Signal
0 0 0 0

11 1
0

0 0 0 0
11 1

0

0 0 0 0
11 1 1

Slightly
Noisy

Very
noisy

Problem – Noise may flip received bits 
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Topic

•Some bits will be received in error due to noise. 
•What can we do?

• Detect errors with codes
• Retransmit lost frames
• Correct errors with codes

•Reliability is a concern that cuts across the layers!
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Later



Approach – Add Redundancy 

•Error detection codes
• Add check bits to the message bits to let some errors be detected

•Error correction codes
• Add even more check bits to let some errors be corrected

•Key issue is now to structure the code to detect many errors 
with few check bits and modest computation
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Ideas?

UW CSE-461 30



Motivating Example

•A simple code to handle errors:
• Send two copies! Error if different.

•How good is this code?
• How many errors can it detect/correct?
• How many errors will make it fail?
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Motivating Example (2)

•We want to handle more errors with less overhead
• Will look at better codes; they are applied mathematics
• But, they can’t handle all errors
• And they focus on accidental (non-malicious) errors

• Will look at secure hashes later
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Using Error Codes

•Codeword consists of D data plus R check bits
• =systematic block code

•Sender: 
• Compute R check bits based on the D data bits; send the codeword 

of D+R bits
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D R=fn(D)

Data bits Check bits



Using Error Codes (2)

•Receiver:  
• Receive D+R bits with unknown errors
• Recompute R check bits based on the D data bits; error if R doesn’t 

match R’
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D R’
Data bits Check bits

R=fn(D)
=?



Intuition for Error Codes

•For D data bits, R check bits:

•Randomly chosen codeword is unlikely to be correct; 
overhead is low
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All
codewords

Correct
codewords



R.W. Hamming (1915-1998)

•Much early work on codes:
• “Error Detecting and Error Correcting 

Codes”, BSTJ, 1950

• “If the computer can tell when an 
error has occurred, surely there is a 
way of telling where the error is so the 
computer can correct the error itself” 
- Hamming
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Source: IEEE GHN, © 2009 
IEEE

Fun Fact:
Shared an office with Claude Shannon (from last class) at Bell Labs!



Hamming Distance

•Hamming distance between two codes (D1 D2) is the 
number of bit flips needed to change D1 to D2

Alternatively (and confusingly)...
•Hamming distance of a coding is the minimum error 
distance between any pair of codewords (bit-strings) that 
cannot be detected
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Hamming Distance (2)

•Error detection:
• For a coding of distance d+1, up to d errors will always be detected

•Error correction:
• For a coding of distance 2d+1, up to d errors can always be 

corrected by mapping to the closest valid codeword
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Intuition for Error Correcting Code

•Suppose we construct a code with a Hamming distance of at 
least 3
• Need ≥3 bit errors to change one valid codeword into another
• Single bit errors will be closest to a unique valid codeword

• If we assume errors are only 1 bit, we can correct them by 
mapping an error to the closest valid codeword
• Works for d errors if HD ≥ 2d + 1
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Intuition (2)

•Visualization of code w/ 
Hamming distance three:
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A

B

Valid
codeword

Error
codeword



Intuition (3)
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A

B

Valid
codeword

Error
codeword

Single 
bit error
from A

Three bit 
errors to 
get to B

You cannot have it both 
ways… receiver needs 
to pick  if receiving in 

the detection or 
correction mode : /

•Visualization of code w/ 
Hamming distance three:



Simple Error Detection – Parity Bit

•Take D data bits, add 1 check bit that is the sum of the D bits
• Sum is modulo 2 or XOR
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Parity Bit (2)

•How well does parity work?
• What is the Hamming distance of the code?
• How many errors will it reliably detect/correct?

•What about larger errors?
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2

Detect 1, correct 0

Can detect all odd number of errors!



Check your understanding…

•What is the Hamming distance of the duplicate message 
code we used as a motivating example?
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Checksums

• Idea: sum up data in N-bit words
• Widely used in, e.g., TCP/IP/UDP

•Stronger protection than parity
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1500 bytes 16 bits



Internet Checksum

•Sum is defined in 1s complement arithmetic
• (must add back carries) 🤢
• And it’s the negative sum

• “The checksum field is the 16 bit one's complement of the one's 
complement sum of all 16 bit words …” – RFC 791
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Internet Checksum (2)

Sending: 0x0001f204f4f5f6f7
1. Arrange data in 16-bit words
2. Put zero in checksum position, add
3. Add any carryover back to get 16 bits
4. Negate (complement) to get sum
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0001 
f204 
f4f5 
f6f7 

+(0000)
------ 
2ddf1 

ddf1 
+    2 
------ 

ddf3 

220c 



Internet Checksum (3)

Receiving: 0x0001f204f4f5f6f7220c
1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0
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0001 
f204 
f4f5 
f6f7 

+ 220c 
------ 
2fffd 

 
fffd 

+    2 
------ 

ffff 

   0000 
✅



Internet Checksum (4)

•How well does the checksum work?
• What is the distance of the code?
• How many errors will it detect/correct?

•What about larger errors?
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Internet Checksum (5)

•How well does the checksum work?
• What is the distance of the code?
• How many errors will it detect/correct?

•What about larger errors?

UW CSE-461 50

Hamming distance of 2 : (
Fooled by two errors in 

certain positions! Same as 
humble parity bit

But does handle bursts of up 
to 16 bits, and large random 
errors have lower probability 

of passing (1/2^16)



Why Error Correction is Hard

•If we had reliable check bits we could use them to 
narrow down the position of the error
•Then correction would be easy!

•But error could be in the check bits as well as the 
data bits!
•Data might even be correct : (
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Hamming Code

•Gives a method for constructing a code with a distance of 3!
• Uses n = 2k – k – 1, e.g., n=4, k=3
• Put check bits in positions p that are powers of 2, starting with 

position 1
• Check bit in position p is parity of positions with a p term in their 

values

•AND provides an algorithm to determine where to correct!
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Hamming Code (2)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7
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_  _  _  _  _  _  _
1    2   3   4   5    6   7



_  _  0  _  1  0  1

Hamming Code (3)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7
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1   2   3  4   5   6   7



0  _  0  _  1  0  1

Hamming Code (3)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7
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1   2   3  4   5   6   7

p1= 0+1+1 = 0



0  1  0  _  1  0  1

Hamming Code (3)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7
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1   2   3  4   5   6   7

p1= 0+1+1 = 0
p2= 0+0+1 = 1



0  1  0  0  1  0  1

Hamming Code (3)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7
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1   2   3  4   5   6   7

p1= 0+1+1 = 0
p2= 0+0+1 = 1
p4= 1+0+1 = 0



Hamming Code (4)

•To decode:
1. Recompute check bits

•  (with parity sum including the check bit)

2. Arrange as a binary number
3. Value (syndrome) tells error position
4. Value of zero means no error
5. Otherwise, flip bit to correct
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Hamming Code (5)

p1= 
p2= 
p4= 

Syndrome =  
Data = 0101
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0  1  0  0  1  0  1
1   2   3  4   5   6   7

C1 = 1,3,5,7
C2 = 2,3,6,7 
C3 = 4,5,6,7



Hamming Code (8)

p1= 
p2= 
p4= 0+1+0+1 = 0

Syndrome =  0
Data = 0101
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0  1  0  0  1  0  1
1   2   3  4   5   6   7

C1 = 1,3,5,7
C2 = 2,3,6,7 
C3 = 4,5,6,7



Hamming Code (8)

p1= 
p2= 1+0+0+1 = 0
p4= 0+1+0+1 = 0

Syndrome =  00
Data = 0101
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0  1  0  0  1  0  1
1   2   3  4   5   6   7

C1 = 1,3,5,7
C2 = 2,3,6,7 
C3 = 4,5,6,7



Hamming Code (8)

p1= 0+0+1+1 = 0
p2= 1+0+0+1 = 0
p4= 0+1+0+1 = 0

Syndrome =  000, no error
Data = 0101
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0  1  0  0  1  0  1
1   2   3  4   5   6   7

C1 = 1,3,5,7
C2 = 2,3,6,7 
C3 = 4,5,6,7



Hamming Code (9)

p1=
p2=
p4=

Syndrome =
Data =
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0  1  0  0  1  1  1
1   2   3  4   5   6   7

💥

C1 = 1,3,5,7
C2 = 2,3,6,7 
C3 = 4,5,6,7



Hamming Code (10)

p1= 
p2= 
p4= 

Syndrome =  
Data = 0 1 1 1 
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0  1  0  0  1  1  1
1   2   3  4   5   6   7

💥

C1 = 1,3,5,7
C2 = 2,3,6,7 
C3 = 4,5,6,7



Hamming Code (11)

p1= 
p2= 
p4= 0+1+1+1 = 1

Syndrome = 1 
Data = 0 1 1 1 
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0  1  0  0  1  1  1
1   2   3  4   5   6   7

💥

C1 = 1,3,5,7
C2 = 2,3,6,7 
C3 = 4,5,6,7



Hamming Code (12)

p1= 
p2= 1+0+1+1 = 1
p4= 0+1+1+1 = 1

Syndrome = 1 1 
Data = 0 1 1 1 
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0  1  0  0  1  1  1
1   2   3  4   5   6   7

💥

C1 = 1,3,5,7
C2 = 2,3,6,7 
C3 = 4,5,6,7



Hamming Code (13)

p1= 0+0+1+1 = 0
p2= 1+0+1+1 = 1
p4= 0+1+1+1 = 1

Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip 🤯)
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0  1  0  0  1  1  1
1   2   3  4   5   6   7

💥

C1 = 1,3,5,7
C2 = 2,3,6,7 
C3 = 4,5,6,7



0  1  0  0  1  1  1

Hamming Code (14)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7
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1   2   3  4   5   6   7

💥 p1= 0+0+1+1 = 0
p2= 1+0+1+1 = 1
p4= 0+1+1+1 = 1

No magic, the parity bits are just 
cleverly constructed to address the 

failing common bit!



Other Error Correction Codes

•Many commonly used codes are more involved than Hamming
• (Hamming still used for ECC ram since very easy to implement in HW)

•E.g., Convolutional codes
• Take a stream of data and output a mix of the input bits
• Makes each output bit less fragile
• Decode using Viterbi algorithm (which can use bit confidence values)
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Cyclic Redundancy Check (CRC)

•Even stronger protection
• Given n data bits, generate k check bits such that the n+k bits are 

evenly divisible by a generator C 

•Example with numbers:
• n = 302, k = one digit, C = 3

UW CSE-461 70



CRCs (2)

•The catch:
• It’s based on mathematics of finite fields, in which “numbers” 

represent polynomials
• e.g, 10011010 is x7 + x4 + x3 + x1 

•What this means:
• We work with binary values and operate using modulo 2 arithmetic
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CRCs (3)

Send Procedure:
1. Extend the n data bits with k zeros
2. Divide by the generator value C
3. Keep remainder, ignore quotient
4. Adjust k check bits by remainder

Receive Procedure:
5. Divide by C
6. Check for zero remainder
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CRCs (4)

Data bits:
1101011111

Check bits:
C(x)=x4+x1+1
C = 10011
k = 4 
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CRCs (5)
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plus



CRCs (6)

•Protection depends on generator
• Standard CRC-32 is 10000010 01100000 10001110 110110111

•Properties:
• Hamming Distance=4, detects up to triple bit errors!
• Also odd number of errors 
• And bursts of up to k bits in error
• Not vulnerable to systematic errors like checksums
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Other Codes (2) – Turbo Codes 

•Turbo Codes
• Evolution of convolutional codes
• Sends multiple sets of parity bits with payload
• Decodes sets together (e.g. Sudoku)
• Used in 3G and 4G cellular technologies
• Empirically approach Shannon capacity!

• Invented and patented by Claude Berrou
• Professor at École Nationale Supérieure des 

Télécommunications de Bretagne
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Other Codes (3) – LDPC 

•Low Density Parity Check
• LDPC based on sparse matrices
• Decoded iteratively using a belief 

propagation algorithm
• Empirically approach Shannon capacity!

• Invented by Robert Gallager in 1963 as 
part of his PhD thesis
• Promptly forgotten until 1996 …
• Now used for the 5G dataplane, WiFi
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Source: IEEE GHN, © 2009 
IEEE



Other Codes (3) – Polar codes

•New kid on the block
• Invented 2008 by Erdal Arıkan, a 

Turkish professor

•Provably achieve Shannon capacity!!!
•Don’t have high throughput 
implementations yet 
• Require iteration in decode that makes 

it hard to parallelize

•Used in the 5G control plane
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More coding theory 

•This is a huge field. 
•See EE 505, 514, 515 for more info

•These are graduate classes

•Key points:
•Coding allows us to detect and correct bit errors received 
from the PHY
• It can get complicated…

• Abstract away with Hamming Distance : )
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Detection vs. Correction

•Which is better will depend on the pattern of errors.
For example:
•1000 bit messages with a bit error rate (BER) of 1 in 10000

•Which has less overhead?
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Detection vs. Correction

•Which is better will depend on the pattern of errors.
For example:
•1000 bit messages with a bit error rate (BER) of 1 in 10000

•Which has less overhead?
• It still depends! We need to know more about the errors
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Detection vs. Correction (2)

Assume bit errors are random
• Messages have 0 or maybe 1 error (1/10 of the time)

Error correction: 
• Need ~10 check bits per message
• Overhead: ?

Error detection: 
• Need ~1 check bits per message plus 1000 bit retransmission 
• Overhead: ?
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Numbers here are 
approximate, specifics 

depend on specific code and 
implementation



Detection vs. Correction (3)

Assume bit errors are random
• Messages have 0 or maybe 1 error (1/10 of the time)

Error correction: 
• Need ~10 check bits per message
• Overhead: 10b/m

Error detection: 
• Need ~1 check bits per message plus 1000 bit retransmission 
• Overhead: 1b/m + 1000/10 = 101bpm
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Numbers here are 
approximate, specifics 

depend on specific code and 
implementation



Detection vs. Correction (4)

Assume errors come in bursts of 100
• Only 1 or 2 messages in 1000 have significant (multi-bit) errors

Error correction: 
• Need >>100 check bits per message
• Overhead: ?

Error detection: 
• Need 32 check bits per message plus 1000 bit resend 2/1000 of the time
• Overhead: ?
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Numbers here are 
approximate, specifics 

depend on specific code and 
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Detection vs. Correction (5)

Assume errors come in bursts of 100
• Only 1 or 2 messages in 1000 have significant (multi-bit) errors

Error correction: 
• Need >>100 check bits per message
• Overhead: >>100 b/m

Error detection: 
• Need 32 check bits per message plus 1000 bit resend 2/1000 of the time
• Overhead: 32b/m + 1000* .002= 34b/m
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Numbers here are 
approximate, specifics 

depend on specific code and 
implementation



Detection vs. Correction (6)

•Error correction: 
•Needed when errors are expected
•Or when no time for retransmission

•Error detection: 
•More efficient when errors are not expected
•And when errors are large when they do occur
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Error Correction in Practice

•Heavily used when the phy is error prone
• LDPC + polar is the future, used for demanding links like 802.11, 

DVB, 5G, power-line…
• Convolutional codes widely used in practice

•Error detection (w/ retransmission) is used in the link layer 
and above for residual errors
•Correction can also used in the application layer

• Called Forward Error Correction (FEC)
• Normally with an “erasure” error model (bits lost instead of flipped)
• E.g., Reed-Solomon (CDs, DVDs, etc.)
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Link Layer: Retransmissions
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Context on Reliability

•Where in the stack should we place reliability functions?
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Context on Reliability

•Where in the stack should we place reliability functions?
•Everywhere! It is a key issue

• Different layers contribute differently
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Physical

Link

Network

Transport

Application Recover actions
(correctness)

Mask errors
(performance optimization)



What do we do if a frame is corrupted?

•From sender?
•From receiver?
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ARQ (Automatic Repeat reQuest)

•ARQ often used when errors are common or must be 
corrected
• E.g., WiFi, and TCP (later)

•Rules at sender and receiver:
• Receiver automatically acknowledges correct frames with an ACK
• Sender automatically resends after a timeout, until an ACK is 

received
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ARQ (2)

•Normal operation (no loss)
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ARQ (3)

•Loss and retransmission
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Duplicates

•What happens if an ACK is lost?
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Duplicates (2)

•What happens if an ACK is lost?
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Frame
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X
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Sender Receiver

New 
Frame??



Duplicates (3)

•Or the timeout is early?
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Duplicates (4)

•Or the timeout is early?
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So What’s Tricky About ARQ?

•Two non-trivial issues:
• How long to set the timeout? 
• How to avoid accepting duplicate frames as new frames 

•Want performance in the common case and correctness 
always…
• Ideas?
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Timeouts

•Timeout should be:
• Not too big (link goes idle)
• Not too small (spurious resend)

•Fairly easy on a LAN
• Clear worst case, little variation

•Fairly difficult over the Internet : (
• Much variation, no obvious bound
• We’ll revisit this with TCP (later)
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Sequence Numbers

•Frames and ACKs must both carry sequence 
numbers for correctness
•To distinguish the current frame from the next one, a 
single bit (two numbers) is sufficient
•Called Stop-and-Wait
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Stop-and-Wait

• In the normal case:
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Stop-and-Wait (2)

• In the normal case:
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Stop-and-Wait (3)

•With ACK loss:
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Stop-and-Wait (4)

•With ACK loss:
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Stop-and-Wait (5)

•With early timeout:
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Stop-and-Wait (6)

•With early timeout:
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Limitation of Stop-and-Wait

• It allows only a single frame to be outstanding from the 
sender:
• Good for LAN, not efficient for high Bandwidth x Delay Product

•Ex: R=1 Mbps, D = 50 ms
•Approximately how many frames/sec? If R=10 Mbps?
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Sliding Window

•Generalization of stop-and-wait
• Allows W frames to be outstanding
• Can send W frames per RTT (=2D)

•Various options for numbering frames/ACKs and handling 
loss
• Will look at along with TCP (later)
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